Add new filter options and metrics to product filters and pages; enhance SQL schema for financial calculations
This commit is contained in:
@@ -66,8 +66,36 @@ async function calculateProductMetrics(startTime, totalProducts, processedCount
|
||||
WHERE category_id IS NULL AND vendor IS NULL
|
||||
LIMIT 1
|
||||
`);
|
||||
|
||||
// Check if threshold data was returned
|
||||
if (!thresholds.rows || thresholds.rows.length === 0) {
|
||||
console.warn('No default thresholds found in the database. Using explicit type casting in the query.');
|
||||
}
|
||||
|
||||
const defaultThresholds = thresholds.rows[0];
|
||||
|
||||
// Get financial calculation configuration parameters
|
||||
const financialConfig = await connection.query(`
|
||||
SELECT
|
||||
order_cost,
|
||||
holding_rate,
|
||||
service_level_z_score,
|
||||
min_reorder_qty,
|
||||
default_reorder_qty,
|
||||
default_safety_stock
|
||||
FROM financial_calc_config
|
||||
WHERE id = 1
|
||||
LIMIT 1
|
||||
`);
|
||||
const finConfig = financialConfig.rows[0] || {
|
||||
order_cost: 25.00,
|
||||
holding_rate: 0.25,
|
||||
service_level_z_score: 1.96,
|
||||
min_reorder_qty: 1,
|
||||
default_reorder_qty: 5,
|
||||
default_safety_stock: 5
|
||||
};
|
||||
|
||||
// Calculate base product metrics
|
||||
if (!SKIP_PRODUCT_BASE_METRICS) {
|
||||
outputProgress({
|
||||
@@ -109,6 +137,7 @@ async function calculateProductMetrics(startTime, totalProducts, processedCount
|
||||
avg_margin_percent DECIMAL(10,3),
|
||||
first_sale_date DATE,
|
||||
last_sale_date DATE,
|
||||
stddev_daily_sales DECIMAL(10,3),
|
||||
PRIMARY KEY (pid)
|
||||
)
|
||||
`);
|
||||
@@ -117,10 +146,11 @@ async function calculateProductMetrics(startTime, totalProducts, processedCount
|
||||
await connection.query(`
|
||||
CREATE TEMPORARY TABLE temp_purchase_metrics (
|
||||
pid BIGINT NOT NULL,
|
||||
avg_lead_time_days DOUBLE PRECISION,
|
||||
avg_lead_time_days DECIMAL(10,2),
|
||||
last_purchase_date DATE,
|
||||
first_received_date DATE,
|
||||
last_received_date DATE,
|
||||
stddev_lead_time_days DECIMAL(10,2),
|
||||
PRIMARY KEY (pid)
|
||||
)
|
||||
`);
|
||||
@@ -140,11 +170,22 @@ async function calculateProductMetrics(startTime, totalProducts, processedCount
|
||||
ELSE 0
|
||||
END as avg_margin_percent,
|
||||
MIN(o.date) as first_sale_date,
|
||||
MAX(o.date) as last_sale_date
|
||||
MAX(o.date) as last_sale_date,
|
||||
COALESCE(STDDEV_SAMP(daily_qty.quantity), 0) as stddev_daily_sales
|
||||
FROM products p
|
||||
LEFT JOIN orders o ON p.pid = o.pid
|
||||
AND o.canceled = false
|
||||
AND o.date >= CURRENT_DATE - INTERVAL '90 days'
|
||||
LEFT JOIN (
|
||||
SELECT
|
||||
pid,
|
||||
DATE(date) as sale_date,
|
||||
SUM(quantity) as quantity
|
||||
FROM orders
|
||||
WHERE canceled = false
|
||||
AND date >= CURRENT_DATE - INTERVAL '90 days'
|
||||
GROUP BY pid, DATE(date)
|
||||
) daily_qty ON p.pid = daily_qty.pid
|
||||
GROUP BY p.pid
|
||||
`);
|
||||
|
||||
@@ -163,7 +204,14 @@ async function calculateProductMetrics(startTime, totalProducts, processedCount
|
||||
) as avg_lead_time_days,
|
||||
MAX(po.date) as last_purchase_date,
|
||||
MIN(po.received_date) as first_received_date,
|
||||
MAX(po.received_date) as last_received_date
|
||||
MAX(po.received_date) as last_received_date,
|
||||
STDDEV_SAMP(
|
||||
CASE
|
||||
WHEN po.received_date IS NOT NULL AND po.date IS NOT NULL
|
||||
THEN EXTRACT(EPOCH FROM (po.received_date::timestamp with time zone - po.date::timestamp with time zone)) / 86400.0
|
||||
ELSE NULL
|
||||
END
|
||||
) as stddev_lead_time_days
|
||||
FROM products p
|
||||
LEFT JOIN purchase_orders po ON p.pid = po.pid
|
||||
AND po.received_date IS NOT NULL
|
||||
@@ -184,7 +232,8 @@ async function calculateProductMetrics(startTime, totalProducts, processedCount
|
||||
30.0 as avg_lead_time_days,
|
||||
NULL as last_purchase_date,
|
||||
NULL as first_received_date,
|
||||
NULL as last_received_date
|
||||
NULL as last_received_date,
|
||||
0.0 as stddev_lead_time_days
|
||||
FROM products p
|
||||
LEFT JOIN temp_purchase_metrics tpm ON p.pid = tpm.pid
|
||||
WHERE tpm.pid IS NULL
|
||||
@@ -208,6 +257,17 @@ async function calculateProductMetrics(startTime, totalProducts, processedCount
|
||||
if (batch.rows.length === 0) break;
|
||||
|
||||
// Process the entire batch in a single efficient query
|
||||
const lowStockThreshold = parseInt(defaultThresholds?.low_stock_threshold) || 5;
|
||||
const criticalDays = parseInt(defaultThresholds?.critical_days) || 7;
|
||||
const reorderDays = parseInt(defaultThresholds?.reorder_days) || 14;
|
||||
const overstockDays = parseInt(defaultThresholds?.overstock_days) || 90;
|
||||
const serviceLevel = parseFloat(finConfig?.service_level_z_score) || 1.96;
|
||||
const defaultSafetyStock = parseInt(finConfig?.default_safety_stock) || 5;
|
||||
const defaultReorderQty = parseInt(finConfig?.default_reorder_qty) || 5;
|
||||
const orderCost = parseFloat(finConfig?.order_cost) || 25.00;
|
||||
const holdingRate = parseFloat(finConfig?.holding_rate) || 0.25;
|
||||
const minReorderQty = parseInt(finConfig?.min_reorder_qty) || 1;
|
||||
|
||||
await connection.query(`
|
||||
UPDATE product_metrics pm
|
||||
SET
|
||||
@@ -219,7 +279,7 @@ async function calculateProductMetrics(startTime, totalProducts, processedCount
|
||||
avg_margin_percent = COALESCE(sm.avg_margin_percent, 0),
|
||||
first_sale_date = sm.first_sale_date,
|
||||
last_sale_date = sm.last_sale_date,
|
||||
avg_lead_time_days = COALESCE(lm.avg_lead_time_days, 30),
|
||||
avg_lead_time_days = COALESCE(lm.avg_lead_time_days, 30.0),
|
||||
days_of_inventory = CASE
|
||||
WHEN COALESCE(sm.daily_sales_avg, 0) > 0
|
||||
THEN FLOOR(p.stock_quantity / NULLIF(sm.daily_sales_avg, 0))
|
||||
@@ -232,57 +292,61 @@ async function calculateProductMetrics(startTime, totalProducts, processedCount
|
||||
END,
|
||||
stock_status = CASE
|
||||
WHEN p.stock_quantity <= 0 THEN 'Out of Stock'
|
||||
WHEN COALESCE(sm.daily_sales_avg, 0) = 0 AND p.stock_quantity <= $1 THEN 'Low Stock'
|
||||
WHEN COALESCE(sm.daily_sales_avg, 0) = 0 AND p.stock_quantity <= ${lowStockThreshold} THEN 'Low Stock'
|
||||
WHEN COALESCE(sm.daily_sales_avg, 0) = 0 THEN 'In Stock'
|
||||
WHEN p.stock_quantity / NULLIF(sm.daily_sales_avg, 0) <= $2 THEN 'Critical'
|
||||
WHEN p.stock_quantity / NULLIF(sm.daily_sales_avg, 0) <= $3 THEN 'Reorder'
|
||||
WHEN p.stock_quantity / NULLIF(sm.daily_sales_avg, 0) > $4 THEN 'Overstocked'
|
||||
WHEN p.stock_quantity / NULLIF(sm.daily_sales_avg, 0) <= ${criticalDays} THEN 'Critical'
|
||||
WHEN p.stock_quantity / NULLIF(sm.daily_sales_avg, 0) <= ${reorderDays} THEN 'Reorder'
|
||||
WHEN p.stock_quantity / NULLIF(sm.daily_sales_avg, 0) > ${overstockDays} THEN 'Overstocked'
|
||||
ELSE 'Healthy'
|
||||
END,
|
||||
safety_stock = CASE
|
||||
WHEN COALESCE(sm.daily_sales_avg, 0) > 0 THEN
|
||||
CEIL(sm.daily_sales_avg * SQRT(ABS(COALESCE(lm.avg_lead_time_days, 30))) * 1.96)
|
||||
ELSE $5
|
||||
WHEN COALESCE(sm.daily_sales_avg, 0) > 0 AND COALESCE(lm.avg_lead_time_days, 0) > 0 THEN
|
||||
CEIL(
|
||||
${serviceLevel} * SQRT(
|
||||
GREATEST(0, COALESCE(lm.avg_lead_time_days, 0)) * POWER(COALESCE(sm.stddev_daily_sales, 0), 2) +
|
||||
POWER(COALESCE(sm.daily_sales_avg, 0), 2) * POWER(COALESCE(lm.stddev_lead_time_days, 0), 2)
|
||||
)
|
||||
)
|
||||
ELSE ${defaultSafetyStock}
|
||||
END,
|
||||
reorder_point = CASE
|
||||
WHEN COALESCE(sm.daily_sales_avg, 0) > 0 THEN
|
||||
CEIL(sm.daily_sales_avg * COALESCE(lm.avg_lead_time_days, 30)) +
|
||||
CEIL(sm.daily_sales_avg * SQRT(ABS(COALESCE(lm.avg_lead_time_days, 30))) * 1.96)
|
||||
ELSE $6
|
||||
CEIL(sm.daily_sales_avg * GREATEST(0, COALESCE(lm.avg_lead_time_days, 30.0))) +
|
||||
(CASE
|
||||
WHEN COALESCE(sm.daily_sales_avg, 0) > 0 AND COALESCE(lm.avg_lead_time_days, 0) > 0 THEN
|
||||
CEIL(
|
||||
${serviceLevel} * SQRT(
|
||||
GREATEST(0, COALESCE(lm.avg_lead_time_days, 0)) * POWER(COALESCE(sm.stddev_daily_sales, 0), 2) +
|
||||
POWER(COALESCE(sm.daily_sales_avg, 0), 2) * POWER(COALESCE(lm.stddev_lead_time_days, 0), 2)
|
||||
)
|
||||
)
|
||||
ELSE ${defaultSafetyStock}
|
||||
END)
|
||||
ELSE ${lowStockThreshold}
|
||||
END,
|
||||
reorder_qty = CASE
|
||||
WHEN COALESCE(sm.daily_sales_avg, 0) > 0 AND NULLIF(p.cost_price, 0) IS NOT NULL AND NULLIF(p.cost_price, 0) > 0 THEN
|
||||
GREATEST(
|
||||
CEIL(SQRT(ABS((2 * (sm.daily_sales_avg * 365) * 25) / (NULLIF(p.cost_price, 0) * 0.25)))),
|
||||
$7
|
||||
CEIL(SQRT(
|
||||
(2 * (sm.daily_sales_avg * 365) * ${orderCost}) /
|
||||
NULLIF(p.cost_price * ${holdingRate}, 0)
|
||||
)),
|
||||
${minReorderQty}
|
||||
)
|
||||
ELSE $8
|
||||
ELSE ${defaultReorderQty}
|
||||
END,
|
||||
overstocked_amt = CASE
|
||||
WHEN p.stock_quantity / NULLIF(sm.daily_sales_avg, 0) > $9
|
||||
THEN GREATEST(0, p.stock_quantity - CEIL(sm.daily_sales_avg * $10))
|
||||
WHEN p.stock_quantity / NULLIF(sm.daily_sales_avg, 0) > ${overstockDays}
|
||||
THEN GREATEST(0, p.stock_quantity - CEIL(sm.daily_sales_avg * ${overstockDays}))
|
||||
ELSE 0
|
||||
END,
|
||||
last_calculated_at = NOW()
|
||||
FROM products p
|
||||
LEFT JOIN temp_sales_metrics sm ON p.pid = sm.pid
|
||||
LEFT JOIN temp_purchase_metrics lm ON p.pid = lm.pid
|
||||
WHERE p.pid = ANY($11::bigint[])
|
||||
WHERE p.pid = ANY($1::BIGINT[])
|
||||
AND pm.pid = p.pid
|
||||
`,
|
||||
[
|
||||
defaultThresholds.low_stock_threshold,
|
||||
defaultThresholds.critical_days,
|
||||
defaultThresholds.reorder_days,
|
||||
defaultThresholds.overstock_days,
|
||||
defaultThresholds.low_stock_threshold,
|
||||
defaultThresholds.low_stock_threshold,
|
||||
defaultThresholds.low_stock_threshold,
|
||||
defaultThresholds.low_stock_threshold,
|
||||
defaultThresholds.overstock_days,
|
||||
defaultThresholds.overstock_days,
|
||||
batch.rows.map(row => row.pid)
|
||||
]);
|
||||
`, [batch.rows.map(row => row.pid)]);
|
||||
|
||||
lastPid = batch.rows[batch.rows.length - 1].pid;
|
||||
processedCount += batch.rows.length;
|
||||
@@ -311,25 +375,22 @@ async function calculateProductMetrics(startTime, totalProducts, processedCount
|
||||
}
|
||||
|
||||
// Calculate forecast accuracy and bias in batches
|
||||
lastPid = 0;
|
||||
let forecastPid = 0;
|
||||
while (true) {
|
||||
if (isCancelled) break;
|
||||
|
||||
const batch = await connection.query(
|
||||
const forecastBatch = await connection.query(
|
||||
'SELECT pid FROM products WHERE pid > $1 ORDER BY pid LIMIT $2',
|
||||
[lastPid, BATCH_SIZE]
|
||||
[forecastPid, BATCH_SIZE]
|
||||
);
|
||||
|
||||
if (batch.rows.length === 0) break;
|
||||
if (forecastBatch.rows.length === 0) break;
|
||||
|
||||
const forecastPidArray = forecastBatch.rows.map(row => row.pid);
|
||||
|
||||
// Use array_to_string to convert the array to a string of comma-separated values
|
||||
await connection.query(`
|
||||
UPDATE product_metrics pm
|
||||
SET
|
||||
forecast_accuracy = GREATEST(0, 100 - LEAST(fa.avg_forecast_error, 100)),
|
||||
forecast_bias = GREATEST(-100, LEAST(fa.avg_forecast_bias, 100)),
|
||||
last_forecast_date = fa.last_forecast_date,
|
||||
last_calculated_at = NOW()
|
||||
FROM (
|
||||
WITH forecast_metrics AS (
|
||||
SELECT
|
||||
sf.pid,
|
||||
AVG(CASE
|
||||
@@ -348,13 +409,20 @@ async function calculateProductMetrics(startTime, totalProducts, processedCount
|
||||
AND DATE(o.date) = sf.forecast_date
|
||||
WHERE o.canceled = false
|
||||
AND sf.forecast_date >= CURRENT_DATE - INTERVAL '90 days'
|
||||
AND sf.pid = ANY($1::bigint[])
|
||||
AND sf.pid = ANY('{${forecastPidArray.join(',')}}'::BIGINT[])
|
||||
GROUP BY sf.pid
|
||||
) fa
|
||||
WHERE pm.pid = fa.pid
|
||||
`, [batch.rows.map(row => row.pid)]);
|
||||
)
|
||||
UPDATE product_metrics pm
|
||||
SET
|
||||
forecast_accuracy = GREATEST(0, 100 - LEAST(fm.avg_forecast_error, 100)),
|
||||
forecast_bias = GREATEST(-100, LEAST(fm.avg_forecast_bias, 100)),
|
||||
last_forecast_date = fm.last_forecast_date,
|
||||
last_calculated_at = NOW()
|
||||
FROM forecast_metrics fm
|
||||
WHERE pm.pid = fm.pid
|
||||
`);
|
||||
|
||||
lastPid = batch.rows[batch.rows.length - 1].pid;
|
||||
forecastPid = forecastBatch.rows[forecastBatch.rows.length - 1].pid;
|
||||
}
|
||||
|
||||
// Calculate product time aggregates
|
||||
@@ -375,61 +443,12 @@ async function calculateProductMetrics(startTime, totalProducts, processedCount
|
||||
}
|
||||
});
|
||||
|
||||
// Calculate time-based aggregates
|
||||
await connection.query(`
|
||||
INSERT INTO product_time_aggregates (
|
||||
pid,
|
||||
year,
|
||||
month,
|
||||
total_quantity_sold,
|
||||
total_revenue,
|
||||
total_cost,
|
||||
order_count,
|
||||
avg_price,
|
||||
profit_margin,
|
||||
inventory_value,
|
||||
gmroi
|
||||
)
|
||||
SELECT
|
||||
p.pid,
|
||||
EXTRACT(YEAR FROM o.date::timestamp with time zone) as year,
|
||||
EXTRACT(MONTH FROM o.date::timestamp with time zone) as month,
|
||||
SUM(o.quantity) as total_quantity_sold,
|
||||
SUM(o.price * o.quantity) as total_revenue,
|
||||
SUM(p.cost_price * o.quantity) as total_cost,
|
||||
COUNT(DISTINCT o.order_number) as order_count,
|
||||
AVG(o.price) as avg_price,
|
||||
CASE
|
||||
WHEN SUM(o.quantity * o.price) > 0
|
||||
THEN ((SUM(o.quantity * o.price) - SUM(o.quantity * p.cost_price)) / SUM(o.quantity * o.price)) * 100
|
||||
ELSE 0
|
||||
END as profit_margin,
|
||||
p.cost_price * p.stock_quantity as inventory_value,
|
||||
CASE
|
||||
WHEN p.cost_price * p.stock_quantity > 0
|
||||
THEN (SUM(o.quantity * (o.price - p.cost_price))) / (p.cost_price * p.stock_quantity)
|
||||
ELSE 0
|
||||
END as gmroi
|
||||
FROM products p
|
||||
LEFT JOIN orders o ON p.pid = o.pid AND o.canceled = false
|
||||
WHERE o.date >= CURRENT_DATE - INTERVAL '12 months'
|
||||
GROUP BY p.pid, EXTRACT(YEAR FROM o.date::timestamp with time zone), EXTRACT(MONTH FROM o.date::timestamp with time zone)
|
||||
ON CONFLICT (pid, year, month) DO UPDATE
|
||||
SET
|
||||
total_quantity_sold = EXCLUDED.total_quantity_sold,
|
||||
total_revenue = EXCLUDED.total_revenue,
|
||||
total_cost = EXCLUDED.total_cost,
|
||||
order_count = EXCLUDED.order_count,
|
||||
avg_price = EXCLUDED.avg_price,
|
||||
profit_margin = EXCLUDED.profit_margin,
|
||||
inventory_value = EXCLUDED.inventory_value,
|
||||
gmroi = EXCLUDED.gmroi
|
||||
`);
|
||||
|
||||
// Note: The time-aggregates calculation has been moved to time-aggregates.js
|
||||
// This module will not duplicate that functionality
|
||||
processedCount = Math.floor(totalProducts * 0.6);
|
||||
outputProgress({
|
||||
status: 'running',
|
||||
operation: 'Product time aggregates calculated',
|
||||
operation: 'Product time aggregates calculation delegated to time-aggregates module',
|
||||
current: processedCount || 0,
|
||||
total: totalProducts || 0,
|
||||
elapsed: formatElapsedTime(startTime),
|
||||
@@ -487,6 +506,10 @@ async function calculateProductMetrics(startTime, totalProducts, processedCount
|
||||
|
||||
const abcConfig = await connection.query('SELECT a_threshold, b_threshold FROM abc_classification_config WHERE id = 1');
|
||||
const abcThresholds = abcConfig.rows[0] || { a_threshold: 20, b_threshold: 50 };
|
||||
|
||||
// Extract values and ensure they are valid numbers
|
||||
const aThreshold = parseFloat(abcThresholds.a_threshold) || 20;
|
||||
const bThreshold = parseFloat(abcThresholds.b_threshold) || 50;
|
||||
|
||||
// First, create and populate the rankings table with an index
|
||||
await connection.query('DROP TABLE IF EXISTS temp_revenue_ranks');
|
||||
@@ -557,13 +580,13 @@ async function calculateProductMetrics(startTime, totalProducts, processedCount
|
||||
OR pm.abc_class !=
|
||||
CASE
|
||||
WHEN tr.pid IS NULL THEN 'C'
|
||||
WHEN tr.percentile <= $2 THEN 'A'
|
||||
WHEN tr.percentile <= $3 THEN 'B'
|
||||
WHEN tr.percentile <= ${aThreshold} THEN 'A'
|
||||
WHEN tr.percentile <= ${bThreshold} THEN 'B'
|
||||
ELSE 'C'
|
||||
END)
|
||||
ORDER BY pm.pid
|
||||
LIMIT $4
|
||||
`, [abcProcessedCount, abcThresholds.a_threshold, abcThresholds.b_threshold, batchSize]);
|
||||
LIMIT $2
|
||||
`, [abcProcessedCount, batchSize]);
|
||||
|
||||
if (pids.rows.length === 0) break;
|
||||
|
||||
@@ -574,15 +597,15 @@ async function calculateProductMetrics(startTime, totalProducts, processedCount
|
||||
SET abc_class =
|
||||
CASE
|
||||
WHEN tr.pid IS NULL THEN 'C'
|
||||
WHEN tr.percentile <= $1 THEN 'A'
|
||||
WHEN tr.percentile <= $2 THEN 'B'
|
||||
WHEN tr.percentile <= ${aThreshold} THEN 'A'
|
||||
WHEN tr.percentile <= ${bThreshold} THEN 'B'
|
||||
ELSE 'C'
|
||||
END,
|
||||
last_calculated_at = NOW()
|
||||
FROM (SELECT pid, percentile FROM temp_revenue_ranks) tr
|
||||
WHERE pm.pid = tr.pid AND pm.pid = ANY($3::bigint[])
|
||||
OR (pm.pid = ANY($3::bigint[]) AND tr.pid IS NULL)
|
||||
`, [abcThresholds.a_threshold, abcThresholds.b_threshold, pidValues]);
|
||||
WHERE pm.pid = tr.pid AND pm.pid = ANY($1::BIGINT[])
|
||||
OR (pm.pid = ANY($1::BIGINT[]) AND tr.pid IS NULL)
|
||||
`, [pidValues]);
|
||||
|
||||
// Now update turnover rate with proper handling of zero inventory periods
|
||||
await connection.query(`
|
||||
@@ -610,7 +633,7 @@ async function calculateProductMetrics(startTime, totalProducts, processedCount
|
||||
JOIN products p ON o.pid = p.pid
|
||||
WHERE o.canceled = false
|
||||
AND o.date >= CURRENT_DATE - INTERVAL '90 days'
|
||||
AND o.pid = ANY($1::bigint[])
|
||||
AND o.pid = ANY($1::BIGINT[])
|
||||
GROUP BY o.pid
|
||||
) sales
|
||||
WHERE pm.pid = sales.pid
|
||||
@@ -707,40 +730,7 @@ function calculateStockStatus(stock, config, daily_sales_avg, weekly_sales_avg,
|
||||
return 'Healthy';
|
||||
}
|
||||
|
||||
function calculateReorderQuantities(stock, stock_status, daily_sales_avg, avg_lead_time, config) {
|
||||
// Calculate safety stock based on service level and lead time
|
||||
const z_score = 1.96; // 95% service level
|
||||
const lead_time = avg_lead_time || config.target_days;
|
||||
const safety_stock = Math.ceil(daily_sales_avg * Math.sqrt(lead_time) * z_score);
|
||||
|
||||
// Calculate reorder point
|
||||
const lead_time_demand = daily_sales_avg * lead_time;
|
||||
const reorder_point = Math.ceil(lead_time_demand + safety_stock);
|
||||
|
||||
// Calculate reorder quantity using EOQ formula if we have the necessary data
|
||||
let reorder_qty = 0;
|
||||
if (daily_sales_avg > 0) {
|
||||
const annual_demand = daily_sales_avg * 365;
|
||||
const order_cost = 25; // Fixed cost per order
|
||||
const holding_cost = config.cost_price * 0.25; // 25% of unit cost as annual holding cost
|
||||
|
||||
reorder_qty = Math.ceil(Math.sqrt((2 * annual_demand * order_cost) / holding_cost));
|
||||
} else {
|
||||
// If no sales data, use a basic calculation
|
||||
reorder_qty = Math.max(safety_stock, config.low_stock_threshold);
|
||||
}
|
||||
|
||||
// Calculate overstocked amount
|
||||
const overstocked_amt = stock_status === 'Overstocked' ?
|
||||
stock - Math.ceil(daily_sales_avg * config.overstock_days) :
|
||||
0;
|
||||
|
||||
return {
|
||||
safety_stock,
|
||||
reorder_point,
|
||||
reorder_qty,
|
||||
overstocked_amt
|
||||
};
|
||||
}
|
||||
// Note: calculateReorderQuantities function has been removed as its logic has been incorporated
|
||||
// in the main SQL query with configurable parameters
|
||||
|
||||
module.exports = calculateProductMetrics;
|
||||
Reference in New Issue
Block a user