Finish fixing calculate scripts
This commit is contained in:
@@ -62,13 +62,24 @@ const TEMP_TABLES = [
|
||||
|
||||
// Add cleanup function for temporary tables
|
||||
async function cleanupTemporaryTables(connection) {
|
||||
// List of possible temporary tables that might exist
|
||||
const tempTables = [
|
||||
'temp_sales_metrics',
|
||||
'temp_purchase_metrics',
|
||||
'temp_forecast_dates',
|
||||
'temp_daily_sales',
|
||||
'temp_product_stats',
|
||||
'temp_category_sales',
|
||||
'temp_category_stats'
|
||||
];
|
||||
|
||||
try {
|
||||
for (const table of TEMP_TABLES) {
|
||||
// Drop each temporary table if it exists
|
||||
for (const table of tempTables) {
|
||||
await connection.query(`DROP TABLE IF EXISTS ${table}`);
|
||||
}
|
||||
} catch (error) {
|
||||
logError(error, 'Error cleaning up temporary tables');
|
||||
throw error; // Re-throw to be handled by the caller
|
||||
} catch (err) {
|
||||
console.error('Error cleaning up temporary tables:', err);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -86,22 +97,42 @@ let isCancelled = false;
|
||||
|
||||
function cancelCalculation() {
|
||||
isCancelled = true;
|
||||
global.clearProgress();
|
||||
// Format as SSE event
|
||||
const event = {
|
||||
progress: {
|
||||
status: 'cancelled',
|
||||
operation: 'Calculation cancelled',
|
||||
current: 0,
|
||||
total: 0,
|
||||
elapsed: null,
|
||||
remaining: null,
|
||||
rate: 0,
|
||||
timestamp: Date.now()
|
||||
}
|
||||
console.log('Calculation has been cancelled by user');
|
||||
|
||||
// Force-terminate any query that's been running for more than 5 seconds
|
||||
try {
|
||||
const connection = getConnection();
|
||||
connection.then(async (conn) => {
|
||||
try {
|
||||
// Identify and terminate long-running queries from our application
|
||||
await conn.query(`
|
||||
SELECT pg_cancel_backend(pid)
|
||||
FROM pg_stat_activity
|
||||
WHERE query_start < now() - interval '5 seconds'
|
||||
AND application_name LIKE '%node%'
|
||||
AND query NOT LIKE '%pg_cancel_backend%'
|
||||
`);
|
||||
|
||||
// Clean up any temporary tables
|
||||
await cleanupTemporaryTables(conn);
|
||||
|
||||
// Release connection
|
||||
conn.release();
|
||||
} catch (err) {
|
||||
console.error('Error during force cancellation:', err);
|
||||
conn.release();
|
||||
}
|
||||
}).catch(err => {
|
||||
console.error('Could not get connection for cancellation:', err);
|
||||
});
|
||||
} catch (err) {
|
||||
console.error('Failed to terminate running queries:', err);
|
||||
}
|
||||
|
||||
return {
|
||||
success: true,
|
||||
message: 'Calculation has been cancelled'
|
||||
};
|
||||
process.stdout.write(JSON.stringify(event) + '\n');
|
||||
process.exit(0);
|
||||
}
|
||||
|
||||
// Handle SIGTERM signal for cancellation
|
||||
@@ -119,6 +150,15 @@ async function calculateMetrics() {
|
||||
let totalPurchaseOrders = 0;
|
||||
let calculateHistoryId;
|
||||
|
||||
// Set a maximum execution time (30 minutes)
|
||||
const MAX_EXECUTION_TIME = 30 * 60 * 1000;
|
||||
const timeout = setTimeout(() => {
|
||||
console.error(`Calculation timed out after ${MAX_EXECUTION_TIME/1000} seconds, forcing termination`);
|
||||
// Call cancel and force exit
|
||||
cancelCalculation();
|
||||
process.exit(1);
|
||||
}, MAX_EXECUTION_TIME);
|
||||
|
||||
try {
|
||||
// Clean up any previously running calculations
|
||||
connection = await getConnection();
|
||||
@@ -360,223 +400,6 @@ async function calculateMetrics() {
|
||||
console.log('Skipping sales forecasts calculation');
|
||||
}
|
||||
|
||||
// Calculate ABC classification
|
||||
outputProgress({
|
||||
status: 'running',
|
||||
operation: 'Starting ABC classification',
|
||||
current: processedProducts || 0,
|
||||
total: totalProducts || 0,
|
||||
elapsed: formatElapsedTime(startTime),
|
||||
remaining: estimateRemaining(startTime, processedProducts || 0, totalProducts || 0),
|
||||
rate: calculateRate(startTime, processedProducts || 0),
|
||||
percentage: (((processedProducts || 0) / (totalProducts || 1)) * 100).toFixed(1),
|
||||
timing: {
|
||||
start_time: new Date(startTime).toISOString(),
|
||||
end_time: new Date().toISOString(),
|
||||
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
|
||||
}
|
||||
});
|
||||
|
||||
if (isCancelled) return {
|
||||
processedProducts: processedProducts || 0,
|
||||
processedOrders: processedOrders || 0,
|
||||
processedPurchaseOrders: 0,
|
||||
success: false
|
||||
};
|
||||
|
||||
const abcConfigResult = await connection.query('SELECT a_threshold, b_threshold FROM abc_classification_config WHERE id = 1');
|
||||
const abcThresholds = abcConfigResult.rows[0] || { a_threshold: 20, b_threshold: 50 };
|
||||
|
||||
// First, create and populate the rankings table
|
||||
await connection.query('DROP TABLE IF EXISTS temp_revenue_ranks');
|
||||
await connection.query(`
|
||||
CREATE TEMPORARY TABLE temp_revenue_ranks (
|
||||
pid BIGINT NOT NULL,
|
||||
total_revenue DECIMAL(10,3),
|
||||
rank_num INT,
|
||||
total_count INT,
|
||||
PRIMARY KEY (pid)
|
||||
)
|
||||
`);
|
||||
await connection.query('CREATE INDEX ON temp_revenue_ranks (rank_num)');
|
||||
|
||||
outputProgress({
|
||||
status: 'running',
|
||||
operation: 'Creating revenue rankings',
|
||||
current: processedProducts || 0,
|
||||
total: totalProducts || 0,
|
||||
elapsed: formatElapsedTime(startTime),
|
||||
remaining: estimateRemaining(startTime, processedProducts || 0, totalProducts || 0),
|
||||
rate: calculateRate(startTime, processedProducts || 0),
|
||||
percentage: (((processedProducts || 0) / (totalProducts || 1)) * 100).toFixed(1),
|
||||
timing: {
|
||||
start_time: new Date(startTime).toISOString(),
|
||||
end_time: new Date().toISOString(),
|
||||
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
|
||||
}
|
||||
});
|
||||
|
||||
if (isCancelled) return {
|
||||
processedProducts: processedProducts || 0,
|
||||
processedOrders: processedOrders || 0,
|
||||
processedPurchaseOrders: 0,
|
||||
success: false
|
||||
};
|
||||
|
||||
// Use window functions instead of user variables
|
||||
await connection.query(`
|
||||
INSERT INTO temp_revenue_ranks
|
||||
WITH ranked AS (
|
||||
SELECT
|
||||
pid,
|
||||
total_revenue,
|
||||
ROW_NUMBER() OVER (ORDER BY total_revenue DESC) as rank_num,
|
||||
COUNT(*) OVER () as total_count
|
||||
FROM product_metrics
|
||||
WHERE total_revenue > 0
|
||||
)
|
||||
SELECT
|
||||
pid,
|
||||
total_revenue,
|
||||
rank_num,
|
||||
total_count
|
||||
FROM ranked
|
||||
`);
|
||||
|
||||
// Get total count for percentage calculation
|
||||
const rankingCountResult = await connection.query('SELECT MAX(rank_num) as total_count FROM temp_revenue_ranks');
|
||||
const totalCount = parseInt(rankingCountResult.rows[0].total_count) || 1;
|
||||
const max_rank = totalCount; // Store max_rank for use in classification
|
||||
|
||||
outputProgress({
|
||||
status: 'running',
|
||||
operation: 'Updating ABC classifications',
|
||||
current: processedProducts || 0,
|
||||
total: totalProducts || 0,
|
||||
elapsed: formatElapsedTime(startTime),
|
||||
remaining: estimateRemaining(startTime, processedProducts || 0, totalProducts || 0),
|
||||
rate: calculateRate(startTime, processedProducts || 0),
|
||||
percentage: (((processedProducts || 0) / (totalProducts || 1)) * 100).toFixed(1),
|
||||
timing: {
|
||||
start_time: new Date(startTime).toISOString(),
|
||||
end_time: new Date().toISOString(),
|
||||
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
|
||||
}
|
||||
});
|
||||
|
||||
if (isCancelled) return {
|
||||
processedProducts: processedProducts || 0,
|
||||
processedOrders: processedOrders || 0,
|
||||
processedPurchaseOrders: 0,
|
||||
success: false
|
||||
};
|
||||
|
||||
// ABC classification progress tracking
|
||||
let abcProcessedCount = 0;
|
||||
const batchSize = 5000;
|
||||
let lastProgressUpdate = Date.now();
|
||||
const progressUpdateInterval = 1000; // Update every second
|
||||
|
||||
while (true) {
|
||||
if (isCancelled) return {
|
||||
processedProducts: Number(processedProducts) || 0,
|
||||
processedOrders: Number(processedOrders) || 0,
|
||||
processedPurchaseOrders: 0,
|
||||
success: false
|
||||
};
|
||||
|
||||
// First get a batch of PIDs that need updating
|
||||
const pidsResult = await connection.query(`
|
||||
SELECT pm.pid
|
||||
FROM product_metrics pm
|
||||
LEFT JOIN temp_revenue_ranks tr ON pm.pid = tr.pid
|
||||
WHERE pm.abc_class IS NULL
|
||||
OR pm.abc_class !=
|
||||
CASE
|
||||
WHEN tr.rank_num IS NULL THEN 'C'
|
||||
WHEN (tr.rank_num::float / $1::float) * 100 <= $2 THEN 'A'
|
||||
WHEN (tr.rank_num::float / $1::float) * 100 <= $3 THEN 'B'
|
||||
ELSE 'C'
|
||||
END
|
||||
LIMIT $4
|
||||
`, [max_rank, abcThresholds.a_threshold,
|
||||
abcThresholds.b_threshold,
|
||||
batchSize]);
|
||||
|
||||
if (pidsResult.rows.length === 0) {
|
||||
break;
|
||||
}
|
||||
|
||||
// Then update just those PIDs
|
||||
const pidValues = pidsResult.rows.map(row => row.pid);
|
||||
const result = await connection.query(`
|
||||
UPDATE product_metrics pm
|
||||
SET abc_class =
|
||||
CASE
|
||||
WHEN tr.rank_num IS NULL THEN 'C'
|
||||
WHEN (tr.rank_num::float / $1::float) * 100 <= $2 THEN 'A'
|
||||
WHEN (tr.rank_num::float / $1::float) * 100 <= $3 THEN 'B'
|
||||
ELSE 'C'
|
||||
END,
|
||||
last_calculated_at = NOW()
|
||||
FROM temp_revenue_ranks tr
|
||||
WHERE pm.pid = tr.pid AND pm.pid = ANY($4::bigint[])
|
||||
OR (pm.pid = ANY($4::bigint[]) AND tr.pid IS NULL)
|
||||
`, [max_rank, abcThresholds.a_threshold,
|
||||
abcThresholds.b_threshold,
|
||||
pidValues]);
|
||||
|
||||
abcProcessedCount += result.rowCount;
|
||||
|
||||
// Calculate progress ensuring valid numbers
|
||||
const currentProgress = Math.floor(totalProducts * (0.99 + (abcProcessedCount / (totalCount || 1)) * 0.01));
|
||||
processedProducts = Number(currentProgress) || processedProducts || 0;
|
||||
|
||||
// Only update progress at most once per second
|
||||
const now = Date.now();
|
||||
if (now - lastProgressUpdate >= progressUpdateInterval) {
|
||||
const progress = ensureValidProgress(processedProducts, totalProducts);
|
||||
|
||||
outputProgress({
|
||||
status: 'running',
|
||||
operation: 'ABC classification progress',
|
||||
current: progress.current,
|
||||
total: progress.total,
|
||||
elapsed: formatElapsedTime(startTime),
|
||||
remaining: estimateRemaining(startTime, progress.current, progress.total),
|
||||
rate: calculateRate(startTime, progress.current),
|
||||
percentage: progress.percentage,
|
||||
timing: {
|
||||
start_time: new Date(startTime).toISOString(),
|
||||
end_time: new Date().toISOString(),
|
||||
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
|
||||
}
|
||||
});
|
||||
|
||||
lastProgressUpdate = now;
|
||||
}
|
||||
|
||||
// Update database progress
|
||||
await updateProgress(processedProducts, processedOrders, processedPurchaseOrders);
|
||||
|
||||
// Small delay between batches to allow other transactions
|
||||
await new Promise(resolve => setTimeout(resolve, 100));
|
||||
}
|
||||
|
||||
// Clean up
|
||||
await connection.query('DROP TABLE IF EXISTS temp_revenue_ranks');
|
||||
|
||||
const endTime = Date.now();
|
||||
const totalElapsedSeconds = Math.round((endTime - startTime) / 1000);
|
||||
|
||||
// Update calculate_status for ABC classification
|
||||
await connection.query(`
|
||||
INSERT INTO calculate_status (module_name, last_calculation_timestamp)
|
||||
VALUES ('abc_classification', NOW())
|
||||
ON CONFLICT (module_name) DO UPDATE
|
||||
SET last_calculation_timestamp = NOW()
|
||||
`);
|
||||
|
||||
// Final progress update with guaranteed valid numbers
|
||||
const finalProgress = ensureValidProgress(totalProducts, totalProducts);
|
||||
|
||||
@@ -586,14 +409,14 @@ async function calculateMetrics() {
|
||||
operation: 'Metrics calculation complete',
|
||||
current: finalProgress.current,
|
||||
total: finalProgress.total,
|
||||
elapsed: formatElapsedTime(startTime),
|
||||
elapsed: global.formatElapsedTime(startTime),
|
||||
remaining: '0s',
|
||||
rate: calculateRate(startTime, finalProgress.current),
|
||||
rate: global.calculateRate(startTime, finalProgress.current),
|
||||
percentage: '100',
|
||||
timing: {
|
||||
start_time: new Date(startTime).toISOString(),
|
||||
end_time: new Date().toISOString(),
|
||||
elapsed_seconds: totalElapsedSeconds
|
||||
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
|
||||
}
|
||||
});
|
||||
|
||||
@@ -615,7 +438,7 @@ async function calculateMetrics() {
|
||||
processed_purchase_orders = $4,
|
||||
status = 'completed'
|
||||
WHERE id = $5
|
||||
`, [totalElapsedSeconds,
|
||||
`, [Math.round((Date.now() - startTime) / 1000),
|
||||
finalStats.processedProducts,
|
||||
finalStats.processedOrders,
|
||||
finalStats.processedPurchaseOrders,
|
||||
@@ -624,6 +447,11 @@ async function calculateMetrics() {
|
||||
// Clear progress file on successful completion
|
||||
global.clearProgress();
|
||||
|
||||
return {
|
||||
success: true,
|
||||
message: 'Calculation completed successfully',
|
||||
duration: Math.round((Date.now() - startTime) / 1000)
|
||||
};
|
||||
} catch (error) {
|
||||
const endTime = Date.now();
|
||||
const totalElapsedSeconds = Math.round((endTime - startTime) / 1000);
|
||||
@@ -685,17 +513,38 @@ async function calculateMetrics() {
|
||||
}
|
||||
throw error;
|
||||
} finally {
|
||||
// Clear the timeout to prevent forced termination
|
||||
clearTimeout(timeout);
|
||||
|
||||
// Always clean up and release connection
|
||||
if (connection) {
|
||||
// Ensure temporary tables are cleaned up
|
||||
await cleanupTemporaryTables(connection);
|
||||
connection.release();
|
||||
try {
|
||||
await cleanupTemporaryTables(connection);
|
||||
connection.release();
|
||||
} catch (err) {
|
||||
console.error('Error in final cleanup:', err);
|
||||
}
|
||||
}
|
||||
// Close the connection pool when we're done
|
||||
await closePool();
|
||||
}
|
||||
} catch (error) {
|
||||
success = false;
|
||||
logError(error, 'Error in metrics calculation');
|
||||
console.error('Error in metrics calculation', error);
|
||||
|
||||
try {
|
||||
if (connection) {
|
||||
await connection.query(`
|
||||
UPDATE calculate_history
|
||||
SET
|
||||
status = 'error',
|
||||
end_time = NOW(),
|
||||
duration_seconds = EXTRACT(EPOCH FROM (NOW() - start_time))::INTEGER,
|
||||
error_message = $1
|
||||
WHERE id = $2
|
||||
`, [error.message.substring(0, 500), calculateHistoryId]);
|
||||
}
|
||||
} catch (updateError) {
|
||||
console.error('Error updating calculation history:', updateError);
|
||||
}
|
||||
|
||||
throw error;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -231,8 +231,8 @@ async function calculateBrandMetrics(startTime, totalProducts, processedCount =
|
||||
monthly_metrics AS (
|
||||
SELECT
|
||||
p.brand,
|
||||
EXTRACT(YEAR FROM o.date) as year,
|
||||
EXTRACT(MONTH FROM o.date) as month,
|
||||
EXTRACT(YEAR FROM o.date::timestamp with time zone) as year,
|
||||
EXTRACT(MONTH FROM o.date::timestamp with time zone) as month,
|
||||
COUNT(DISTINCT p.valid_pid) as product_count,
|
||||
COUNT(DISTINCT p.active_pid) as active_products,
|
||||
SUM(p.valid_stock) as total_stock_units,
|
||||
@@ -257,7 +257,7 @@ async function calculateBrandMetrics(startTime, totalProducts, processedCount =
|
||||
FROM filtered_products p
|
||||
LEFT JOIN orders o ON p.pid = o.pid AND o.canceled = false
|
||||
WHERE o.date >= CURRENT_DATE - INTERVAL '12 months'
|
||||
GROUP BY p.brand, EXTRACT(YEAR FROM o.date), EXTRACT(MONTH FROM o.date)
|
||||
GROUP BY p.brand, EXTRACT(YEAR FROM o.date::timestamp with time zone), EXTRACT(MONTH FROM o.date::timestamp with time zone)
|
||||
)
|
||||
SELECT *
|
||||
FROM monthly_metrics
|
||||
|
||||
@@ -131,7 +131,7 @@ async function calculateCategoryMetrics(startTime, totalProducts, processedCount
|
||||
AND o.date >= CURRENT_DATE - (COALESCE(tc.calculation_period_days, 30) || ' days')::INTERVAL
|
||||
GROUP BY pc.cat_id
|
||||
)
|
||||
UPDATE category_metrics cm
|
||||
UPDATE category_metrics
|
||||
SET
|
||||
avg_margin = COALESCE(cs.total_margin * 100.0 / NULLIF(cs.total_sales, 0), 0),
|
||||
turnover_rate = CASE
|
||||
@@ -144,10 +144,7 @@ async function calculateCategoryMetrics(startTime, totalProducts, processedCount
|
||||
END,
|
||||
last_calculated_at = NOW()
|
||||
FROM category_sales cs
|
||||
LEFT JOIN turnover_config tc ON
|
||||
(tc.category_id = cm.category_id AND tc.vendor IS NULL) OR
|
||||
(tc.category_id IS NULL AND tc.vendor IS NULL)
|
||||
WHERE cm.category_id = cs.cat_id
|
||||
WHERE category_id = cs.cat_id
|
||||
`);
|
||||
|
||||
processedCount = Math.floor(totalProducts * 0.95);
|
||||
@@ -265,6 +262,36 @@ async function calculateCategoryMetrics(startTime, totalProducts, processedCount
|
||||
WHERE o.canceled = false
|
||||
AND o.date >= CURRENT_DATE - INTERVAL '3 months'
|
||||
GROUP BY pc.cat_id
|
||||
),
|
||||
combined_metrics AS (
|
||||
SELECT
|
||||
COALESCE(cp.cat_id, pp.cat_id) as category_id,
|
||||
CASE
|
||||
WHEN pp.revenue = 0 AND COALESCE(cp.revenue, 0) > 0 THEN 100.0
|
||||
WHEN pp.revenue = 0 OR cp.revenue IS NULL THEN 0.0
|
||||
WHEN ta.trend_slope IS NOT NULL THEN
|
||||
GREATEST(
|
||||
-100.0,
|
||||
LEAST(
|
||||
(ta.trend_slope / NULLIF(ta.avg_daily_revenue, 0)) * 365 * 100,
|
||||
999.99
|
||||
)
|
||||
)
|
||||
ELSE
|
||||
GREATEST(
|
||||
-100.0,
|
||||
LEAST(
|
||||
((COALESCE(cp.revenue, 0) - pp.revenue) /
|
||||
NULLIF(ABS(pp.revenue), 0)) * 100.0,
|
||||
999.99
|
||||
)
|
||||
)
|
||||
END as growth_rate,
|
||||
mc.avg_margin
|
||||
FROM current_period cp
|
||||
FULL OUTER JOIN previous_period pp ON cp.cat_id = pp.cat_id
|
||||
LEFT JOIN trend_analysis ta ON COALESCE(cp.cat_id, pp.cat_id) = ta.cat_id
|
||||
LEFT JOIN margin_calc mc ON COALESCE(cp.cat_id, pp.cat_id) = mc.cat_id
|
||||
)
|
||||
UPDATE category_metrics cm
|
||||
SET
|
||||
@@ -292,10 +319,10 @@ async function calculateCategoryMetrics(startTime, totalProducts, processedCount
|
||||
avg_margin = COALESCE(mc.avg_margin, cm.avg_margin),
|
||||
last_calculated_at = NOW()
|
||||
FROM current_period cp
|
||||
FULL OUTER JOIN previous_period pp ON cm.category_id = pp.cat_id
|
||||
LEFT JOIN trend_analysis ta ON cm.category_id = ta.cat_id
|
||||
LEFT JOIN margin_calc mc ON cm.category_id = mc.cat_id
|
||||
WHERE cm.category_id = cp.cat_id OR cm.category_id = pp.cat_id
|
||||
FULL OUTER JOIN previous_period pp ON cp.cat_id = pp.cat_id
|
||||
LEFT JOIN trend_analysis ta ON COALESCE(cp.cat_id, pp.cat_id) = ta.cat_id
|
||||
LEFT JOIN margin_calc mc ON COALESCE(cp.cat_id, pp.cat_id) = mc.cat_id
|
||||
WHERE cm.category_id = COALESCE(cp.cat_id, pp.cat_id)
|
||||
`);
|
||||
|
||||
processedCount = Math.floor(totalProducts * 0.97);
|
||||
@@ -337,8 +364,8 @@ async function calculateCategoryMetrics(startTime, totalProducts, processedCount
|
||||
)
|
||||
SELECT
|
||||
pc.cat_id,
|
||||
EXTRACT(YEAR FROM o.date) as year,
|
||||
EXTRACT(MONTH FROM o.date) as month,
|
||||
EXTRACT(YEAR FROM o.date::timestamp with time zone) as year,
|
||||
EXTRACT(MONTH FROM o.date::timestamp with time zone) as month,
|
||||
COUNT(DISTINCT p.pid) as product_count,
|
||||
COUNT(DISTINCT CASE WHEN p.visible = true THEN p.pid END) as active_products,
|
||||
SUM(p.stock_quantity * p.cost_price) as total_value,
|
||||
@@ -367,7 +394,7 @@ async function calculateCategoryMetrics(startTime, totalProducts, processedCount
|
||||
JOIN orders o ON p.pid = o.pid
|
||||
WHERE o.canceled = false
|
||||
AND o.date >= CURRENT_DATE - INTERVAL '12 months'
|
||||
GROUP BY pc.cat_id, EXTRACT(YEAR FROM o.date), EXTRACT(MONTH FROM o.date)
|
||||
GROUP BY pc.cat_id, EXTRACT(YEAR FROM o.date::timestamp with time zone), EXTRACT(MONTH FROM o.date::timestamp with time zone)
|
||||
ON CONFLICT (category_id, year, month) DO UPDATE
|
||||
SET
|
||||
product_count = EXCLUDED.product_count,
|
||||
|
||||
@@ -67,7 +67,7 @@ async function calculateFinancialMetrics(startTime, totalProducts, processedCoun
|
||||
SUM(o.quantity * (o.price - p.cost_price)) as gross_profit,
|
||||
MIN(o.date) as first_sale_date,
|
||||
MAX(o.date) as last_sale_date,
|
||||
EXTRACT(DAY FROM (MAX(o.date) - MIN(o.date))) + 1 as calculation_period_days,
|
||||
EXTRACT(DAY FROM (MAX(o.date)::timestamp with time zone - MIN(o.date)::timestamp with time zone)) + 1 as calculation_period_days,
|
||||
COUNT(DISTINCT DATE(o.date)) as active_days
|
||||
FROM products p
|
||||
LEFT JOIN orders o ON p.pid = o.pid
|
||||
@@ -120,8 +120,8 @@ async function calculateFinancialMetrics(startTime, totalProducts, processedCoun
|
||||
WITH monthly_financials AS (
|
||||
SELECT
|
||||
p.pid,
|
||||
EXTRACT(YEAR FROM o.date) as year,
|
||||
EXTRACT(MONTH FROM o.date) as month,
|
||||
EXTRACT(YEAR FROM o.date::timestamp with time zone) as year,
|
||||
EXTRACT(MONTH FROM o.date::timestamp with time zone) as month,
|
||||
p.cost_price * p.stock_quantity as inventory_value,
|
||||
SUM(o.quantity * (o.price - p.cost_price)) as gross_profit,
|
||||
COUNT(DISTINCT DATE(o.date)) as active_days,
|
||||
@@ -130,7 +130,7 @@ async function calculateFinancialMetrics(startTime, totalProducts, processedCoun
|
||||
FROM products p
|
||||
LEFT JOIN orders o ON p.pid = o.pid
|
||||
WHERE o.canceled = false
|
||||
GROUP BY p.pid, EXTRACT(YEAR FROM o.date), EXTRACT(MONTH FROM o.date), p.cost_price, p.stock_quantity
|
||||
GROUP BY p.pid, EXTRACT(YEAR FROM o.date::timestamp with time zone), EXTRACT(MONTH FROM o.date::timestamp with time zone), p.cost_price, p.stock_quantity
|
||||
)
|
||||
UPDATE product_time_aggregates pta
|
||||
SET
|
||||
|
||||
@@ -10,12 +10,13 @@ function sanitizeValue(value) {
|
||||
}
|
||||
|
||||
async function calculateProductMetrics(startTime, totalProducts, processedCount = 0, isCancelled = false) {
|
||||
const connection = await getConnection();
|
||||
let connection;
|
||||
let success = false;
|
||||
let processedOrders = 0;
|
||||
const BATCH_SIZE = 5000;
|
||||
|
||||
try {
|
||||
connection = await getConnection();
|
||||
// Skip flags are inherited from the parent scope
|
||||
const SKIP_PRODUCT_BASE_METRICS = 0;
|
||||
const SKIP_PRODUCT_TIME_AGGREGATES = 0;
|
||||
@@ -147,33 +148,58 @@ async function calculateProductMetrics(startTime, totalProducts, processedCount
|
||||
GROUP BY p.pid
|
||||
`);
|
||||
|
||||
// Populate temp_purchase_metrics
|
||||
await connection.query(`
|
||||
INSERT INTO temp_purchase_metrics
|
||||
SELECT
|
||||
p.pid,
|
||||
AVG(
|
||||
CASE
|
||||
WHEN po.received_date IS NOT NULL AND po.date IS NOT NULL
|
||||
THEN EXTRACT(EPOCH FROM (po.received_date::timestamp with time zone - po.date::timestamp with time zone)) / 86400.0
|
||||
ELSE NULL
|
||||
END
|
||||
) as avg_lead_time_days,
|
||||
MAX(po.date) as last_purchase_date,
|
||||
MIN(po.received_date) as first_received_date,
|
||||
MAX(po.received_date) as last_received_date
|
||||
FROM products p
|
||||
LEFT JOIN purchase_orders po ON p.pid = po.pid
|
||||
AND po.received_date IS NOT NULL
|
||||
AND po.date >= CURRENT_DATE - INTERVAL '365 days'
|
||||
GROUP BY p.pid
|
||||
`);
|
||||
// Populate temp_purchase_metrics with timeout protection
|
||||
await Promise.race([
|
||||
connection.query(`
|
||||
INSERT INTO temp_purchase_metrics
|
||||
SELECT
|
||||
p.pid,
|
||||
AVG(
|
||||
CASE
|
||||
WHEN po.received_date IS NOT NULL AND po.date IS NOT NULL
|
||||
THEN EXTRACT(EPOCH FROM (po.received_date::timestamp with time zone - po.date::timestamp with time zone)) / 86400.0
|
||||
ELSE NULL
|
||||
END
|
||||
) as avg_lead_time_days,
|
||||
MAX(po.date) as last_purchase_date,
|
||||
MIN(po.received_date) as first_received_date,
|
||||
MAX(po.received_date) as last_received_date
|
||||
FROM products p
|
||||
LEFT JOIN purchase_orders po ON p.pid = po.pid
|
||||
AND po.received_date IS NOT NULL
|
||||
AND po.date IS NOT NULL
|
||||
AND po.date >= CURRENT_DATE - INTERVAL '365 days'
|
||||
GROUP BY p.pid
|
||||
`),
|
||||
new Promise((_, reject) =>
|
||||
setTimeout(() => reject(new Error('Timeout: temp_purchase_metrics query took too long')), 60000)
|
||||
)
|
||||
]).catch(async (err) => {
|
||||
logError(err, 'Error populating temp_purchase_metrics, continuing with empty table');
|
||||
// Create an empty fallback to continue processing
|
||||
await connection.query(`
|
||||
INSERT INTO temp_purchase_metrics
|
||||
SELECT
|
||||
p.pid,
|
||||
30.0 as avg_lead_time_days,
|
||||
NULL as last_purchase_date,
|
||||
NULL as first_received_date,
|
||||
NULL as last_received_date
|
||||
FROM products p
|
||||
LEFT JOIN temp_purchase_metrics tpm ON p.pid = tpm.pid
|
||||
WHERE tpm.pid IS NULL
|
||||
`);
|
||||
});
|
||||
|
||||
// Process updates in batches
|
||||
let lastPid = 0;
|
||||
while (true) {
|
||||
let batchCount = 0;
|
||||
const MAX_BATCHES = 1000; // Safety limit for number of batches to prevent infinite loops
|
||||
|
||||
while (batchCount < MAX_BATCHES) {
|
||||
if (isCancelled) break;
|
||||
|
||||
batchCount++;
|
||||
const batch = await connection.query(
|
||||
'SELECT pid FROM products WHERE pid > $1 ORDER BY pid LIMIT $2',
|
||||
[lastPid, BATCH_SIZE]
|
||||
@@ -181,6 +207,7 @@ async function calculateProductMetrics(startTime, totalProducts, processedCount
|
||||
|
||||
if (batch.rows.length === 0) break;
|
||||
|
||||
// Process the entire batch in a single efficient query
|
||||
await connection.query(`
|
||||
UPDATE product_metrics pm
|
||||
SET
|
||||
@@ -241,6 +268,7 @@ async function calculateProductMetrics(startTime, totalProducts, processedCount
|
||||
LEFT JOIN temp_sales_metrics sm ON p.pid = sm.pid
|
||||
LEFT JOIN temp_purchase_metrics lm ON p.pid = lm.pid
|
||||
WHERE p.pid = ANY($11::bigint[])
|
||||
AND pm.pid = p.pid
|
||||
`,
|
||||
[
|
||||
defaultThresholds.low_stock_threshold,
|
||||
@@ -254,8 +282,7 @@ async function calculateProductMetrics(startTime, totalProducts, processedCount
|
||||
defaultThresholds.overstock_days,
|
||||
defaultThresholds.overstock_days,
|
||||
batch.rows.map(row => row.pid)
|
||||
]
|
||||
);
|
||||
]);
|
||||
|
||||
lastPid = batch.rows[batch.rows.length - 1].pid;
|
||||
processedCount += batch.rows.length;
|
||||
@@ -277,54 +304,59 @@ async function calculateProductMetrics(startTime, totalProducts, processedCount
|
||||
});
|
||||
}
|
||||
|
||||
// Calculate forecast accuracy and bias in batches
|
||||
lastPid = 0;
|
||||
while (true) {
|
||||
if (isCancelled) break;
|
||||
|
||||
const batch = await connection.query(
|
||||
'SELECT pid FROM products WHERE pid > $1 ORDER BY pid LIMIT $2',
|
||||
[lastPid, BATCH_SIZE]
|
||||
);
|
||||
|
||||
if (batch.rows.length === 0) break;
|
||||
|
||||
await connection.query(`
|
||||
UPDATE product_metrics pm
|
||||
SET
|
||||
forecast_accuracy = GREATEST(0, 100 - LEAST(fa.avg_forecast_error, 100)),
|
||||
forecast_bias = GREATEST(-100, LEAST(fa.avg_forecast_bias, 100)),
|
||||
last_forecast_date = fa.last_forecast_date,
|
||||
last_calculated_at = NOW()
|
||||
FROM (
|
||||
SELECT
|
||||
sf.pid,
|
||||
AVG(CASE
|
||||
WHEN o.quantity > 0
|
||||
THEN ABS(sf.forecast_quantity - o.quantity) / o.quantity * 100
|
||||
ELSE 100
|
||||
END) as avg_forecast_error,
|
||||
AVG(CASE
|
||||
WHEN o.quantity > 0
|
||||
THEN (sf.forecast_quantity - o.quantity) / o.quantity * 100
|
||||
ELSE 0
|
||||
END) as avg_forecast_bias,
|
||||
MAX(sf.forecast_date) as last_forecast_date
|
||||
FROM sales_forecasts sf
|
||||
JOIN orders o ON sf.pid = o.pid
|
||||
AND DATE(o.date) = sf.forecast_date
|
||||
WHERE o.canceled = false
|
||||
AND sf.forecast_date >= CURRENT_DATE - INTERVAL '90 days'
|
||||
AND sf.pid = ANY($1::bigint[])
|
||||
GROUP BY sf.pid
|
||||
) fa
|
||||
WHERE pm.pid = fa.pid
|
||||
`, [batch.rows.map(row => row.pid)]);
|
||||
|
||||
lastPid = batch.rows[batch.rows.length - 1].pid;
|
||||
// Add safety check if the loop processed MAX_BATCHES
|
||||
if (batchCount >= MAX_BATCHES) {
|
||||
logError(new Error(`Reached maximum batch count (${MAX_BATCHES}). Process may have entered an infinite loop.`), 'Batch processing safety limit reached');
|
||||
}
|
||||
}
|
||||
|
||||
// Calculate forecast accuracy and bias in batches
|
||||
lastPid = 0;
|
||||
while (true) {
|
||||
if (isCancelled) break;
|
||||
|
||||
const batch = await connection.query(
|
||||
'SELECT pid FROM products WHERE pid > $1 ORDER BY pid LIMIT $2',
|
||||
[lastPid, BATCH_SIZE]
|
||||
);
|
||||
|
||||
if (batch.rows.length === 0) break;
|
||||
|
||||
await connection.query(`
|
||||
UPDATE product_metrics pm
|
||||
SET
|
||||
forecast_accuracy = GREATEST(0, 100 - LEAST(fa.avg_forecast_error, 100)),
|
||||
forecast_bias = GREATEST(-100, LEAST(fa.avg_forecast_bias, 100)),
|
||||
last_forecast_date = fa.last_forecast_date,
|
||||
last_calculated_at = NOW()
|
||||
FROM (
|
||||
SELECT
|
||||
sf.pid,
|
||||
AVG(CASE
|
||||
WHEN o.quantity > 0
|
||||
THEN ABS(sf.forecast_quantity - o.quantity) / o.quantity * 100
|
||||
ELSE 100
|
||||
END) as avg_forecast_error,
|
||||
AVG(CASE
|
||||
WHEN o.quantity > 0
|
||||
THEN (sf.forecast_quantity - o.quantity) / o.quantity * 100
|
||||
ELSE 0
|
||||
END) as avg_forecast_bias,
|
||||
MAX(sf.forecast_date) as last_forecast_date
|
||||
FROM sales_forecasts sf
|
||||
JOIN orders o ON sf.pid = o.pid
|
||||
AND DATE(o.date) = sf.forecast_date
|
||||
WHERE o.canceled = false
|
||||
AND sf.forecast_date >= CURRENT_DATE - INTERVAL '90 days'
|
||||
AND sf.pid = ANY($1::bigint[])
|
||||
GROUP BY sf.pid
|
||||
) fa
|
||||
WHERE pm.pid = fa.pid
|
||||
`, [batch.rows.map(row => row.pid)]);
|
||||
|
||||
lastPid = batch.rows[batch.rows.length - 1].pid;
|
||||
}
|
||||
|
||||
// Calculate product time aggregates
|
||||
if (!SKIP_PRODUCT_TIME_AGGREGATES) {
|
||||
outputProgress({
|
||||
@@ -360,11 +392,11 @@ async function calculateProductMetrics(startTime, totalProducts, processedCount
|
||||
)
|
||||
SELECT
|
||||
p.pid,
|
||||
EXTRACT(YEAR FROM o.date) as year,
|
||||
EXTRACT(MONTH FROM o.date) as month,
|
||||
EXTRACT(YEAR FROM o.date::timestamp with time zone) as year,
|
||||
EXTRACT(MONTH FROM o.date::timestamp with time zone) as month,
|
||||
SUM(o.quantity) as total_quantity_sold,
|
||||
SUM(o.quantity * o.price) as total_revenue,
|
||||
SUM(o.quantity * p.cost_price) as total_cost,
|
||||
SUM(o.price * o.quantity) as total_revenue,
|
||||
SUM(p.cost_price * o.quantity) as total_cost,
|
||||
COUNT(DISTINCT o.order_number) as order_count,
|
||||
AVG(o.price) as avg_price,
|
||||
CASE
|
||||
@@ -381,7 +413,7 @@ async function calculateProductMetrics(startTime, totalProducts, processedCount
|
||||
FROM products p
|
||||
LEFT JOIN orders o ON p.pid = o.pid AND o.canceled = false
|
||||
WHERE o.date >= CURRENT_DATE - INTERVAL '12 months'
|
||||
GROUP BY p.pid, EXTRACT(YEAR FROM o.date), EXTRACT(MONTH FROM o.date)
|
||||
GROUP BY p.pid, EXTRACT(YEAR FROM o.date::timestamp with time zone), EXTRACT(MONTH FROM o.date::timestamp with time zone)
|
||||
ON CONFLICT (pid, year, month) DO UPDATE
|
||||
SET
|
||||
total_quantity_sold = EXCLUDED.total_quantity_sold,
|
||||
@@ -500,17 +532,18 @@ async function calculateProductMetrics(startTime, totalProducts, processedCount
|
||||
// Get total count for percentage calculation
|
||||
const rankingCount = await connection.query('SELECT MAX(rank_num) as total_count FROM temp_revenue_ranks');
|
||||
const totalCount = parseInt(rankingCount.rows[0].total_count) || 1;
|
||||
const max_rank = totalCount;
|
||||
|
||||
// Process updates in batches
|
||||
let abcProcessedCount = 0;
|
||||
const batchSize = 5000;
|
||||
const maxPid = await connection.query('SELECT MAX(pid) as max_pid FROM products');
|
||||
const maxProductId = parseInt(maxPid.rows[0].max_pid);
|
||||
|
||||
while (true) {
|
||||
while (abcProcessedCount < maxProductId) {
|
||||
if (isCancelled) return {
|
||||
processedProducts: processedCount,
|
||||
processedOrders,
|
||||
processedPurchaseOrders: 0, // This module doesn't process POs
|
||||
processedPurchaseOrders: 0,
|
||||
success
|
||||
};
|
||||
|
||||
@@ -519,16 +552,18 @@ async function calculateProductMetrics(startTime, totalProducts, processedCount
|
||||
SELECT pm.pid
|
||||
FROM product_metrics pm
|
||||
LEFT JOIN temp_revenue_ranks tr ON pm.pid = tr.pid
|
||||
WHERE pm.abc_class IS NULL
|
||||
OR pm.abc_class !=
|
||||
CASE
|
||||
WHEN tr.pid IS NULL THEN 'C'
|
||||
WHEN tr.percentile <= $1 THEN 'A'
|
||||
WHEN tr.percentile <= $2 THEN 'B'
|
||||
ELSE 'C'
|
||||
END
|
||||
LIMIT $3
|
||||
`, [abcThresholds.a_threshold, abcThresholds.b_threshold, batchSize]);
|
||||
WHERE pm.pid > $1
|
||||
AND (pm.abc_class IS NULL
|
||||
OR pm.abc_class !=
|
||||
CASE
|
||||
WHEN tr.pid IS NULL THEN 'C'
|
||||
WHEN tr.percentile <= $2 THEN 'A'
|
||||
WHEN tr.percentile <= $3 THEN 'B'
|
||||
ELSE 'C'
|
||||
END)
|
||||
ORDER BY pm.pid
|
||||
LIMIT $4
|
||||
`, [abcProcessedCount, abcThresholds.a_threshold, abcThresholds.b_threshold, batchSize]);
|
||||
|
||||
if (pids.rows.length === 0) break;
|
||||
|
||||
@@ -581,10 +616,10 @@ async function calculateProductMetrics(startTime, totalProducts, processedCount
|
||||
WHERE pm.pid = sales.pid
|
||||
`, [pidValues]);
|
||||
|
||||
abcProcessedCount += pids.rows.length;
|
||||
abcProcessedCount = pids.rows[pids.rows.length - 1].pid;
|
||||
|
||||
// Calculate progress proportionally to batch size
|
||||
processedCount = Math.floor(totalProducts * (0.60 + (abcProcessedCount / totalProducts) * 0.2));
|
||||
// Calculate progress proportionally to total products
|
||||
processedCount = Math.floor(totalProducts * (0.60 + (abcProcessedCount / maxProductId) * 0.2));
|
||||
|
||||
outputProgress({
|
||||
status: 'running',
|
||||
@@ -626,7 +661,16 @@ async function calculateProductMetrics(startTime, totalProducts, processedCount
|
||||
logError(error, 'Error calculating product metrics');
|
||||
throw error;
|
||||
} finally {
|
||||
// Always clean up temporary tables, even if an error occurred
|
||||
if (connection) {
|
||||
try {
|
||||
await connection.query('DROP TABLE IF EXISTS temp_sales_metrics');
|
||||
await connection.query('DROP TABLE IF EXISTS temp_purchase_metrics');
|
||||
} catch (err) {
|
||||
console.error('Error cleaning up temporary tables:', err);
|
||||
}
|
||||
|
||||
// Make sure to release the connection
|
||||
connection.release();
|
||||
}
|
||||
}
|
||||
|
||||
@@ -75,8 +75,8 @@ async function calculateTimeAggregates(startTime, totalProducts, processedCount
|
||||
WITH monthly_sales AS (
|
||||
SELECT
|
||||
o.pid,
|
||||
EXTRACT(YEAR FROM o.date) as year,
|
||||
EXTRACT(MONTH FROM o.date) as month,
|
||||
EXTRACT(YEAR FROM o.date::timestamp with time zone) as year,
|
||||
EXTRACT(MONTH FROM o.date::timestamp with time zone) as month,
|
||||
SUM(o.quantity) as total_quantity_sold,
|
||||
SUM((o.price - COALESCE(o.discount, 0)) * o.quantity) as total_revenue,
|
||||
SUM(COALESCE(p.cost_price, 0) * o.quantity) as total_cost,
|
||||
@@ -93,17 +93,17 @@ async function calculateTimeAggregates(startTime, totalProducts, processedCount
|
||||
FROM orders o
|
||||
JOIN products p ON o.pid = p.pid
|
||||
WHERE o.canceled = false
|
||||
GROUP BY o.pid, EXTRACT(YEAR FROM o.date), EXTRACT(MONTH FROM o.date), p.cost_price, p.stock_quantity
|
||||
GROUP BY o.pid, EXTRACT(YEAR FROM o.date::timestamp with time zone), EXTRACT(MONTH FROM o.date::timestamp with time zone), p.cost_price, p.stock_quantity
|
||||
),
|
||||
monthly_stock AS (
|
||||
SELECT
|
||||
pid,
|
||||
EXTRACT(YEAR FROM date) as year,
|
||||
EXTRACT(MONTH FROM date) as month,
|
||||
EXTRACT(YEAR FROM date::timestamp with time zone) as year,
|
||||
EXTRACT(MONTH FROM date::timestamp with time zone) as month,
|
||||
SUM(received) as stock_received,
|
||||
SUM(ordered) as stock_ordered
|
||||
FROM purchase_orders
|
||||
GROUP BY pid, EXTRACT(YEAR FROM date), EXTRACT(MONTH FROM date)
|
||||
GROUP BY pid, EXTRACT(YEAR FROM date::timestamp with time zone), EXTRACT(MONTH FROM date::timestamp with time zone)
|
||||
),
|
||||
base_products AS (
|
||||
SELECT
|
||||
@@ -242,15 +242,15 @@ async function calculateTimeAggregates(startTime, totalProducts, processedCount
|
||||
FROM (
|
||||
SELECT
|
||||
p.pid,
|
||||
EXTRACT(YEAR FROM o.date) as year,
|
||||
EXTRACT(MONTH FROM o.date) as month,
|
||||
EXTRACT(YEAR FROM o.date::timestamp with time zone) as year,
|
||||
EXTRACT(MONTH FROM o.date::timestamp with time zone) as month,
|
||||
p.cost_price * p.stock_quantity as inventory_value,
|
||||
SUM(o.quantity * (o.price - p.cost_price)) as gross_profit,
|
||||
COUNT(DISTINCT DATE(o.date)) as active_days
|
||||
FROM products p
|
||||
LEFT JOIN orders o ON p.pid = o.pid
|
||||
WHERE o.canceled = false
|
||||
GROUP BY p.pid, EXTRACT(YEAR FROM o.date), EXTRACT(MONTH FROM o.date), p.cost_price, p.stock_quantity
|
||||
GROUP BY p.pid, EXTRACT(YEAR FROM o.date::timestamp with time zone), EXTRACT(MONTH FROM o.date::timestamp with time zone), p.cost_price, p.stock_quantity
|
||||
) fin
|
||||
WHERE pta.pid = fin.pid
|
||||
AND pta.year = fin.year
|
||||
|
||||
@@ -141,7 +141,7 @@ async function calculateVendorMetrics(startTime, totalProducts, processedCount =
|
||||
WHEN po.receiving_status = 40
|
||||
AND po.received_date IS NOT NULL
|
||||
AND po.date IS NOT NULL
|
||||
THEN EXTRACT(EPOCH FROM (po.received_date - po.date)) / 86400.0
|
||||
THEN EXTRACT(EPOCH FROM (po.received_date::timestamp with time zone - po.date::timestamp with time zone)) / 86400.0
|
||||
ELSE NULL
|
||||
END) as avg_lead_time_days,
|
||||
SUM(po.ordered * po.po_cost_price) as total_purchase_value
|
||||
@@ -249,8 +249,8 @@ async function calculateVendorMetrics(startTime, totalProducts, processedCount =
|
||||
WITH monthly_orders AS (
|
||||
SELECT
|
||||
p.vendor,
|
||||
EXTRACT(YEAR FROM o.date) as year,
|
||||
EXTRACT(MONTH FROM o.date) as month,
|
||||
EXTRACT(YEAR FROM o.date::timestamp with time zone) as year,
|
||||
EXTRACT(MONTH FROM o.date::timestamp with time zone) as month,
|
||||
COUNT(DISTINCT o.id) as total_orders,
|
||||
SUM(o.quantity * o.price) as total_revenue,
|
||||
SUM(o.quantity * (o.price - p.cost_price)) as total_margin
|
||||
@@ -259,13 +259,13 @@ async function calculateVendorMetrics(startTime, totalProducts, processedCount =
|
||||
WHERE o.canceled = false
|
||||
AND o.date >= CURRENT_DATE - INTERVAL '12 months'
|
||||
AND p.vendor IS NOT NULL
|
||||
GROUP BY p.vendor, EXTRACT(YEAR FROM o.date), EXTRACT(MONTH FROM o.date)
|
||||
GROUP BY p.vendor, EXTRACT(YEAR FROM o.date::timestamp with time zone), EXTRACT(MONTH FROM o.date::timestamp with time zone)
|
||||
),
|
||||
monthly_po AS (
|
||||
SELECT
|
||||
p.vendor,
|
||||
EXTRACT(YEAR FROM po.date) as year,
|
||||
EXTRACT(MONTH FROM po.date) as month,
|
||||
EXTRACT(YEAR FROM po.date::timestamp with time zone) as year,
|
||||
EXTRACT(MONTH FROM po.date::timestamp with time zone) as month,
|
||||
COUNT(DISTINCT po.id) as total_po,
|
||||
COUNT(DISTINCT CASE
|
||||
WHEN po.receiving_status = 40 AND po.received_date > po.expected_date
|
||||
@@ -275,7 +275,7 @@ async function calculateVendorMetrics(startTime, totalProducts, processedCount =
|
||||
WHEN po.receiving_status = 40
|
||||
AND po.received_date IS NOT NULL
|
||||
AND po.date IS NOT NULL
|
||||
THEN EXTRACT(EPOCH FROM (po.received_date - po.date)) / 86400.0
|
||||
THEN EXTRACT(EPOCH FROM (po.received_date::timestamp with time zone - po.date::timestamp with time zone)) / 86400.0
|
||||
ELSE NULL
|
||||
END) as avg_lead_time_days,
|
||||
SUM(po.ordered * po.po_cost_price) as total_purchase_value
|
||||
@@ -283,7 +283,7 @@ async function calculateVendorMetrics(startTime, totalProducts, processedCount =
|
||||
JOIN purchase_orders po ON p.pid = po.pid
|
||||
WHERE po.date >= CURRENT_DATE - INTERVAL '12 months'
|
||||
AND p.vendor IS NOT NULL
|
||||
GROUP BY p.vendor, EXTRACT(YEAR FROM po.date), EXTRACT(MONTH FROM po.date)
|
||||
GROUP BY p.vendor, EXTRACT(YEAR FROM po.date::timestamp with time zone), EXTRACT(MONTH FROM po.date::timestamp with time zone)
|
||||
)
|
||||
SELECT
|
||||
mo.vendor,
|
||||
|
||||
Reference in New Issue
Block a user