Add metrics historical backfill scripts, fix up all new metrics calc queries and add combined script to run

This commit is contained in:
2025-03-31 22:15:41 -04:00
parent 796a2e5d1f
commit 5035dda733
26 changed files with 2592 additions and 958 deletions

View File

@@ -0,0 +1,736 @@
const { outputProgress, formatElapsedTime, estimateRemaining, calculateRate, logError } = require('./utils/progress');
const { getConnection } = require('./utils/db');
// Helper function to handle NaN and undefined values
function sanitizeValue(value) {
if (value === undefined || value === null || Number.isNaN(value)) {
return null;
}
return value;
}
async function calculateProductMetrics(startTime, totalProducts, processedCount = 0, isCancelled = false) {
let connection;
let success = false;
let processedOrders = 0;
const BATCH_SIZE = 5000;
try {
connection = await getConnection();
// Skip flags are inherited from the parent scope
const SKIP_PRODUCT_BASE_METRICS = 0;
const SKIP_PRODUCT_TIME_AGGREGATES = 0;
// Get total product count if not provided
if (!totalProducts) {
const productCount = await connection.query('SELECT COUNT(*) as count FROM products');
totalProducts = parseInt(productCount.rows[0].count);
}
if (isCancelled) {
outputProgress({
status: 'cancelled',
operation: 'Product metrics calculation cancelled',
current: processedCount,
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: null,
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
return {
processedProducts: processedCount,
processedOrders,
processedPurchaseOrders: 0,
success
};
}
// First ensure all products have a metrics record
await connection.query(`
INSERT INTO product_metrics (pid, last_calculated_at)
SELECT pid, NOW()
FROM products
ON CONFLICT (pid) DO NOTHING
`);
// Get threshold settings once
const thresholds = await connection.query(`
SELECT critical_days, reorder_days, overstock_days, low_stock_threshold
FROM stock_thresholds
WHERE category_id IS NULL AND vendor IS NULL
LIMIT 1
`);
// Check if threshold data was returned
if (!thresholds.rows || thresholds.rows.length === 0) {
console.warn('No default thresholds found in the database. Using explicit type casting in the query.');
}
const defaultThresholds = thresholds.rows[0];
// Get financial calculation configuration parameters
const financialConfig = await connection.query(`
SELECT
order_cost,
holding_rate,
service_level_z_score,
min_reorder_qty,
default_reorder_qty,
default_safety_stock
FROM financial_calc_config
WHERE id = 1
LIMIT 1
`);
const finConfig = financialConfig.rows[0] || {
order_cost: 25.00,
holding_rate: 0.25,
service_level_z_score: 1.96,
min_reorder_qty: 1,
default_reorder_qty: 5,
default_safety_stock: 5
};
// Calculate base product metrics
if (!SKIP_PRODUCT_BASE_METRICS) {
outputProgress({
status: 'running',
operation: 'Starting base product metrics calculation',
current: processedCount,
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
// Get order count that will be processed
const orderCount = await connection.query(`
SELECT COUNT(*) as count
FROM orders o
WHERE o.canceled = false
`);
processedOrders = parseInt(orderCount.rows[0].count);
// Clear temporary tables
await connection.query('DROP TABLE IF EXISTS temp_sales_metrics');
await connection.query('DROP TABLE IF EXISTS temp_purchase_metrics');
// Create temp_sales_metrics
await connection.query(`
CREATE TEMPORARY TABLE temp_sales_metrics (
pid BIGINT NOT NULL,
daily_sales_avg DECIMAL(10,3),
weekly_sales_avg DECIMAL(10,3),
monthly_sales_avg DECIMAL(10,3),
total_revenue DECIMAL(10,3),
avg_margin_percent DECIMAL(10,3),
first_sale_date DATE,
last_sale_date DATE,
stddev_daily_sales DECIMAL(10,3),
PRIMARY KEY (pid)
)
`);
// Create temp_purchase_metrics
await connection.query(`
CREATE TEMPORARY TABLE temp_purchase_metrics (
pid BIGINT NOT NULL,
avg_lead_time_days DECIMAL(10,2),
last_purchase_date DATE,
first_received_date DATE,
last_received_date DATE,
stddev_lead_time_days DECIMAL(10,2),
PRIMARY KEY (pid)
)
`);
// Populate temp_sales_metrics with base stats and sales averages
await connection.query(`
INSERT INTO temp_sales_metrics
SELECT
p.pid,
COALESCE(SUM(o.quantity) / NULLIF(COUNT(DISTINCT DATE(o.date)), 0), 0) as daily_sales_avg,
COALESCE(SUM(o.quantity) / NULLIF(CEIL(COUNT(DISTINCT DATE(o.date)) / 7), 0), 0) as weekly_sales_avg,
COALESCE(SUM(o.quantity) / NULLIF(CEIL(COUNT(DISTINCT DATE(o.date)) / 30), 0), 0) as monthly_sales_avg,
COALESCE(SUM(o.quantity * o.price), 0) as total_revenue,
CASE
WHEN SUM(o.quantity * o.price) > 0
THEN ((SUM(o.quantity * o.price) - SUM(o.quantity * p.cost_price)) / SUM(o.quantity * o.price)) * 100
ELSE 0
END as avg_margin_percent,
MIN(o.date) as first_sale_date,
MAX(o.date) as last_sale_date,
COALESCE(STDDEV_SAMP(daily_qty.quantity), 0) as stddev_daily_sales
FROM products p
LEFT JOIN orders o ON p.pid = o.pid
AND o.canceled = false
AND o.date >= CURRENT_DATE - INTERVAL '90 days'
LEFT JOIN (
SELECT
pid,
DATE(date) as sale_date,
SUM(quantity) as quantity
FROM orders
WHERE canceled = false
AND date >= CURRENT_DATE - INTERVAL '90 days'
GROUP BY pid, DATE(date)
) daily_qty ON p.pid = daily_qty.pid
GROUP BY p.pid
`);
// Populate temp_purchase_metrics with timeout protection
await Promise.race([
connection.query(`
INSERT INTO temp_purchase_metrics
SELECT
p.pid,
AVG(
CASE
WHEN po.received_date IS NOT NULL AND po.date IS NOT NULL
THEN EXTRACT(EPOCH FROM (po.received_date::timestamp with time zone - po.date::timestamp with time zone)) / 86400.0
ELSE NULL
END
) as avg_lead_time_days,
MAX(po.date) as last_purchase_date,
MIN(po.received_date) as first_received_date,
MAX(po.received_date) as last_received_date,
STDDEV_SAMP(
CASE
WHEN po.received_date IS NOT NULL AND po.date IS NOT NULL
THEN EXTRACT(EPOCH FROM (po.received_date::timestamp with time zone - po.date::timestamp with time zone)) / 86400.0
ELSE NULL
END
) as stddev_lead_time_days
FROM products p
LEFT JOIN purchase_orders po ON p.pid = po.pid
AND po.received_date IS NOT NULL
AND po.date IS NOT NULL
AND po.date >= CURRENT_DATE - INTERVAL '365 days'
GROUP BY p.pid
`),
new Promise((_, reject) =>
setTimeout(() => reject(new Error('Timeout: temp_purchase_metrics query took too long')), 60000)
)
]).catch(async (err) => {
logError(err, 'Error populating temp_purchase_metrics, continuing with empty table');
// Create an empty fallback to continue processing
await connection.query(`
INSERT INTO temp_purchase_metrics
SELECT
p.pid,
30.0 as avg_lead_time_days,
NULL as last_purchase_date,
NULL as first_received_date,
NULL as last_received_date,
0.0 as stddev_lead_time_days
FROM products p
LEFT JOIN temp_purchase_metrics tpm ON p.pid = tpm.pid
WHERE tpm.pid IS NULL
`);
});
// Process updates in batches
let lastPid = 0;
let batchCount = 0;
const MAX_BATCHES = 1000; // Safety limit for number of batches to prevent infinite loops
while (batchCount < MAX_BATCHES) {
if (isCancelled) break;
batchCount++;
const batch = await connection.query(
'SELECT pid FROM products WHERE pid > $1 ORDER BY pid LIMIT $2',
[lastPid, BATCH_SIZE]
);
if (batch.rows.length === 0) break;
// Process the entire batch in a single efficient query
const lowStockThreshold = parseInt(defaultThresholds?.low_stock_threshold) || 5;
const criticalDays = parseInt(defaultThresholds?.critical_days) || 7;
const reorderDays = parseInt(defaultThresholds?.reorder_days) || 14;
const overstockDays = parseInt(defaultThresholds?.overstock_days) || 90;
const serviceLevel = parseFloat(finConfig?.service_level_z_score) || 1.96;
const defaultSafetyStock = parseInt(finConfig?.default_safety_stock) || 5;
const defaultReorderQty = parseInt(finConfig?.default_reorder_qty) || 5;
const orderCost = parseFloat(finConfig?.order_cost) || 25.00;
const holdingRate = parseFloat(finConfig?.holding_rate) || 0.25;
const minReorderQty = parseInt(finConfig?.min_reorder_qty) || 1;
await connection.query(`
UPDATE product_metrics pm
SET
inventory_value = p.stock_quantity * NULLIF(p.cost_price, 0),
daily_sales_avg = COALESCE(sm.daily_sales_avg, 0),
weekly_sales_avg = COALESCE(sm.weekly_sales_avg, 0),
monthly_sales_avg = COALESCE(sm.monthly_sales_avg, 0),
total_revenue = COALESCE(sm.total_revenue, 0),
avg_margin_percent = COALESCE(sm.avg_margin_percent, 0),
first_sale_date = sm.first_sale_date,
last_sale_date = sm.last_sale_date,
avg_lead_time_days = COALESCE(lm.avg_lead_time_days, 30.0),
days_of_inventory = CASE
WHEN COALESCE(sm.daily_sales_avg, 0) > 0
THEN FLOOR(p.stock_quantity / NULLIF(sm.daily_sales_avg, 0))
ELSE NULL
END,
weeks_of_inventory = CASE
WHEN COALESCE(sm.weekly_sales_avg, 0) > 0
THEN FLOOR(p.stock_quantity / NULLIF(sm.weekly_sales_avg, 0))
ELSE NULL
END,
stock_status = CASE
WHEN p.stock_quantity <= 0 THEN 'Out of Stock'
WHEN COALESCE(sm.daily_sales_avg, 0) = 0 AND p.stock_quantity <= ${lowStockThreshold} THEN 'Low Stock'
WHEN COALESCE(sm.daily_sales_avg, 0) = 0 THEN 'In Stock'
WHEN p.stock_quantity / NULLIF(sm.daily_sales_avg, 0) <= ${criticalDays} THEN 'Critical'
WHEN p.stock_quantity / NULLIF(sm.daily_sales_avg, 0) <= ${reorderDays} THEN 'Reorder'
WHEN p.stock_quantity / NULLIF(sm.daily_sales_avg, 0) > ${overstockDays} THEN 'Overstocked'
ELSE 'Healthy'
END,
safety_stock = CASE
WHEN COALESCE(sm.daily_sales_avg, 0) > 0 AND COALESCE(lm.avg_lead_time_days, 0) > 0 THEN
CEIL(
${serviceLevel} * SQRT(
GREATEST(0, COALESCE(lm.avg_lead_time_days, 0)) * POWER(COALESCE(sm.stddev_daily_sales, 0), 2) +
POWER(COALESCE(sm.daily_sales_avg, 0), 2) * POWER(COALESCE(lm.stddev_lead_time_days, 0), 2)
)
)
ELSE ${defaultSafetyStock}
END,
reorder_point = CASE
WHEN COALESCE(sm.daily_sales_avg, 0) > 0 THEN
CEIL(sm.daily_sales_avg * GREATEST(0, COALESCE(lm.avg_lead_time_days, 30.0))) +
(CASE
WHEN COALESCE(sm.daily_sales_avg, 0) > 0 AND COALESCE(lm.avg_lead_time_days, 0) > 0 THEN
CEIL(
${serviceLevel} * SQRT(
GREATEST(0, COALESCE(lm.avg_lead_time_days, 0)) * POWER(COALESCE(sm.stddev_daily_sales, 0), 2) +
POWER(COALESCE(sm.daily_sales_avg, 0), 2) * POWER(COALESCE(lm.stddev_lead_time_days, 0), 2)
)
)
ELSE ${defaultSafetyStock}
END)
ELSE ${lowStockThreshold}
END,
reorder_qty = CASE
WHEN COALESCE(sm.daily_sales_avg, 0) > 0 AND NULLIF(p.cost_price, 0) IS NOT NULL AND NULLIF(p.cost_price, 0) > 0 THEN
GREATEST(
CEIL(SQRT(
(2 * (sm.daily_sales_avg * 365) * ${orderCost}) /
NULLIF(p.cost_price * ${holdingRate}, 0)
)),
${minReorderQty}
)
ELSE ${defaultReorderQty}
END,
overstocked_amt = CASE
WHEN p.stock_quantity / NULLIF(sm.daily_sales_avg, 0) > ${overstockDays}
THEN GREATEST(0, p.stock_quantity - CEIL(sm.daily_sales_avg * ${overstockDays}))
ELSE 0
END,
last_calculated_at = NOW()
FROM products p
LEFT JOIN temp_sales_metrics sm ON p.pid = sm.pid
LEFT JOIN temp_purchase_metrics lm ON p.pid = lm.pid
WHERE p.pid = ANY($1::BIGINT[])
AND pm.pid = p.pid
`, [batch.rows.map(row => row.pid)]);
lastPid = batch.rows[batch.rows.length - 1].pid;
processedCount += batch.rows.length;
outputProgress({
status: 'running',
operation: 'Processing base metrics batch',
current: processedCount,
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
}
// Add safety check if the loop processed MAX_BATCHES
if (batchCount >= MAX_BATCHES) {
logError(new Error(`Reached maximum batch count (${MAX_BATCHES}). Process may have entered an infinite loop.`), 'Batch processing safety limit reached');
}
}
// Calculate forecast accuracy and bias in batches
let forecastPid = 0;
while (true) {
if (isCancelled) break;
const forecastBatch = await connection.query(
'SELECT pid FROM products WHERE pid > $1 ORDER BY pid LIMIT $2',
[forecastPid, BATCH_SIZE]
);
if (forecastBatch.rows.length === 0) break;
const forecastPidArray = forecastBatch.rows.map(row => row.pid);
// Use array_to_string to convert the array to a string of comma-separated values
await connection.query(`
WITH forecast_metrics AS (
SELECT
sf.pid,
AVG(CASE
WHEN o.quantity > 0
THEN ABS(sf.forecast_quantity - o.quantity) / o.quantity * 100
ELSE 100
END) as avg_forecast_error,
AVG(CASE
WHEN o.quantity > 0
THEN (sf.forecast_quantity - o.quantity) / o.quantity * 100
ELSE 0
END) as avg_forecast_bias,
MAX(sf.forecast_date) as last_forecast_date
FROM sales_forecasts sf
JOIN orders o ON sf.pid = o.pid
AND DATE(o.date) = sf.forecast_date
WHERE o.canceled = false
AND sf.forecast_date >= CURRENT_DATE - INTERVAL '90 days'
AND sf.pid = ANY('{${forecastPidArray.join(',')}}'::BIGINT[])
GROUP BY sf.pid
)
UPDATE product_metrics pm
SET
forecast_accuracy = GREATEST(0, 100 - LEAST(fm.avg_forecast_error, 100)),
forecast_bias = GREATEST(-100, LEAST(fm.avg_forecast_bias, 100)),
last_forecast_date = fm.last_forecast_date,
last_calculated_at = NOW()
FROM forecast_metrics fm
WHERE pm.pid = fm.pid
`);
forecastPid = forecastBatch.rows[forecastBatch.rows.length - 1].pid;
}
// Calculate product time aggregates
if (!SKIP_PRODUCT_TIME_AGGREGATES) {
outputProgress({
status: 'running',
operation: 'Starting product time aggregates calculation',
current: processedCount || 0,
total: totalProducts || 0,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount || 0, totalProducts || 0),
rate: calculateRate(startTime, processedCount || 0),
percentage: (((processedCount || 0) / (totalProducts || 1)) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
// Note: The time-aggregates calculation has been moved to time-aggregates.js
// This module will not duplicate that functionality
processedCount = Math.floor(totalProducts * 0.6);
outputProgress({
status: 'running',
operation: 'Product time aggregates calculation delegated to time-aggregates module',
current: processedCount || 0,
total: totalProducts || 0,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount || 0, totalProducts || 0),
rate: calculateRate(startTime, processedCount || 0),
percentage: (((processedCount || 0) / (totalProducts || 1)) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
} else {
processedCount = Math.floor(totalProducts * 0.6);
outputProgress({
status: 'running',
operation: 'Skipping product time aggregates calculation',
current: processedCount || 0,
total: totalProducts || 0,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount || 0, totalProducts || 0),
rate: calculateRate(startTime, processedCount || 0),
percentage: (((processedCount || 0) / (totalProducts || 1)) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
}
// Calculate ABC classification
outputProgress({
status: 'running',
operation: 'Starting ABC classification',
current: processedCount,
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
if (isCancelled) return {
processedProducts: processedCount,
processedOrders,
processedPurchaseOrders: 0, // This module doesn't process POs
success
};
const abcConfig = await connection.query('SELECT a_threshold, b_threshold FROM abc_classification_config WHERE id = 1');
const abcThresholds = abcConfig.rows[0] || { a_threshold: 20, b_threshold: 50 };
// Extract values and ensure they are valid numbers
const aThreshold = parseFloat(abcThresholds.a_threshold) || 20;
const bThreshold = parseFloat(abcThresholds.b_threshold) || 50;
// First, create and populate the rankings table with an index
await connection.query('DROP TABLE IF EXISTS temp_revenue_ranks');
await connection.query(`
CREATE TEMPORARY TABLE temp_revenue_ranks (
pid BIGINT NOT NULL,
total_revenue DECIMAL(10,3),
rank_num INT,
dense_rank_num INT,
percentile DECIMAL(5,2),
total_count INT,
PRIMARY KEY (pid)
)
`);
await connection.query('CREATE INDEX ON temp_revenue_ranks (rank_num)');
await connection.query('CREATE INDEX ON temp_revenue_ranks (dense_rank_num)');
await connection.query('CREATE INDEX ON temp_revenue_ranks (percentile)');
// Calculate rankings with proper tie handling
await connection.query(`
INSERT INTO temp_revenue_ranks
WITH revenue_data AS (
SELECT
pid,
total_revenue,
COUNT(*) OVER () as total_count,
PERCENT_RANK() OVER (ORDER BY total_revenue DESC) * 100 as percentile,
RANK() OVER (ORDER BY total_revenue DESC) as rank_num,
DENSE_RANK() OVER (ORDER BY total_revenue DESC) as dense_rank_num
FROM product_metrics
WHERE total_revenue > 0
)
SELECT
pid,
total_revenue,
rank_num,
dense_rank_num,
percentile,
total_count
FROM revenue_data
`);
// Get total count for percentage calculation
const rankingCount = await connection.query('SELECT MAX(rank_num) as total_count FROM temp_revenue_ranks');
const totalCount = parseInt(rankingCount.rows[0].total_count) || 1;
// Process updates in batches
let abcProcessedCount = 0;
const batchSize = 5000;
const maxPid = await connection.query('SELECT MAX(pid) as max_pid FROM products');
const maxProductId = parseInt(maxPid.rows[0].max_pid);
while (abcProcessedCount < maxProductId) {
if (isCancelled) return {
processedProducts: processedCount,
processedOrders,
processedPurchaseOrders: 0,
success
};
// Get a batch of PIDs that need updating
const pids = await connection.query(`
SELECT pm.pid
FROM product_metrics pm
LEFT JOIN temp_revenue_ranks tr ON pm.pid = tr.pid
WHERE pm.pid > $1
AND (pm.abc_class IS NULL
OR pm.abc_class !=
CASE
WHEN tr.pid IS NULL THEN 'C'
WHEN tr.percentile <= ${aThreshold} THEN 'A'
WHEN tr.percentile <= ${bThreshold} THEN 'B'
ELSE 'C'
END)
ORDER BY pm.pid
LIMIT $2
`, [abcProcessedCount, batchSize]);
if (pids.rows.length === 0) break;
const pidValues = pids.rows.map(row => row.pid);
await connection.query(`
UPDATE product_metrics pm
SET abc_class =
CASE
WHEN tr.pid IS NULL THEN 'C'
WHEN tr.percentile <= ${aThreshold} THEN 'A'
WHEN tr.percentile <= ${bThreshold} THEN 'B'
ELSE 'C'
END,
last_calculated_at = NOW()
FROM (SELECT pid, percentile FROM temp_revenue_ranks) tr
WHERE pm.pid = tr.pid AND pm.pid = ANY($1::BIGINT[])
OR (pm.pid = ANY($1::BIGINT[]) AND tr.pid IS NULL)
`, [pidValues]);
// Now update turnover rate with proper handling of zero inventory periods
await connection.query(`
UPDATE product_metrics pm
SET
turnover_rate = CASE
WHEN sales.avg_nonzero_stock > 0 AND sales.active_days > 0
THEN LEAST(
(sales.total_sold / sales.avg_nonzero_stock) * (365.0 / sales.active_days),
999.99
)
ELSE 0
END,
last_calculated_at = NOW()
FROM (
SELECT
o.pid,
SUM(o.quantity) as total_sold,
COUNT(DISTINCT DATE(o.date)) as active_days,
AVG(CASE
WHEN p.stock_quantity > 0 THEN p.stock_quantity
ELSE NULL
END) as avg_nonzero_stock
FROM orders o
JOIN products p ON o.pid = p.pid
WHERE o.canceled = false
AND o.date >= CURRENT_DATE - INTERVAL '90 days'
AND o.pid = ANY($1::BIGINT[])
GROUP BY o.pid
) sales
WHERE pm.pid = sales.pid
`, [pidValues]);
abcProcessedCount = pids.rows[pids.rows.length - 1].pid;
// Calculate progress proportionally to total products
processedCount = Math.floor(totalProducts * (0.60 + (abcProcessedCount / maxProductId) * 0.2));
outputProgress({
status: 'running',
operation: 'ABC classification progress',
current: processedCount,
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
}
// If we get here, everything completed successfully
success = true;
// Update calculate_status
await connection.query(`
INSERT INTO calculate_status (module_name, last_calculation_timestamp)
VALUES ('product_metrics', NOW())
ON CONFLICT (module_name) DO UPDATE
SET last_calculation_timestamp = NOW()
`);
return {
processedProducts: processedCount || 0,
processedOrders: processedOrders || 0,
processedPurchaseOrders: 0, // This module doesn't process POs
success
};
} catch (error) {
success = false;
logError(error, 'Error calculating product metrics');
throw error;
} finally {
// Always clean up temporary tables, even if an error occurred
if (connection) {
try {
await connection.query('DROP TABLE IF EXISTS temp_sales_metrics');
await connection.query('DROP TABLE IF EXISTS temp_purchase_metrics');
} catch (err) {
console.error('Error cleaning up temporary tables:', err);
}
// Make sure to release the connection
connection.release();
}
}
}
function calculateStockStatus(stock, config, daily_sales_avg, weekly_sales_avg, monthly_sales_avg) {
if (stock <= 0) {
return 'Out of Stock';
}
// Use the most appropriate sales average based on data quality
let sales_avg = daily_sales_avg;
if (sales_avg === 0) {
sales_avg = weekly_sales_avg / 7;
}
if (sales_avg === 0) {
sales_avg = monthly_sales_avg / 30;
}
if (sales_avg === 0) {
return stock <= config.low_stock_threshold ? 'Low Stock' : 'In Stock';
}
const days_of_stock = stock / sales_avg;
if (days_of_stock <= config.critical_days) {
return 'Critical';
} else if (days_of_stock <= config.reorder_days) {
return 'Reorder';
} else if (days_of_stock > config.overstock_days) {
return 'Overstocked';
}
return 'Healthy';
}
// Note: calculateReorderQuantities function has been removed as its logic has been incorporated
// in the main SQL query with configurable parameters
module.exports = calculateProductMetrics;