Add AI embeddings and suggestions for categories, a few validation step tweaks/fixes
This commit is contained in:
82
inventory-server/src/services/ai/embeddings/similarity.js
Normal file
82
inventory-server/src/services/ai/embeddings/similarity.js
Normal file
@@ -0,0 +1,82 @@
|
||||
/**
|
||||
* Vector similarity utilities
|
||||
*/
|
||||
|
||||
/**
|
||||
* Compute cosine similarity between two vectors
|
||||
* @param {number[]} a
|
||||
* @param {number[]} b
|
||||
* @returns {number} Similarity score between -1 and 1
|
||||
*/
|
||||
function cosineSimilarity(a, b) {
|
||||
if (!a || !b || a.length !== b.length) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
let dotProduct = 0;
|
||||
let normA = 0;
|
||||
let normB = 0;
|
||||
|
||||
for (let i = 0; i < a.length; i++) {
|
||||
dotProduct += a[i] * b[i];
|
||||
normA += a[i] * a[i];
|
||||
normB += b[i] * b[i];
|
||||
}
|
||||
|
||||
const denominator = Math.sqrt(normA) * Math.sqrt(normB);
|
||||
if (denominator === 0) return 0;
|
||||
|
||||
return dotProduct / denominator;
|
||||
}
|
||||
|
||||
/**
|
||||
* Find top K most similar items from a collection
|
||||
* @param {number[]} queryEmbedding - The embedding to search for
|
||||
* @param {Array<{id: any, embedding: number[]}>} items - Items with embeddings
|
||||
* @param {number} topK - Number of results to return
|
||||
* @returns {Array<{id: any, similarity: number}>}
|
||||
*/
|
||||
function findTopMatches(queryEmbedding, items, topK = 10) {
|
||||
if (!queryEmbedding || !items || items.length === 0) {
|
||||
return [];
|
||||
}
|
||||
|
||||
const scored = items.map(item => ({
|
||||
id: item.id,
|
||||
similarity: cosineSimilarity(queryEmbedding, item.embedding)
|
||||
}));
|
||||
|
||||
scored.sort((a, b) => b.similarity - a.similarity);
|
||||
|
||||
return scored.slice(0, topK);
|
||||
}
|
||||
|
||||
/**
|
||||
* Find matches above a similarity threshold
|
||||
* @param {number[]} queryEmbedding
|
||||
* @param {Array<{id: any, embedding: number[]}>} items
|
||||
* @param {number} threshold - Minimum similarity (0-1)
|
||||
* @returns {Array<{id: any, similarity: number}>}
|
||||
*/
|
||||
function findMatchesAboveThreshold(queryEmbedding, items, threshold = 0.5) {
|
||||
if (!queryEmbedding || !items || items.length === 0) {
|
||||
return [];
|
||||
}
|
||||
|
||||
const scored = items
|
||||
.map(item => ({
|
||||
id: item.id,
|
||||
similarity: cosineSimilarity(queryEmbedding, item.embedding)
|
||||
}))
|
||||
.filter(item => item.similarity >= threshold);
|
||||
|
||||
scored.sort((a, b) => b.similarity - a.similarity);
|
||||
|
||||
return scored;
|
||||
}
|
||||
|
||||
module.exports = {
|
||||
cosineSimilarity,
|
||||
findTopMatches,
|
||||
findMatchesAboveThreshold
|
||||
};
|
||||
Reference in New Issue
Block a user