Optimize and fix calculate scripts

This commit is contained in:
2025-01-27 13:16:21 -05:00
parent 5781b45f37
commit 8323ae7703
10 changed files with 748 additions and 962 deletions

View File

@@ -5,8 +5,15 @@ process.chdir(path.dirname(__filename));
require('dotenv').config({ path: path.resolve(__dirname, '..', '.env') });
// Set to 1 to skip product metrics and only calculate the remaining metrics
const SKIP_PRODUCT_METRICS = 0;
// Configuration flags for controlling which metrics to calculate
// Set to 1 to skip the corresponding calculation, 0 to run it
const SKIP_PRODUCT_METRICS = 1; // Skip all product metrics
const SKIP_TIME_AGGREGATES = 1; // Skip time aggregates
const SKIP_FINANCIAL_METRICS = 1; // Skip financial metrics
const SKIP_VENDOR_METRICS = 1; // Skip vendor metrics
const SKIP_CATEGORY_METRICS = 1; // Skip category metrics
const SKIP_BRAND_METRICS = 1; // Skip brand metrics
const SKIP_SALES_FORECASTS = 1; // Skip sales forecasts
// Add error handler for uncaught exceptions
process.on('uncaughtException', (error) => {
@@ -137,50 +144,136 @@ async function calculateMetrics() {
}
// Calculate time-based aggregates
processedCount = await calculateTimeAggregates(startTime, totalProducts, processedCount);
if (!SKIP_TIME_AGGREGATES) {
processedCount = await calculateTimeAggregates(startTime, totalProducts, processedCount);
} else {
console.log('Skipping time aggregates calculation');
}
// Calculate financial metrics
processedCount = await calculateFinancialMetrics(startTime, totalProducts, processedCount);
if (!SKIP_FINANCIAL_METRICS) {
processedCount = await calculateFinancialMetrics(startTime, totalProducts, processedCount);
} else {
console.log('Skipping financial metrics calculation');
}
// Calculate vendor metrics
processedCount = await calculateVendorMetrics(startTime, totalProducts, processedCount);
if (!SKIP_VENDOR_METRICS) {
processedCount = await calculateVendorMetrics(startTime, totalProducts, processedCount);
} else {
console.log('Skipping vendor metrics calculation');
}
// Calculate category metrics
processedCount = await calculateCategoryMetrics(startTime, totalProducts, processedCount);
if (!SKIP_CATEGORY_METRICS) {
processedCount = await calculateCategoryMetrics(startTime, totalProducts, processedCount);
} else {
console.log('Skipping category metrics calculation');
}
// Calculate brand metrics
processedCount = await calculateBrandMetrics(startTime, totalProducts, processedCount);
if (!SKIP_BRAND_METRICS) {
processedCount = await calculateBrandMetrics(startTime, totalProducts, processedCount);
} else {
console.log('Skipping brand metrics calculation');
}
// Calculate sales forecasts
processedCount = await calculateSalesForecasts(startTime, totalProducts, processedCount);
if (!SKIP_SALES_FORECASTS) {
processedCount = await calculateSalesForecasts(startTime, totalProducts, processedCount);
} else {
console.log('Skipping sales forecasts calculation');
}
// Calculate ABC classification
const [abcConfig] = await connection.query('SELECT a_threshold, b_threshold FROM abc_classification_config WHERE id = 1');
const abcThresholds = abcConfig[0] || { a_threshold: 20, b_threshold: 50 };
// First, create and populate the rankings table with an index
await connection.query('DROP TEMPORARY TABLE IF EXISTS temp_revenue_ranks');
await connection.query(`
WITH revenue_rankings AS (
SELECT
product_id,
total_revenue,
PERCENT_RANK() OVER (ORDER BY COALESCE(total_revenue, 0) DESC) * 100 as revenue_percentile
FROM product_metrics
),
classification_update AS (
SELECT
product_id,
CREATE TEMPORARY TABLE temp_revenue_ranks (
pid BIGINT NOT NULL,
total_revenue DECIMAL(10,3),
rank_num INT,
total_count INT,
PRIMARY KEY (pid),
INDEX (rank_num)
) ENGINE=MEMORY
`);
await connection.query(`
INSERT INTO temp_revenue_ranks
SELECT
pid,
total_revenue,
@rank := @rank + 1 as rank_num,
@total_count := @rank as total_count
FROM (
SELECT pid, total_revenue
FROM product_metrics
WHERE total_revenue > 0
ORDER BY total_revenue DESC
) ranked,
(SELECT @rank := 0) r
`);
// Get total count for percentage calculation
const [rankingCount] = await connection.query('SELECT MAX(rank_num) as total_count FROM temp_revenue_ranks');
const totalCount = rankingCount[0].total_count || 1;
// Process updates in batches
let abcProcessedCount = 0;
const batchSize = 5000;
while (true) {
// First get a batch of PIDs that need updating
const [pids] = await connection.query(`
SELECT pm.pid
FROM product_metrics pm
LEFT JOIN temp_revenue_ranks tr ON pm.pid = tr.pid
WHERE pm.abc_class IS NULL
OR pm.abc_class !=
CASE
WHEN revenue_percentile <= ? THEN 'A'
WHEN revenue_percentile <= ? THEN 'B'
WHEN tr.rank_num IS NULL THEN 'C'
WHEN (tr.rank_num / ?) * 100 <= ? THEN 'A'
WHEN (tr.rank_num / ?) * 100 <= ? THEN 'B'
ELSE 'C'
END as abc_class
FROM revenue_rankings
)
UPDATE product_metrics pm
JOIN classification_update cu ON pm.product_id = cu.product_id
SET pm.abc_class = cu.abc_class,
pm.last_calculated_at = NOW()
`, [abcThresholds.a_threshold, abcThresholds.b_threshold]);
END
LIMIT ?
`, [totalCount, abcThresholds.a_threshold,
totalCount, abcThresholds.b_threshold,
batchSize]);
if (pids.length === 0) {
break;
}
// Then update just those PIDs
const [result] = await connection.query(`
UPDATE product_metrics pm
LEFT JOIN temp_revenue_ranks tr ON pm.pid = tr.pid
SET pm.abc_class =
CASE
WHEN tr.rank_num IS NULL THEN 'C'
WHEN (tr.rank_num / ?) * 100 <= ? THEN 'A'
WHEN (tr.rank_num / ?) * 100 <= ? THEN 'B'
ELSE 'C'
END,
pm.last_calculated_at = NOW()
WHERE pm.pid IN (?)
`, [totalCount, abcThresholds.a_threshold,
totalCount, abcThresholds.b_threshold,
pids.map(row => row.pid)]);
abcProcessedCount += result.affectedRows;
// Small delay between batches to allow other transactions
await new Promise(resolve => setTimeout(resolve, 100));
}
// Clean up
await connection.query('DROP TEMPORARY TABLE IF EXISTS temp_revenue_ranks');
// Final success message
global.outputProgress({

View File

@@ -15,7 +15,7 @@ async function calculateBrandMetrics(startTime, totalProducts, processedCount) {
percentage: '95'
});
// Calculate brand metrics
// Calculate brand metrics with optimized queries
await connection.query(`
INSERT INTO brand_metrics (
brand,
@@ -28,71 +28,77 @@ async function calculateBrandMetrics(startTime, totalProducts, processedCount) {
avg_margin,
growth_rate
)
WITH brand_data AS (
WITH filtered_products AS (
SELECT
p.brand,
COUNT(DISTINCT CASE WHEN p.stock_quantity <= 5000 THEN p.pid END) as product_count,
COUNT(DISTINCT CASE WHEN p.visible = true AND p.stock_quantity <= 5000 THEN p.pid END) as active_products,
SUM(CASE
p.*,
CASE WHEN p.stock_quantity <= 5000 THEN p.pid END as valid_pid,
CASE WHEN p.visible = true AND p.stock_quantity <= 5000 THEN p.pid END as active_pid,
CASE
WHEN p.stock_quantity IS NULL OR p.stock_quantity < 0 OR p.stock_quantity > 5000 THEN 0
ELSE p.stock_quantity
END) as total_stock_units,
SUM(CASE
WHEN p.stock_quantity IS NULL OR p.stock_quantity < 0 OR p.stock_quantity > 5000 OR p.cost_price IS NULL OR p.cost_price < 0 THEN 0
ELSE p.stock_quantity * p.cost_price
END) as total_stock_cost,
SUM(CASE
WHEN p.stock_quantity IS NULL OR p.stock_quantity < 0 OR p.stock_quantity > 5000 OR p.price IS NULL OR p.price < 0 THEN 0
ELSE p.stock_quantity * p.price
END) as total_stock_retail,
SUM(CASE
WHEN o.quantity IS NULL OR o.price IS NULL OR o.quantity < 0 OR o.price < 0 THEN 0
ELSE o.price * o.quantity
END) as total_revenue,
END as valid_stock
FROM products p
WHERE p.brand IS NOT NULL
),
sales_periods AS (
SELECT
p.brand,
SUM(o.quantity * o.price) as period_revenue,
CASE
WHEN SUM(o.price * o.quantity) > 0 THEN
WHEN o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 3 MONTH) THEN 'current'
WHEN o.date BETWEEN DATE_SUB(CURRENT_DATE, INTERVAL 15 MONTH) AND DATE_SUB(CURRENT_DATE, INTERVAL 12 MONTH) THEN 'previous'
END as period_type
FROM filtered_products p
JOIN orders o ON p.pid = o.pid
WHERE o.canceled = false
AND o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 15 MONTH)
GROUP BY p.brand, period_type
),
brand_data AS (
SELECT
p.brand,
COUNT(DISTINCT p.valid_pid) as product_count,
COUNT(DISTINCT p.active_pid) as active_products,
SUM(p.valid_stock) as total_stock_units,
SUM(p.valid_stock * p.cost_price) as total_stock_cost,
SUM(p.valid_stock * p.price) as total_stock_retail,
COALESCE(SUM(o.quantity * o.price), 0) as total_revenue,
CASE
WHEN SUM(o.quantity * o.price) > 0 THEN
(SUM((o.price - p.cost_price) * o.quantity) * 100.0) / SUM(o.price * o.quantity)
ELSE 0
END as avg_margin,
-- Current period (last 3 months)
SUM(CASE
WHEN o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 3 MONTH)
THEN COALESCE(o.quantity * o.price, 0)
ELSE 0
END) as current_period_sales,
-- Previous year same period
SUM(CASE
WHEN o.date BETWEEN DATE_SUB(CURRENT_DATE, INTERVAL 15 MONTH) AND DATE_SUB(CURRENT_DATE, INTERVAL 12 MONTH)
THEN COALESCE(o.quantity * o.price, 0)
ELSE 0
END) as previous_year_period_sales
FROM products p
END as avg_margin
FROM filtered_products p
LEFT JOIN orders o ON p.pid = o.pid AND o.canceled = false
WHERE p.brand IS NOT NULL
GROUP BY p.brand
)
SELECT
brand,
product_count,
active_products,
total_stock_units,
total_stock_cost,
total_stock_retail,
total_revenue,
avg_margin,
bd.brand,
bd.product_count,
bd.active_products,
bd.total_stock_units,
bd.total_stock_cost,
bd.total_stock_retail,
bd.total_revenue,
bd.avg_margin,
CASE
WHEN previous_year_period_sales = 0 AND current_period_sales > 0 THEN 100.0
WHEN previous_year_period_sales = 0 THEN 0.0
WHEN MAX(CASE WHEN sp.period_type = 'previous' THEN sp.period_revenue END) = 0
AND MAX(CASE WHEN sp.period_type = 'current' THEN sp.period_revenue END) > 0 THEN 100.0
WHEN MAX(CASE WHEN sp.period_type = 'previous' THEN sp.period_revenue END) = 0 THEN 0.0
ELSE LEAST(
GREATEST(
((current_period_sales - previous_year_period_sales) /
NULLIF(previous_year_period_sales, 0)) * 100.0,
((MAX(CASE WHEN sp.period_type = 'current' THEN sp.period_revenue END) -
MAX(CASE WHEN sp.period_type = 'previous' THEN sp.period_revenue END)) /
NULLIF(MAX(CASE WHEN sp.period_type = 'previous' THEN sp.period_revenue END), 0)) * 100.0,
-100.0
),
999.99
)
END as growth_rate
FROM brand_data
FROM brand_data bd
LEFT JOIN sales_periods sp ON bd.brand = sp.brand
GROUP BY bd.brand, bd.product_count, bd.active_products, bd.total_stock_units,
bd.total_stock_cost, bd.total_stock_retail, bd.total_revenue, bd.avg_margin
ON DUPLICATE KEY UPDATE
product_count = VALUES(product_count),
active_products = VALUES(active_products),
@@ -105,7 +111,7 @@ async function calculateBrandMetrics(startTime, totalProducts, processedCount) {
last_calculated_at = CURRENT_TIMESTAMP
`);
// Calculate brand time-based metrics
// Calculate brand time-based metrics with optimized query
await connection.query(`
INSERT INTO brand_time_metrics (
brand,
@@ -119,38 +125,41 @@ async function calculateBrandMetrics(startTime, totalProducts, processedCount) {
total_revenue,
avg_margin
)
SELECT
p.brand,
YEAR(o.date) as year,
MONTH(o.date) as month,
COUNT(DISTINCT CASE WHEN p.stock_quantity <= 5000 THEN p.pid END) as product_count,
COUNT(DISTINCT CASE WHEN p.visible = true AND p.stock_quantity <= 5000 THEN p.pid END) as active_products,
SUM(CASE
WHEN p.stock_quantity IS NULL OR p.stock_quantity < 0 OR p.stock_quantity > 5000 THEN 0
ELSE p.stock_quantity
END) as total_stock_units,
SUM(CASE
WHEN p.stock_quantity IS NULL OR p.stock_quantity < 0 OR p.stock_quantity > 5000 OR p.cost_price IS NULL OR p.cost_price < 0 THEN 0
ELSE p.stock_quantity * p.cost_price
END) as total_stock_cost,
SUM(CASE
WHEN p.stock_quantity IS NULL OR p.stock_quantity < 0 OR p.stock_quantity > 5000 OR p.price IS NULL OR p.price < 0 THEN 0
ELSE p.stock_quantity * p.price
END) as total_stock_retail,
SUM(CASE
WHEN o.quantity IS NULL OR o.price IS NULL OR o.quantity < 0 OR o.price < 0 THEN 0
ELSE o.price * o.quantity
END) as total_revenue,
CASE
WHEN SUM(o.price * o.quantity) > 0 THEN
(SUM((o.price - p.cost_price) * o.quantity) * 100.0) / SUM(o.price * o.quantity)
ELSE 0
END as avg_margin
FROM products p
LEFT JOIN orders o ON p.pid = o.pid AND o.canceled = false
WHERE p.brand IS NOT NULL
AND o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 12 MONTH)
GROUP BY p.brand, YEAR(o.date), MONTH(o.date)
WITH filtered_products AS (
SELECT
p.*,
CASE WHEN p.stock_quantity <= 5000 THEN p.pid END as valid_pid,
CASE WHEN p.visible = true AND p.stock_quantity <= 5000 THEN p.pid END as active_pid,
CASE
WHEN p.stock_quantity IS NULL OR p.stock_quantity < 0 OR p.stock_quantity > 5000 THEN 0
ELSE p.stock_quantity
END as valid_stock
FROM products p
WHERE p.brand IS NOT NULL
),
monthly_metrics AS (
SELECT
p.brand,
YEAR(o.date) as year,
MONTH(o.date) as month,
COUNT(DISTINCT p.valid_pid) as product_count,
COUNT(DISTINCT p.active_pid) as active_products,
SUM(p.valid_stock) as total_stock_units,
SUM(p.valid_stock * p.cost_price) as total_stock_cost,
SUM(p.valid_stock * p.price) as total_stock_retail,
SUM(o.quantity * o.price) as total_revenue,
CASE
WHEN SUM(o.quantity * o.price) > 0 THEN
(SUM((o.price - p.cost_price) * o.quantity) * 100.0) / SUM(o.price * o.quantity)
ELSE 0
END as avg_margin
FROM filtered_products p
LEFT JOIN orders o ON p.pid = o.pid AND o.canceled = false
WHERE o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 12 MONTH)
GROUP BY p.brand, YEAR(o.date), MONTH(o.date)
)
SELECT *
FROM monthly_metrics
ON DUPLICATE KEY UPDATE
product_count = VALUES(product_count),
active_products = VALUES(active_products),

View File

@@ -15,98 +15,104 @@ async function calculateCategoryMetrics(startTime, totalProducts, processedCount
percentage: '85'
});
// Calculate category performance metrics
// First, calculate base category metrics
await connection.query(`
INSERT INTO category_metrics (
category_id,
product_count,
active_products,
total_value,
avg_margin,
turnover_rate,
growth_rate,
status
)
WITH category_sales AS (
SELECT
c.cat_id as category_id,
COUNT(DISTINCT p.pid) as product_count,
COUNT(DISTINCT CASE WHEN p.visible = true THEN p.pid END) as active_products,
SUM(p.stock_quantity * p.cost_price) as total_value,
CASE
WHEN SUM(o.price * o.quantity) > 0
THEN (SUM((o.price - p.cost_price) * o.quantity) * 100.0) / SUM(o.price * o.quantity)
ELSE 0
END as avg_margin,
CASE
WHEN AVG(GREATEST(p.stock_quantity, 0)) >= 0.01
THEN LEAST(
SUM(CASE
WHEN o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 1 YEAR)
THEN COALESCE(o.quantity, 0)
ELSE 0
END) /
GREATEST(
AVG(GREATEST(p.stock_quantity, 0)),
1.0
),
999.99
)
ELSE 0
END as turnover_rate,
-- Current period (last 3 months)
SUM(CASE
WHEN o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 3 MONTH)
THEN COALESCE(o.quantity * o.price, 0)
ELSE 0
END) as current_period_sales,
-- Previous year same period
SUM(CASE
WHEN o.date BETWEEN DATE_SUB(CURRENT_DATE, INTERVAL 15 MONTH) AND DATE_SUB(CURRENT_DATE, INTERVAL 12 MONTH)
THEN COALESCE(o.quantity * o.price, 0)
ELSE 0
END) as previous_year_period_sales,
c.status
FROM categories c
LEFT JOIN product_categories pc ON c.cat_id = pc.cat_id
LEFT JOIN products p ON pc.pid = p.pid
LEFT JOIN orders o ON p.pid = o.pid AND o.canceled = false
GROUP BY c.cat_id, c.status
status,
last_calculated_at
)
SELECT
category_id,
product_count,
active_products,
total_value,
COALESCE(avg_margin, 0) as avg_margin,
COALESCE(turnover_rate, 0) as turnover_rate,
-- Enhanced YoY growth rate calculation
CASE
WHEN previous_year_period_sales = 0 AND current_period_sales > 0 THEN 100.0
WHEN previous_year_period_sales = 0 THEN 0.0
ELSE LEAST(
GREATEST(
((current_period_sales - previous_year_period_sales) /
NULLIF(previous_year_period_sales, 0)) * 100.0,
-100.0
),
999.99
)
END as growth_rate,
status
FROM category_sales
c.cat_id,
COUNT(DISTINCT p.pid) as product_count,
COUNT(DISTINCT CASE WHEN p.visible = true THEN p.pid END) as active_products,
COALESCE(SUM(p.stock_quantity * p.cost_price), 0) as total_value,
c.status,
NOW() as last_calculated_at
FROM categories c
LEFT JOIN product_categories pc ON c.cat_id = pc.cat_id
LEFT JOIN products p ON pc.pid = p.pid
GROUP BY c.cat_id, c.status
ON DUPLICATE KEY UPDATE
product_count = VALUES(product_count),
active_products = VALUES(active_products),
total_value = VALUES(total_value),
avg_margin = VALUES(avg_margin),
turnover_rate = VALUES(turnover_rate),
growth_rate = VALUES(growth_rate),
status = VALUES(status),
last_calculated_at = CURRENT_TIMESTAMP
last_calculated_at = VALUES(last_calculated_at)
`);
// Calculate category time-based metrics
// Then update with margin and turnover data
await connection.query(`
WITH category_sales AS (
SELECT
pc.cat_id,
SUM(o.quantity * o.price) as total_sales,
SUM(o.quantity * (o.price - p.cost_price)) as total_margin,
SUM(o.quantity) as units_sold,
AVG(GREATEST(p.stock_quantity, 0)) as avg_stock
FROM product_categories pc
JOIN products p ON pc.pid = p.pid
JOIN orders o ON p.pid = o.pid
WHERE o.canceled = false
AND o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 1 YEAR)
GROUP BY pc.cat_id
)
UPDATE category_metrics cm
JOIN category_sales cs ON cm.category_id = cs.cat_id
SET
cm.avg_margin = COALESCE(cs.total_margin * 100.0 / NULLIF(cs.total_sales, 0), 0),
cm.turnover_rate = LEAST(COALESCE(cs.units_sold / NULLIF(cs.avg_stock, 0), 0), 999.99),
cm.last_calculated_at = NOW()
`);
// Finally update growth rates
await connection.query(`
WITH current_period AS (
SELECT
pc.cat_id,
SUM(o.quantity * o.price) as revenue
FROM product_categories pc
JOIN products p ON pc.pid = p.pid
JOIN orders o ON p.pid = o.pid
WHERE o.canceled = false
AND o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 3 MONTH)
GROUP BY pc.cat_id
),
previous_period AS (
SELECT
pc.cat_id,
SUM(o.quantity * o.price) as revenue
FROM product_categories pc
JOIN products p ON pc.pid = p.pid
JOIN orders o ON p.pid = o.pid
WHERE o.canceled = false
AND o.date BETWEEN DATE_SUB(CURRENT_DATE, INTERVAL 15 MONTH)
AND DATE_SUB(CURRENT_DATE, INTERVAL 12 MONTH)
GROUP BY pc.cat_id
)
UPDATE category_metrics cm
LEFT JOIN current_period cp ON cm.category_id = cp.cat_id
LEFT JOIN previous_period pp ON cm.category_id = pp.cat_id
SET
cm.growth_rate = CASE
WHEN pp.revenue = 0 AND COALESCE(cp.revenue, 0) > 0 THEN 100.0
WHEN pp.revenue = 0 THEN 0.0
ELSE LEAST(
GREATEST(
((COALESCE(cp.revenue, 0) - pp.revenue) / pp.revenue) * 100.0,
-100.0
),
999.99
)
END,
cm.last_calculated_at = NOW()
WHERE cp.cat_id IS NOT NULL OR pp.cat_id IS NOT NULL
`);
// Calculate time-based metrics
await connection.query(`
INSERT INTO category_time_metrics (
category_id,
@@ -120,29 +126,28 @@ async function calculateCategoryMetrics(startTime, totalProducts, processedCount
turnover_rate
)
SELECT
c.cat_id as category_id,
pc.cat_id,
YEAR(o.date) as year,
MONTH(o.date) as month,
COUNT(DISTINCT p.pid) as product_count,
COUNT(DISTINCT CASE WHEN p.visible = true THEN p.pid END) as active_products,
SUM(p.stock_quantity * p.cost_price) as total_value,
SUM(o.price * o.quantity) as total_revenue,
CASE
WHEN SUM(o.price * o.quantity) > 0
THEN (SUM((o.price - p.cost_price) * o.quantity) * 100.0) / SUM(o.price * o.quantity)
ELSE 0
END as avg_margin,
CASE
WHEN AVG(p.stock_quantity) > 0
THEN SUM(o.quantity) / AVG(p.stock_quantity)
ELSE 0
END as turnover_rate
FROM categories c
LEFT JOIN product_categories pc ON c.cat_id = pc.cat_id
LEFT JOIN products p ON pc.pid = p.pid
LEFT JOIN orders o ON p.pid = o.pid AND o.canceled = false
WHERE o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 12 MONTH)
GROUP BY c.cat_id, YEAR(o.date), MONTH(o.date)
SUM(o.quantity * o.price) as total_revenue,
COALESCE(
SUM(o.quantity * (o.price - p.cost_price)) * 100.0 /
NULLIF(SUM(o.quantity * o.price), 0),
0
) as avg_margin,
COALESCE(
SUM(o.quantity) / NULLIF(AVG(GREATEST(p.stock_quantity, 0)), 0),
0
) as turnover_rate
FROM product_categories pc
JOIN products p ON pc.pid = p.pid
JOIN orders o ON p.pid = o.pid
WHERE o.canceled = false
AND o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 12 MONTH)
GROUP BY pc.cat_id, YEAR(o.date), MONTH(o.date)
ON DUPLICATE KEY UPDATE
product_count = VALUES(product_count),
active_products = VALUES(active_products),
@@ -152,73 +157,45 @@ async function calculateCategoryMetrics(startTime, totalProducts, processedCount
turnover_rate = VALUES(turnover_rate)
`);
// Calculate category sales metrics with NULL brand handling
await connection.query(`
INSERT INTO category_sales_metrics (
category_id,
brand,
period_start,
period_end,
avg_daily_sales,
total_sold,
num_products,
avg_price,
last_calculated_at
)
WITH date_ranges AS (
// Calculate sales metrics for different time periods
const periods = [30, 90, 180, 365];
for (const days of periods) {
await connection.query(`
INSERT INTO category_sales_metrics (
category_id,
brand,
period_start,
period_end,
avg_daily_sales,
total_sold,
num_products,
avg_price,
last_calculated_at
)
SELECT
DATE_SUB(CURDATE(), INTERVAL 30 DAY) as period_start,
CURDATE() as period_end
UNION ALL
SELECT
DATE_SUB(CURDATE(), INTERVAL 90 DAY),
CURDATE()
UNION ALL
SELECT
DATE_SUB(CURDATE(), INTERVAL 180 DAY),
CURDATE()
UNION ALL
SELECT
DATE_SUB(CURDATE(), INTERVAL 365 DAY),
CURDATE()
),
category_metrics AS (
SELECT
c.cat_id as category_id,
pc.cat_id as category_id,
COALESCE(p.brand, 'Unbranded') as brand,
dr.period_start,
dr.period_end,
COUNT(DISTINCT p.pid) as num_products,
COALESCE(SUM(o.quantity), 0) / DATEDIFF(dr.period_end, dr.period_start) as avg_daily_sales,
DATE_SUB(CURDATE(), INTERVAL ? DAY) as period_start,
CURDATE() as period_end,
COALESCE(SUM(o.quantity), 0) / ? as avg_daily_sales,
COALESCE(SUM(o.quantity), 0) as total_sold,
COALESCE(AVG(o.price), 0) as avg_price
FROM categories c
JOIN product_categories pc ON c.cat_id = pc.cat_id
COUNT(DISTINCT p.pid) as num_products,
COALESCE(AVG(o.price), 0) as avg_price,
NOW() as last_calculated_at
FROM product_categories pc
JOIN products p ON pc.pid = p.pid
CROSS JOIN date_ranges dr
LEFT JOIN orders o ON p.pid = o.pid
AND o.date BETWEEN dr.period_start AND dr.period_end
AND o.date >= DATE_SUB(CURDATE(), INTERVAL ? DAY)
AND o.canceled = false
GROUP BY c.cat_id, COALESCE(p.brand, 'Unbranded'), dr.period_start, dr.period_end
)
SELECT
category_id,
brand,
period_start,
period_end,
avg_daily_sales,
total_sold,
num_products,
avg_price,
NOW() as last_calculated_at
FROM category_metrics
ON DUPLICATE KEY UPDATE
avg_daily_sales = VALUES(avg_daily_sales),
total_sold = VALUES(total_sold),
num_products = VALUES(num_products),
avg_price = VALUES(avg_price),
last_calculated_at = NOW()
`);
GROUP BY pc.cat_id, p.brand
ON DUPLICATE KEY UPDATE
avg_daily_sales = VALUES(avg_daily_sales),
total_sold = VALUES(total_sold),
num_products = VALUES(num_products),
avg_price = VALUES(avg_price),
last_calculated_at = NOW()
`, [days, days, days]);
}
return Math.floor(totalProducts * 0.9);
} finally {

View File

@@ -15,9 +15,9 @@ async function calculateFinancialMetrics(startTime, totalProducts, processedCoun
percentage: '60'
});
// Calculate financial metrics with optimized query
await connection.query(`
UPDATE product_metrics pm
JOIN (
WITH product_financials AS (
SELECT
p.pid,
p.cost_price * p.stock_quantity as inventory_value,
@@ -26,48 +26,54 @@ async function calculateFinancialMetrics(startTime, totalProducts, processedCoun
SUM(o.quantity * (o.price - p.cost_price)) as gross_profit,
MIN(o.date) as first_sale_date,
MAX(o.date) as last_sale_date,
DATEDIFF(MAX(o.date), MIN(o.date)) + 1 as calculation_period_days
DATEDIFF(MAX(o.date), MIN(o.date)) + 1 as calculation_period_days,
COUNT(DISTINCT DATE(o.date)) as active_days
FROM products p
LEFT JOIN orders o ON p.pid = o.pid
WHERE o.canceled = false
AND DATE(o.date) >= DATE_SUB(CURDATE(), INTERVAL 12 MONTH)
GROUP BY p.pid
) fin ON pm.pid = fin.pid
)
UPDATE product_metrics pm
JOIN product_financials pf ON pm.pid = pf.pid
SET
pm.inventory_value = COALESCE(fin.inventory_value, 0),
pm.total_revenue = COALESCE(fin.total_revenue, 0),
pm.cost_of_goods_sold = COALESCE(fin.cost_of_goods_sold, 0),
pm.gross_profit = COALESCE(fin.gross_profit, 0),
pm.inventory_value = COALESCE(pf.inventory_value, 0),
pm.total_revenue = COALESCE(pf.total_revenue, 0),
pm.cost_of_goods_sold = COALESCE(pf.cost_of_goods_sold, 0),
pm.gross_profit = COALESCE(pf.gross_profit, 0),
pm.gmroi = CASE
WHEN COALESCE(fin.inventory_value, 0) > 0 AND fin.calculation_period_days > 0 THEN
(COALESCE(fin.gross_profit, 0) * (365.0 / fin.calculation_period_days)) / COALESCE(fin.inventory_value, 0)
WHEN COALESCE(pf.inventory_value, 0) > 0 AND pf.active_days > 0 THEN
(COALESCE(pf.gross_profit, 0) * (365.0 / pf.active_days)) / COALESCE(pf.inventory_value, 0)
ELSE 0
END
`);
// Update time-based aggregates with financial metrics
// Update time-based aggregates with optimized query
await connection.query(`
UPDATE product_time_aggregates pta
JOIN (
WITH monthly_financials AS (
SELECT
p.pid,
YEAR(o.date) as year,
MONTH(o.date) as month,
p.cost_price * p.stock_quantity as inventory_value,
SUM(o.quantity * (o.price - p.cost_price)) as gross_profit,
COUNT(DISTINCT DATE(o.date)) as days_in_period
COUNT(DISTINCT DATE(o.date)) as active_days,
MIN(o.date) as period_start,
MAX(o.date) as period_end
FROM products p
LEFT JOIN orders o ON p.pid = o.pid
WHERE o.canceled = false
GROUP BY p.pid, YEAR(o.date), MONTH(o.date)
) fin ON pta.pid = fin.pid
AND pta.year = fin.year
AND pta.month = fin.month
)
UPDATE product_time_aggregates pta
JOIN monthly_financials mf ON pta.pid = mf.pid
AND pta.year = mf.year
AND pta.month = mf.month
SET
pta.inventory_value = COALESCE(fin.inventory_value, 0),
pta.inventory_value = COALESCE(mf.inventory_value, 0),
pta.gmroi = CASE
WHEN COALESCE(fin.inventory_value, 0) > 0 AND fin.days_in_period > 0 THEN
(COALESCE(fin.gross_profit, 0) * (365.0 / fin.days_in_period)) / COALESCE(fin.inventory_value, 0)
WHEN COALESCE(mf.inventory_value, 0) > 0 AND mf.active_days > 0 THEN
(COALESCE(mf.gross_profit, 0) * (365.0 / mf.active_days)) / COALESCE(mf.inventory_value, 0)
ELSE 0
END
`);

View File

@@ -12,418 +12,158 @@ function sanitizeValue(value) {
async function calculateProductMetrics(startTime, totalProducts, processedCount = 0) {
const connection = await getConnection();
try {
// Process in batches of 250
const batchSize = 250;
for (let offset = 0; offset < totalProducts; offset += batchSize) {
const [products] = await connection.query('SELECT pid, vendor FROM products LIMIT ? OFFSET ?', [batchSize, offset])
.catch(err => {
logError(err, `Failed to fetch products batch at offset ${offset}`);
throw err;
});
processedCount += products.length;
// Skip flags are inherited from the parent scope
const SKIP_PRODUCT_BASE_METRICS = 0;
const SKIP_PRODUCT_TIME_AGGREGATES =0;
// Update progress after each batch
// Calculate base product metrics
if (!SKIP_PRODUCT_BASE_METRICS) {
outputProgress({
status: 'running',
operation: 'Processing products',
operation: 'Calculating base product metrics',
current: Math.floor(totalProducts * 0.2),
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, Math.floor(totalProducts * 0.2), totalProducts),
rate: calculateRate(startTime, Math.floor(totalProducts * 0.2)),
percentage: '20'
});
// Calculate base metrics
await connection.query(`
UPDATE product_metrics pm
JOIN (
SELECT
p.pid,
p.cost_price * p.stock_quantity as inventory_value,
SUM(o.quantity) as total_quantity,
COUNT(DISTINCT o.order_number) as number_of_orders,
SUM(o.quantity * o.price) as total_revenue,
SUM(o.quantity * p.cost_price) as cost_of_goods_sold,
AVG(o.price) as avg_price,
STDDEV(o.price) as price_std,
MIN(o.date) as first_sale_date,
MAX(o.date) as last_sale_date,
COUNT(DISTINCT DATE(o.date)) as active_days
FROM products p
LEFT JOIN orders o ON p.pid = o.pid AND o.canceled = false
GROUP BY p.pid
) stats ON pm.pid = stats.pid
SET
pm.inventory_value = COALESCE(stats.inventory_value, 0),
pm.avg_quantity_per_order = COALESCE(stats.total_quantity / NULLIF(stats.number_of_orders, 0), 0),
pm.number_of_orders = COALESCE(stats.number_of_orders, 0),
pm.total_revenue = COALESCE(stats.total_revenue, 0),
pm.cost_of_goods_sold = COALESCE(stats.cost_of_goods_sold, 0),
pm.gross_profit = COALESCE(stats.total_revenue - stats.cost_of_goods_sold, 0),
pm.avg_margin_percent = CASE
WHEN COALESCE(stats.total_revenue, 0) > 0
THEN ((stats.total_revenue - stats.cost_of_goods_sold) / stats.total_revenue) * 100
ELSE 0
END,
pm.first_sale_date = stats.first_sale_date,
pm.last_sale_date = stats.last_sale_date,
pm.gmroi = CASE
WHEN COALESCE(stats.inventory_value, 0) > 0
THEN (stats.total_revenue - stats.cost_of_goods_sold) / stats.inventory_value
ELSE 0
END,
pm.last_calculated_at = NOW()
`);
processedCount = Math.floor(totalProducts * 0.4);
} else {
console.log('Skipping base product metrics calculation');
processedCount = Math.floor(totalProducts * 0.4);
outputProgress({
status: 'running',
operation: 'Skipping base product metrics calculation',
current: processedCount,
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
percentage: '40'
});
}
// Calculate product time aggregates
if (!SKIP_PRODUCT_TIME_AGGREGATES) {
outputProgress({
status: 'running',
operation: 'Calculating product time aggregates',
current: Math.floor(totalProducts * 0.4),
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, Math.floor(totalProducts * 0.4), totalProducts),
rate: calculateRate(startTime, Math.floor(totalProducts * 0.4)),
percentage: '40'
});
// Process the batch
const metricsUpdates = [];
for (const product of products) {
try {
// Get configuration values for this product
const [configs] = await connection.query(`
WITH product_info AS (
SELECT
p.pid,
p.vendor,
pc.cat_id as category_id
FROM products p
LEFT JOIN product_categories pc ON p.pid = pc.pid
WHERE p.pid = ?
),
threshold_options AS (
SELECT
st.*,
CASE
WHEN st.category_id = pi.category_id AND st.vendor = pi.vendor THEN 1
WHEN st.category_id = pi.category_id AND st.vendor IS NULL THEN 2
WHEN st.category_id IS NULL AND st.vendor = pi.vendor THEN 3
WHEN st.category_id IS NULL AND st.vendor IS NULL THEN 4
ELSE 5
END as priority
FROM product_info pi
CROSS JOIN stock_thresholds st
WHERE (st.category_id = pi.category_id OR st.category_id IS NULL)
AND (st.vendor = pi.vendor OR st.vendor IS NULL)
),
velocity_options AS (
SELECT
sv.*,
CASE
WHEN sv.category_id = pi.category_id AND sv.vendor = pi.vendor THEN 1
WHEN sv.category_id = pi.category_id AND sv.vendor IS NULL THEN 2
WHEN sv.category_id IS NULL AND sv.vendor = pi.vendor THEN 3
WHEN sv.category_id IS NULL AND sv.vendor IS NULL THEN 4
ELSE 5
END as priority
FROM product_info pi
CROSS JOIN sales_velocity_config sv
WHERE (sv.category_id = pi.category_id OR sv.category_id IS NULL)
AND (sv.vendor = pi.vendor OR sv.vendor IS NULL)
),
safety_options AS (
SELECT
ss.*,
CASE
WHEN ss.category_id = pi.category_id AND ss.vendor = pi.vendor THEN 1
WHEN ss.category_id = pi.category_id AND ss.vendor IS NULL THEN 2
WHEN ss.category_id IS NULL AND ss.vendor = pi.vendor THEN 3
WHEN ss.category_id IS NULL AND ss.vendor IS NULL THEN 4
ELSE 5
END as priority
FROM product_info pi
CROSS JOIN safety_stock_config ss
WHERE (ss.category_id = pi.category_id OR ss.category_id IS NULL)
AND (ss.vendor = pi.vendor OR ss.vendor IS NULL)
)
SELECT
COALESCE(
(SELECT critical_days
FROM threshold_options
ORDER BY priority LIMIT 1),
7
) as critical_days,
COALESCE(
(SELECT reorder_days
FROM threshold_options
ORDER BY priority LIMIT 1),
14
) as reorder_days,
COALESCE(
(SELECT overstock_days
FROM threshold_options
ORDER BY priority LIMIT 1),
90
) as overstock_days,
COALESCE(
(SELECT low_stock_threshold
FROM threshold_options
ORDER BY priority LIMIT 1),
5
) as low_stock_threshold,
COALESCE(
(SELECT daily_window_days
FROM velocity_options
ORDER BY priority LIMIT 1),
30
) as daily_window_days,
COALESCE(
(SELECT weekly_window_days
FROM velocity_options
ORDER BY priority LIMIT 1),
7
) as weekly_window_days,
COALESCE(
(SELECT monthly_window_days
FROM velocity_options
ORDER BY priority LIMIT 1),
90
) as monthly_window_days,
COALESCE(
(SELECT coverage_days
FROM safety_options
ORDER BY priority LIMIT 1),
14
) as safety_stock_days,
COALESCE(
(SELECT service_level
FROM safety_options
ORDER BY priority LIMIT 1),
95.0
) as service_level
`, [product.pid]);
// Calculate time-based aggregates
await connection.query(`
INSERT INTO product_time_aggregates (
pid,
year,
month,
total_quantity_sold,
total_revenue,
total_cost,
order_count,
avg_price,
profit_margin,
inventory_value,
gmroi
)
SELECT
p.pid,
YEAR(o.date) as year,
MONTH(o.date) as month,
SUM(o.quantity) as total_quantity_sold,
SUM(o.quantity * o.price) as total_revenue,
SUM(o.quantity * p.cost_price) as total_cost,
COUNT(DISTINCT o.order_number) as order_count,
AVG(o.price) as avg_price,
CASE
WHEN SUM(o.quantity * o.price) > 0
THEN ((SUM(o.quantity * o.price) - SUM(o.quantity * p.cost_price)) / SUM(o.quantity * o.price)) * 100
ELSE 0
END as profit_margin,
p.cost_price * p.stock_quantity as inventory_value,
CASE
WHEN p.cost_price * p.stock_quantity > 0
THEN (SUM(o.quantity * (o.price - p.cost_price))) / (p.cost_price * p.stock_quantity)
ELSE 0
END as gmroi
FROM products p
LEFT JOIN orders o ON p.pid = o.pid AND o.canceled = false
WHERE o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 12 MONTH)
GROUP BY p.pid, YEAR(o.date), MONTH(o.date)
ON DUPLICATE KEY UPDATE
total_quantity_sold = VALUES(total_quantity_sold),
total_revenue = VALUES(total_revenue),
total_cost = VALUES(total_cost),
order_count = VALUES(order_count),
avg_price = VALUES(avg_price),
profit_margin = VALUES(profit_margin),
inventory_value = VALUES(inventory_value),
gmroi = VALUES(gmroi)
`);
const config = configs[0];
// Calculate sales metrics
const [salesMetrics] = await connection.query(`
WITH sales_summary AS (
SELECT
SUM(o.quantity) as total_quantity_sold,
SUM((o.price - COALESCE(o.discount, 0)) * o.quantity) as total_revenue,
SUM(COALESCE(p.cost_price, 0) * o.quantity) as total_cost,
MAX(o.date) as last_sale_date,
MIN(o.date) as first_sale_date,
COUNT(DISTINCT o.order_number) as number_of_orders,
AVG(o.quantity) as avg_quantity_per_order,
SUM(CASE WHEN o.date >= DATE_SUB(CURDATE(), INTERVAL ? DAY) THEN o.quantity ELSE 0 END) as last_30_days_qty,
CASE
WHEN SUM(CASE WHEN o.date >= DATE_SUB(CURDATE(), INTERVAL ? DAY) THEN o.quantity ELSE 0 END) IS NULL THEN 0
ELSE SUM(CASE WHEN o.date >= DATE_SUB(CURDATE(), INTERVAL ? DAY) THEN o.quantity ELSE 0 END)
END as rolling_weekly_avg,
SUM(CASE WHEN o.date >= DATE_SUB(CURDATE(), INTERVAL ? DAY) THEN o.quantity ELSE 0 END) as last_month_qty
FROM orders o
JOIN products p ON o.pid = p.pid
WHERE o.canceled = 0 AND o.pid = ?
GROUP BY o.pid
)
SELECT
total_quantity_sold,
total_revenue,
total_cost,
last_sale_date,
first_sale_date,
number_of_orders,
avg_quantity_per_order,
last_30_days_qty / ? as rolling_daily_avg,
rolling_weekly_avg / ? as rolling_weekly_avg,
last_month_qty / ? as rolling_monthly_avg
FROM sales_summary
`, [
config.daily_window_days,
config.weekly_window_days,
config.weekly_window_days,
config.monthly_window_days,
product.pid,
config.daily_window_days,
config.weekly_window_days,
config.monthly_window_days
]);
// Calculate purchase metrics
const [purchaseMetrics] = await connection.query(`
WITH recent_orders AS (
SELECT
date,
received_date,
received,
cost_price,
DATEDIFF(received_date, date) as lead_time_days,
ROW_NUMBER() OVER (ORDER BY date DESC) as order_rank
FROM purchase_orders
WHERE receiving_status >= 30 -- Partial or fully received
AND pid = ?
AND received > 0
AND received_date IS NOT NULL
),
lead_time_orders AS (
SELECT *
FROM recent_orders
WHERE order_rank <= 5
OR date >= DATE_SUB(CURDATE(), INTERVAL 90 DAY)
)
SELECT
SUM(CASE WHEN received >= 0 THEN received ELSE 0 END) as total_quantity_purchased,
SUM(CASE WHEN received >= 0 THEN cost_price * received ELSE 0 END) as total_cost,
MAX(date) as last_purchase_date,
MIN(received_date) as first_received_date,
MAX(received_date) as last_received_date,
AVG(lead_time_days) as avg_lead_time_days
FROM lead_time_orders
`, [product.pid]);
// Get stock info
const [stockInfo] = await connection.query(`
SELECT
p.stock_quantity,
p.cost_price,
p.created_at,
p.replenishable,
p.moq,
p.notions_inv_count,
p.date_last_sold,
p.total_sold,
DATEDIFF(CURDATE(), MIN(po.received_date)) as days_since_first_stock,
DATEDIFF(CURDATE(), COALESCE(p.date_last_sold, CURDATE())) as days_since_last_sale,
CASE
WHEN EXISTS (
SELECT 1 FROM orders o
WHERE o.pid = p.pid
AND o.date >= DATE_SUB(CURDATE(), INTERVAL 30 DAY)
AND o.canceled = false
AND (SELECT SUM(quantity) FROM orders o2
WHERE o2.pid = p.pid
AND o2.date >= o.date
AND o2.canceled = false) = 0
) THEN true
ELSE false
END as had_recent_stockout
FROM products p
LEFT JOIN purchase_orders po ON p.pid = po.pid
AND po.receiving_status >= 30 -- Partial or fully received
AND po.received > 0
WHERE p.pid = ?
GROUP BY p.pid
`, [product.pid]);
// Calculate metrics
const salesData = salesMetrics[0] || {};
const purchaseData = purchaseMetrics[0] || {};
const stockData = stockInfo[0] || {};
// Sales velocity metrics
const daily_sales_avg = sanitizeValue(salesData.rolling_daily_avg) || 0;
const weekly_sales_avg = sanitizeValue(salesData.rolling_weekly_avg) || 0;
const monthly_sales_avg = sanitizeValue(salesData.rolling_monthly_avg) || 0;
// Stock metrics
const stock_quantity = sanitizeValue(stockData.stock_quantity) || 0;
const days_of_inventory = daily_sales_avg > 0 ? Math.floor(stock_quantity / daily_sales_avg) : 999;
const weeks_of_inventory = Math.floor(days_of_inventory / 7);
// Calculate stock status
const stock_status = calculateStockStatus(
stock_quantity,
config,
daily_sales_avg,
weekly_sales_avg,
monthly_sales_avg
);
// Calculate reorder quantities
const reorder_quantities = calculateReorderQuantities(
stock_quantity,
stock_status,
daily_sales_avg,
sanitizeValue(purchaseData.avg_lead_time_days) || 0,
config
);
// Financial metrics
const cost_price = sanitizeValue(stockData.cost_price) || 0;
const inventory_value = stock_quantity * cost_price;
const total_revenue = sanitizeValue(salesData.total_revenue) || 0;
const total_cost = sanitizeValue(salesData.total_cost) || 0;
const gross_profit = total_revenue - total_cost;
const avg_margin_percent = total_revenue > 0 ? ((gross_profit / total_revenue) * 100) : 0;
const gmroi = inventory_value > 0 ? (gross_profit / inventory_value) : 0;
// Add to batch update with sanitized values
metricsUpdates.push([
product.pid,
sanitizeValue(daily_sales_avg),
sanitizeValue(weekly_sales_avg),
sanitizeValue(monthly_sales_avg),
sanitizeValue(salesData.avg_quantity_per_order),
sanitizeValue(salesData.number_of_orders),
salesData.first_sale_date || null,
salesData.last_sale_date || null,
sanitizeValue(days_of_inventory),
sanitizeValue(weeks_of_inventory),
sanitizeValue(reorder_quantities.reorder_point),
sanitizeValue(reorder_quantities.safety_stock),
sanitizeValue(reorder_quantities.reorder_qty),
sanitizeValue(reorder_quantities.overstocked_amt),
sanitizeValue(avg_margin_percent),
sanitizeValue(total_revenue),
sanitizeValue(inventory_value),
sanitizeValue(total_cost),
sanitizeValue(gross_profit),
sanitizeValue(gmroi),
sanitizeValue(purchaseData.avg_lead_time_days),
purchaseData.last_purchase_date || null,
purchaseData.first_received_date || null,
purchaseData.last_received_date || null,
null, // abc_class - calculated separately
stock_status,
sanitizeValue(0), // turnover_rate - calculated separately
sanitizeValue(purchaseData.avg_lead_time_days),
sanitizeValue(config.target_days),
stock_status === 'Critical' ? 'Warning' : 'Normal',
null, // forecast_accuracy
null, // forecast_bias
null // last_forecast_date
]);
} catch (err) {
logError(err, `Failed processing product ${product.pid}`);
continue;
}
}
// Batch update metrics
if (metricsUpdates.length > 0) {
try {
await connection.query(`
INSERT INTO product_metrics (
pid,
daily_sales_avg,
weekly_sales_avg,
monthly_sales_avg,
avg_quantity_per_order,
number_of_orders,
first_sale_date,
last_sale_date,
days_of_inventory,
weeks_of_inventory,
reorder_point,
safety_stock,
reorder_qty,
overstocked_amt,
avg_margin_percent,
total_revenue,
inventory_value,
cost_of_goods_sold,
gross_profit,
gmroi,
avg_lead_time_days,
last_purchase_date,
first_received_date,
last_received_date,
abc_class,
stock_status,
turnover_rate,
current_lead_time,
target_lead_time,
lead_time_status,
forecast_accuracy,
forecast_bias,
last_forecast_date
)
VALUES ?
ON DUPLICATE KEY UPDATE
daily_sales_avg = VALUES(daily_sales_avg),
weekly_sales_avg = VALUES(weekly_sales_avg),
monthly_sales_avg = VALUES(monthly_sales_avg),
avg_quantity_per_order = VALUES(avg_quantity_per_order),
number_of_orders = VALUES(number_of_orders),
first_sale_date = VALUES(first_sale_date),
last_sale_date = VALUES(last_sale_date),
days_of_inventory = VALUES(days_of_inventory),
weeks_of_inventory = VALUES(weeks_of_inventory),
reorder_point = VALUES(reorder_point),
safety_stock = VALUES(safety_stock),
reorder_qty = VALUES(reorder_qty),
overstocked_amt = VALUES(overstocked_amt),
avg_margin_percent = VALUES(avg_margin_percent),
total_revenue = VALUES(total_revenue),
inventory_value = VALUES(inventory_value),
cost_of_goods_sold = VALUES(cost_of_goods_sold),
gross_profit = VALUES(gross_profit),
gmroi = VALUES(gmroi),
avg_lead_time_days = VALUES(avg_lead_time_days),
last_purchase_date = VALUES(last_purchase_date),
first_received_date = VALUES(first_received_date),
last_received_date = VALUES(last_received_date),
stock_status = VALUES(stock_status),
turnover_rate = VALUES(turnover_rate),
current_lead_time = VALUES(current_lead_time),
target_lead_time = VALUES(target_lead_time),
lead_time_status = VALUES(lead_time_status),
last_calculated_at = CURRENT_TIMESTAMP
`, [metricsUpdates]);
} catch (err) {
logError(err, 'Failed to update metrics batch');
throw err;
}
}
processedCount = Math.floor(totalProducts * 0.6);
} else {
console.log('Skipping product time aggregates calculation');
processedCount = Math.floor(totalProducts * 0.6);
outputProgress({
status: 'running',
operation: 'Skipping product time aggregates calculation',
current: processedCount,
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: '60'
});
}
return processedCount;

View File

@@ -15,6 +15,59 @@ async function calculateSalesForecasts(startTime, totalProducts, processedCount)
percentage: '98'
});
// First, create a temporary table for forecast dates
await connection.query(`
CREATE TEMPORARY TABLE IF NOT EXISTS temp_forecast_dates (
forecast_date DATE,
day_of_week INT,
month INT,
PRIMARY KEY (forecast_date)
)
`);
await connection.query(`
INSERT INTO temp_forecast_dates
SELECT
DATE_ADD(CURRENT_DATE, INTERVAL n DAY) as forecast_date,
DAYOFWEEK(DATE_ADD(CURRENT_DATE, INTERVAL n DAY)) as day_of_week,
MONTH(DATE_ADD(CURRENT_DATE, INTERVAL n DAY)) as month
FROM (
SELECT a.N + b.N * 10 as n
FROM
(SELECT 0 as N UNION SELECT 1 UNION SELECT 2 UNION SELECT 3 UNION SELECT 4 UNION
SELECT 5 UNION SELECT 6 UNION SELECT 7 UNION SELECT 8 UNION SELECT 9) a,
(SELECT 0 as N UNION SELECT 1 UNION SELECT 2) b
ORDER BY n
LIMIT 31
) numbers
`);
// Create temporary table for daily sales stats
await connection.query(`
CREATE TEMPORARY TABLE IF NOT EXISTS temp_daily_sales AS
SELECT
o.pid,
DAYOFWEEK(o.date) as day_of_week,
SUM(o.quantity) as daily_quantity,
SUM(o.price * o.quantity) as daily_revenue,
COUNT(DISTINCT DATE(o.date)) as day_count
FROM orders o
WHERE o.canceled = false
AND o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 90 DAY)
GROUP BY o.pid, DAYOFWEEK(o.date)
`);
// Create temporary table for product stats
await connection.query(`
CREATE TEMPORARY TABLE IF NOT EXISTS temp_product_stats AS
SELECT
pid,
AVG(daily_revenue) as overall_avg_revenue,
SUM(day_count) as total_days
FROM temp_daily_sales
GROUP BY pid
`);
// Calculate product-level forecasts
await connection.query(`
INSERT INTO sales_forecasts (
@@ -25,92 +78,37 @@ async function calculateSalesForecasts(startTime, totalProducts, processedCount)
confidence_level,
last_calculated_at
)
WITH daily_sales AS (
SELECT
o.pid,
DATE(o.date) as sale_date,
SUM(o.quantity) as daily_quantity,
SUM(o.price * o.quantity) as daily_revenue
FROM orders o
WHERE o.canceled = false
AND o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 90 DAY)
GROUP BY o.pid, DATE(o.date)
),
forecast_dates AS (
SELECT
DATE_ADD(CURRENT_DATE, INTERVAL n DAY) as forecast_date
FROM (
SELECT 0 as n UNION SELECT 1 UNION SELECT 2 UNION SELECT 3 UNION SELECT 4 UNION
SELECT 5 UNION SELECT 6 UNION SELECT 7 UNION SELECT 8 UNION SELECT 9 UNION
SELECT 10 UNION SELECT 11 UNION SELECT 12 UNION SELECT 13 UNION SELECT 14 UNION
SELECT 15 UNION SELECT 16 UNION SELECT 17 UNION SELECT 18 UNION SELECT 19 UNION
SELECT 20 UNION SELECT 21 UNION SELECT 22 UNION SELECT 23 UNION SELECT 24 UNION
SELECT 25 UNION SELECT 26 UNION SELECT 27 UNION SELECT 28 UNION SELECT 29 UNION
SELECT 30
) numbers
),
product_stats AS (
SELECT
ds.pid,
AVG(ds.daily_quantity) as avg_daily_quantity,
STDDEV_SAMP(ds.daily_quantity) as std_daily_quantity,
AVG(ds.daily_revenue) as avg_daily_revenue,
STDDEV_SAMP(ds.daily_revenue) as std_daily_revenue,
COUNT(*) as data_points,
-- Calculate day-of-week averages
AVG(CASE WHEN DAYOFWEEK(ds.sale_date) = 1 THEN ds.daily_revenue END) as sunday_avg,
AVG(CASE WHEN DAYOFWEEK(ds.sale_date) = 2 THEN ds.daily_revenue END) as monday_avg,
AVG(CASE WHEN DAYOFWEEK(ds.sale_date) = 3 THEN ds.daily_revenue END) as tuesday_avg,
AVG(CASE WHEN DAYOFWEEK(ds.sale_date) = 4 THEN ds.daily_revenue END) as wednesday_avg,
AVG(CASE WHEN DAYOFWEEK(ds.sale_date) = 5 THEN ds.daily_revenue END) as thursday_avg,
AVG(CASE WHEN DAYOFWEEK(ds.sale_date) = 6 THEN ds.daily_revenue END) as friday_avg,
AVG(CASE WHEN DAYOFWEEK(ds.sale_date) = 7 THEN ds.daily_revenue END) as saturday_avg
FROM daily_sales ds
GROUP BY ds.pid
)
SELECT
ps.pid,
ds.pid,
fd.forecast_date,
GREATEST(0,
ps.avg_daily_quantity *
(1 + COALESCE(
(SELECT seasonality_factor
FROM sales_seasonality
WHERE MONTH(fd.forecast_date) = month
LIMIT 1),
0
))
AVG(ds.daily_quantity) *
(1 + COALESCE(sf.seasonality_factor, 0))
) as forecast_units,
GREATEST(0,
CASE DAYOFWEEK(fd.forecast_date)
WHEN 1 THEN COALESCE(ps.sunday_avg, ps.avg_daily_revenue)
WHEN 2 THEN COALESCE(ps.monday_avg, ps.avg_daily_revenue)
WHEN 3 THEN COALESCE(ps.tuesday_avg, ps.avg_daily_revenue)
WHEN 4 THEN COALESCE(ps.wednesday_avg, ps.avg_daily_revenue)
WHEN 5 THEN COALESCE(ps.thursday_avg, ps.avg_daily_revenue)
WHEN 6 THEN COALESCE(ps.friday_avg, ps.avg_daily_revenue)
WHEN 7 THEN COALESCE(ps.saturday_avg, ps.avg_daily_revenue)
END *
(1 + COALESCE(
(SELECT seasonality_factor
FROM sales_seasonality
WHERE MONTH(fd.forecast_date) = month
LIMIT 1),
COALESCE(
CASE
WHEN SUM(ds.day_count) >= 4 THEN AVG(ds.daily_revenue)
ELSE ps.overall_avg_revenue
END *
(1 + COALESCE(sf.seasonality_factor, 0)) *
(0.95 + (RAND() * 0.1)),
0
)) *
-- Add some randomness within a small range (±5%)
(0.95 + (RAND() * 0.1))
)
) as forecast_revenue,
CASE
WHEN ps.data_points >= 60 THEN 90
WHEN ps.data_points >= 30 THEN 80
WHEN ps.data_points >= 14 THEN 70
WHEN ps.total_days >= 60 THEN 90
WHEN ps.total_days >= 30 THEN 80
WHEN ps.total_days >= 14 THEN 70
ELSE 60
END as confidence_level,
NOW() as last_calculated_at
FROM product_stats ps
CROSS JOIN forecast_dates fd
WHERE ps.avg_daily_quantity > 0
FROM temp_daily_sales ds
JOIN temp_product_stats ps ON ds.pid = ps.pid
CROSS JOIN temp_forecast_dates fd
LEFT JOIN sales_seasonality sf ON fd.month = sf.month
GROUP BY ds.pid, fd.forecast_date, ps.overall_avg_revenue, ps.total_days, sf.seasonality_factor
HAVING AVG(ds.daily_quantity) > 0
ON DUPLICATE KEY UPDATE
forecast_units = VALUES(forecast_units),
forecast_revenue = VALUES(forecast_revenue),
@@ -118,6 +116,32 @@ async function calculateSalesForecasts(startTime, totalProducts, processedCount)
last_calculated_at = NOW()
`);
// Create temporary table for category stats
await connection.query(`
CREATE TEMPORARY TABLE IF NOT EXISTS temp_category_sales AS
SELECT
pc.cat_id,
DAYOFWEEK(o.date) as day_of_week,
SUM(o.quantity) as daily_quantity,
SUM(o.price * o.quantity) as daily_revenue,
COUNT(DISTINCT DATE(o.date)) as day_count
FROM orders o
JOIN product_categories pc ON o.pid = pc.pid
WHERE o.canceled = false
AND o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 90 DAY)
GROUP BY pc.cat_id, DAYOFWEEK(o.date)
`);
await connection.query(`
CREATE TEMPORARY TABLE IF NOT EXISTS temp_category_stats AS
SELECT
cat_id,
AVG(daily_revenue) as overall_avg_revenue,
SUM(day_count) as total_days
FROM temp_category_sales
GROUP BY cat_id
`);
// Calculate category-level forecasts
await connection.query(`
INSERT INTO category_forecasts (
@@ -128,93 +152,37 @@ async function calculateSalesForecasts(startTime, totalProducts, processedCount)
confidence_level,
last_calculated_at
)
WITH category_daily_sales AS (
SELECT
pc.cat_id as category_id,
DATE(o.date) as sale_date,
SUM(o.quantity) as daily_quantity,
SUM(o.price * o.quantity) as daily_revenue
FROM orders o
JOIN product_categories pc ON o.pid = pc.pid
WHERE o.canceled = false
AND o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 90 DAY)
GROUP BY pc.cat_id, DATE(o.date)
),
forecast_dates AS (
SELECT
DATE_ADD(CURRENT_DATE, INTERVAL n DAY) as forecast_date
FROM (
SELECT 0 as n UNION SELECT 1 UNION SELECT 2 UNION SELECT 3 UNION SELECT 4 UNION
SELECT 5 UNION SELECT 6 UNION SELECT 7 UNION SELECT 8 UNION SELECT 9 UNION
SELECT 10 UNION SELECT 11 UNION SELECT 12 UNION SELECT 13 UNION SELECT 14 UNION
SELECT 15 UNION SELECT 16 UNION SELECT 17 UNION SELECT 18 UNION SELECT 19 UNION
SELECT 20 UNION SELECT 21 UNION SELECT 22 UNION SELECT 23 UNION SELECT 24 UNION
SELECT 25 UNION SELECT 26 UNION SELECT 27 UNION SELECT 28 UNION SELECT 29 UNION
SELECT 30
) numbers
),
category_stats AS (
SELECT
cds.category_id,
AVG(cds.daily_quantity) as avg_daily_quantity,
STDDEV_SAMP(cds.daily_quantity) as std_daily_quantity,
AVG(cds.daily_revenue) as avg_daily_revenue,
STDDEV_SAMP(cds.daily_revenue) as std_daily_revenue,
COUNT(*) as data_points,
-- Calculate day-of-week averages
AVG(CASE WHEN DAYOFWEEK(cds.sale_date) = 1 THEN cds.daily_revenue END) as sunday_avg,
AVG(CASE WHEN DAYOFWEEK(cds.sale_date) = 2 THEN cds.daily_revenue END) as monday_avg,
AVG(CASE WHEN DAYOFWEEK(cds.sale_date) = 3 THEN cds.daily_revenue END) as tuesday_avg,
AVG(CASE WHEN DAYOFWEEK(cds.sale_date) = 4 THEN cds.daily_revenue END) as wednesday_avg,
AVG(CASE WHEN DAYOFWEEK(cds.sale_date) = 5 THEN cds.daily_revenue END) as thursday_avg,
AVG(CASE WHEN DAYOFWEEK(cds.sale_date) = 6 THEN cds.daily_revenue END) as friday_avg,
AVG(CASE WHEN DAYOFWEEK(cds.sale_date) = 7 THEN cds.daily_revenue END) as saturday_avg
FROM category_daily_sales cds
GROUP BY cds.category_id
)
SELECT
cs.category_id,
cs.cat_id as category_id,
fd.forecast_date,
GREATEST(0,
cs.avg_daily_quantity *
(1 + COALESCE(
(SELECT seasonality_factor
FROM sales_seasonality
WHERE MONTH(fd.forecast_date) = month
LIMIT 1),
0
))
AVG(cs.daily_quantity) *
(1 + COALESCE(sf.seasonality_factor, 0))
) as forecast_units,
GREATEST(0,
CASE DAYOFWEEK(fd.forecast_date)
WHEN 1 THEN COALESCE(cs.sunday_avg, cs.avg_daily_revenue)
WHEN 2 THEN COALESCE(cs.monday_avg, cs.avg_daily_revenue)
WHEN 3 THEN COALESCE(cs.tuesday_avg, cs.avg_daily_revenue)
WHEN 4 THEN COALESCE(cs.wednesday_avg, cs.avg_daily_revenue)
WHEN 5 THEN COALESCE(cs.thursday_avg, cs.avg_daily_revenue)
WHEN 6 THEN COALESCE(cs.friday_avg, cs.avg_daily_revenue)
WHEN 7 THEN COALESCE(cs.saturday_avg, cs.avg_daily_revenue)
END *
(1 + COALESCE(
(SELECT seasonality_factor
FROM sales_seasonality
WHERE MONTH(fd.forecast_date) = month
LIMIT 1),
COALESCE(
CASE
WHEN SUM(cs.day_count) >= 4 THEN AVG(cs.daily_revenue)
ELSE ct.overall_avg_revenue
END *
(1 + COALESCE(sf.seasonality_factor, 0)) *
(0.95 + (RAND() * 0.1)),
0
)) *
-- Add some randomness within a small range (±5%)
(0.95 + (RAND() * 0.1))
)
) as forecast_revenue,
CASE
WHEN cs.data_points >= 60 THEN 90
WHEN cs.data_points >= 30 THEN 80
WHEN cs.data_points >= 14 THEN 70
WHEN ct.total_days >= 60 THEN 90
WHEN ct.total_days >= 30 THEN 80
WHEN ct.total_days >= 14 THEN 70
ELSE 60
END as confidence_level,
NOW() as last_calculated_at
FROM category_stats cs
CROSS JOIN forecast_dates fd
WHERE cs.avg_daily_quantity > 0
FROM temp_category_sales cs
JOIN temp_category_stats ct ON cs.cat_id = ct.cat_id
CROSS JOIN temp_forecast_dates fd
LEFT JOIN sales_seasonality sf ON fd.month = sf.month
GROUP BY cs.cat_id, fd.forecast_date, ct.overall_avg_revenue, ct.total_days, sf.seasonality_factor
HAVING AVG(cs.daily_quantity) > 0
ON DUPLICATE KEY UPDATE
forecast_units = VALUES(forecast_units),
forecast_revenue = VALUES(forecast_revenue),
@@ -222,6 +190,15 @@ async function calculateSalesForecasts(startTime, totalProducts, processedCount)
last_calculated_at = NOW()
`);
// Clean up temporary tables
await connection.query(`
DROP TEMPORARY TABLE IF EXISTS temp_forecast_dates;
DROP TEMPORARY TABLE IF EXISTS temp_daily_sales;
DROP TEMPORARY TABLE IF EXISTS temp_product_stats;
DROP TEMPORARY TABLE IF EXISTS temp_category_sales;
DROP TEMPORARY TABLE IF EXISTS temp_category_stats;
`);
return Math.floor(totalProducts * 1.0);
} finally {
connection.release();

View File

@@ -1,8 +1,20 @@
const { outputProgress, formatElapsedTime, estimateRemaining, calculateRate } = require('./utils/progress');
const { getConnection } = require('./utils/db');
async function calculateTimeAggregates(startTime, totalProducts, processedCount) {
const connection = await getConnection();
try {
outputProgress({
status: 'running',
operation: 'Calculating time aggregates',
current: Math.floor(totalProducts * 0.95),
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, Math.floor(totalProducts * 0.95), totalProducts),
rate: calculateRate(startTime, Math.floor(totalProducts * 0.95)),
percentage: '95'
});
// Initial insert of time-based aggregates
await connection.query(`
INSERT INTO product_time_aggregates (
@@ -47,7 +59,7 @@ async function calculateTimeAggregates(startTime, totalProducts, processedCount)
SUM(received) as stock_received,
SUM(ordered) as stock_ordered
FROM purchase_orders
WHERE receiving_status >= 30 -- Partial or fully received
WHERE status = 50
GROUP BY pid, YEAR(date), MONTH(date)
)
SELECT
@@ -126,7 +138,9 @@ async function calculateTimeAggregates(startTime, totalProducts, processedCount)
return Math.floor(totalProducts * 0.65);
} finally {
connection.release();
if (connection) {
connection.release();
}
}
}

View File

@@ -6,7 +6,7 @@ async function calculateVendorMetrics(startTime, totalProducts, processedCount)
try {
outputProgress({
status: 'running',
operation: 'Calculating vendor metrics',
operation: 'Ensuring vendors exist in vendor_details',
current: Math.floor(totalProducts * 0.7),
total: totalProducts,
elapsed: formatElapsedTime(startTime),
@@ -15,160 +15,125 @@ async function calculateVendorMetrics(startTime, totalProducts, processedCount)
percentage: '70'
});
// First, ensure all vendors exist in vendor_details
// First ensure all vendors exist in vendor_details
await connection.query(`
INSERT IGNORE INTO vendor_details (vendor, status)
SELECT DISTINCT vendor, 'active' as status
INSERT IGNORE INTO vendor_details (vendor, status, created_at, updated_at)
SELECT DISTINCT
vendor,
'active' as status,
NOW() as created_at,
NOW() as updated_at
FROM products
WHERE vendor IS NOT NULL
AND vendor NOT IN (SELECT vendor FROM vendor_details)
`);
// Calculate vendor performance metrics
outputProgress({
status: 'running',
operation: 'Calculating vendor metrics',
current: Math.floor(totalProducts * 0.8),
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, Math.floor(totalProducts * 0.8), totalProducts),
rate: calculateRate(startTime, Math.floor(totalProducts * 0.8)),
percentage: '80'
});
// Now calculate vendor metrics
await connection.query(`
INSERT INTO vendor_metrics (
vendor,
total_revenue,
total_orders,
total_late_orders,
avg_lead_time_days,
on_time_delivery_rate,
order_fill_rate,
total_orders,
total_late_orders,
total_purchase_value,
avg_order_value,
active_products,
total_products,
total_revenue,
avg_margin_percent,
status
status,
last_calculated_at
)
WITH vendor_orders AS (
WITH vendor_sales AS (
SELECT
po.vendor,
AVG(DATEDIFF(po.received_date, po.date)) as avg_lead_time_days,
COUNT(*) as total_orders,
COUNT(CASE WHEN po.received_date > po.expected_date THEN 1 END) as total_late_orders,
SUM(po.cost_price * po.ordered) as total_purchase_value,
AVG(po.cost_price * po.ordered) as avg_order_value,
CASE
WHEN COUNT(*) > 0 THEN
(COUNT(CASE WHEN po.received = po.ordered THEN 1 END) * 100.0) / COUNT(*)
ELSE 0
END as order_fill_rate
FROM purchase_orders po
WHERE po.receiving_status >= 30 -- Partial or fully received
GROUP BY po.vendor
p.vendor,
SUM(o.quantity * o.price) as total_revenue,
COUNT(DISTINCT o.id) as total_orders,
COUNT(DISTINCT p.pid) as active_products
FROM products p
JOIN orders o ON p.pid = o.pid
WHERE o.canceled = false
AND o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 12 MONTH)
GROUP BY p.vendor
),
vendor_po AS (
SELECT
p.vendor,
COUNT(DISTINCT CASE WHEN po.receiving_status = 40 THEN po.id END) as received_orders,
COUNT(DISTINCT po.id) as total_orders,
AVG(CASE
WHEN po.receiving_status = 40
THEN DATEDIFF(po.received_date, po.date)
END) as avg_lead_time_days
FROM products p
JOIN purchase_orders po ON p.pid = po.pid
WHERE po.date >= DATE_SUB(CURRENT_DATE, INTERVAL 12 MONTH)
GROUP BY p.vendor
),
vendor_products AS (
SELECT
p.vendor,
COUNT(DISTINCT p.pid) as total_products,
COUNT(DISTINCT CASE WHEN p.visible = true THEN p.pid END) as active_products,
SUM(o.price * o.quantity) as total_revenue,
CASE
WHEN SUM(o.price * o.quantity) > 0 THEN
(SUM((o.price - p.cost_price) * o.quantity) * 100.0) / SUM(o.price * o.quantity)
ELSE 0
END as avg_margin_percent
FROM products p
LEFT JOIN orders o ON p.pid = o.pid AND o.canceled = false
GROUP BY p.vendor
vendor,
COUNT(DISTINCT pid) as total_products
FROM products
GROUP BY vendor
)
SELECT
vd.vendor,
COALESCE(vo.avg_lead_time_days, 0) as avg_lead_time_days,
vs.vendor,
COALESCE(vs.total_revenue, 0) as total_revenue,
COALESCE(vp.total_orders, 0) as total_orders,
COALESCE(vp.total_orders - vp.received_orders, 0) as total_late_orders,
COALESCE(vp.avg_lead_time_days, 0) as avg_lead_time_days,
CASE
WHEN COALESCE(vo.total_orders, 0) > 0 THEN
((COALESCE(vo.total_orders, 0) - COALESCE(vo.total_late_orders, 0)) * 100.0) / COALESCE(vo.total_orders, 1)
WHEN vp.total_orders > 0
THEN (vp.received_orders / vp.total_orders) * 100
ELSE 0
END as on_time_delivery_rate,
COALESCE(vo.order_fill_rate, 0) as order_fill_rate,
COALESCE(vo.total_orders, 0) as total_orders,
COALESCE(vo.total_late_orders, 0) as total_late_orders,
COALESCE(vo.total_purchase_value, 0) as total_purchase_value,
COALESCE(vo.avg_order_value, 0) as avg_order_value,
COALESCE(vp.active_products, 0) as active_products,
COALESCE(vp.total_products, 0) as total_products,
COALESCE(vp.total_revenue, 0) as total_revenue,
COALESCE(vp.avg_margin_percent, 0) as avg_margin_percent,
vd.status
FROM vendor_details vd
LEFT JOIN vendor_orders vo ON vd.vendor = vo.vendor
LEFT JOIN vendor_products vp ON vd.vendor = vp.vendor
CASE
WHEN vp.total_orders > 0
THEN (vp.received_orders / vp.total_orders) * 100
ELSE 0
END as order_fill_rate,
CASE
WHEN vs.total_orders > 0
THEN vs.total_revenue / vs.total_orders
ELSE 0
END as avg_order_value,
COALESCE(vs.active_products, 0) as active_products,
COALESCE(vpr.total_products, 0) as total_products,
'active' as status,
NOW() as last_calculated_at
FROM vendor_sales vs
LEFT JOIN vendor_po vp ON vs.vendor = vp.vendor
LEFT JOIN vendor_products vpr ON vs.vendor = vpr.vendor
WHERE vs.vendor IS NOT NULL
ON DUPLICATE KEY UPDATE
total_revenue = VALUES(total_revenue),
total_orders = VALUES(total_orders),
total_late_orders = VALUES(total_late_orders),
avg_lead_time_days = VALUES(avg_lead_time_days),
on_time_delivery_rate = VALUES(on_time_delivery_rate),
order_fill_rate = VALUES(order_fill_rate),
total_orders = VALUES(total_orders),
total_late_orders = VALUES(total_late_orders),
total_purchase_value = VALUES(total_purchase_value),
avg_order_value = VALUES(avg_order_value),
active_products = VALUES(active_products),
total_products = VALUES(total_products),
total_revenue = VALUES(total_revenue),
avg_margin_percent = VALUES(avg_margin_percent),
status = VALUES(status),
last_calculated_at = CURRENT_TIMESTAMP
last_calculated_at = VALUES(last_calculated_at)
`);
// Calculate vendor time-based metrics
await connection.query(`
INSERT INTO vendor_time_metrics (
vendor,
year,
month,
total_orders,
late_orders,
avg_lead_time_days,
total_purchase_value,
total_revenue,
avg_margin_percent
)
WITH vendor_time_data AS (
SELECT
vd.vendor,
YEAR(po.date) as year,
MONTH(po.date) as month,
COUNT(DISTINCT po.po_id) as total_orders,
COUNT(DISTINCT CASE WHEN po.received_date > po.expected_date THEN po.po_id END) as late_orders,
AVG(DATEDIFF(po.received_date, po.date)) as avg_lead_time_days,
SUM(po.cost_price * po.ordered) as total_purchase_value,
SUM(o.price * o.quantity) as total_revenue,
CASE
WHEN SUM(o.price * o.quantity) > 0 THEN
(SUM((o.price - p.cost_price) * o.quantity) * 100.0) / SUM(o.price * o.quantity)
ELSE 0
END as avg_margin_percent
FROM vendor_details vd
LEFT JOIN products p ON vd.vendor = p.vendor
LEFT JOIN purchase_orders po ON p.pid = po.pid
LEFT JOIN orders o ON p.pid = o.pid AND o.canceled = false
WHERE po.date >= DATE_SUB(CURRENT_DATE, INTERVAL 12 MONTH)
GROUP BY vd.vendor, YEAR(po.date), MONTH(po.date)
)
SELECT
vendor,
year,
month,
COALESCE(total_orders, 0) as total_orders,
COALESCE(late_orders, 0) as late_orders,
COALESCE(avg_lead_time_days, 0) as avg_lead_time_days,
COALESCE(total_purchase_value, 0) as total_purchase_value,
COALESCE(total_revenue, 0) as total_revenue,
COALESCE(avg_margin_percent, 0) as avg_margin_percent
FROM vendor_time_data
ON DUPLICATE KEY UPDATE
total_orders = VALUES(total_orders),
late_orders = VALUES(late_orders),
avg_lead_time_days = VALUES(avg_lead_time_days),
total_purchase_value = VALUES(total_purchase_value),
total_revenue = VALUES(total_revenue),
avg_margin_percent = VALUES(avg_margin_percent)
`);
return Math.floor(totalProducts * 0.75);
return Math.floor(totalProducts * 0.9);
} finally {
connection.release();
}
}
module.exports = calculateVendorMetrics;
module.exports = calculateVendorMetrics;