Flatten calculate file structure a bit
This commit is contained in:
231
inventory-server/scripts/metrics/sales-forecasts.js
Normal file
231
inventory-server/scripts/metrics/sales-forecasts.js
Normal file
@@ -0,0 +1,231 @@
|
||||
const { outputProgress } = require('../utils/progress');
|
||||
const { getConnection } = require('../utils/db');
|
||||
|
||||
async function calculateSalesForecasts(startTime, totalProducts, processedCount) {
|
||||
const connection = await getConnection();
|
||||
try {
|
||||
outputProgress({
|
||||
status: 'running',
|
||||
operation: 'Calculating sales forecasts',
|
||||
current: Math.floor(totalProducts * 0.98),
|
||||
total: totalProducts,
|
||||
elapsed: formatElapsedTime(startTime),
|
||||
remaining: estimateRemaining(startTime, Math.floor(totalProducts * 0.98), totalProducts),
|
||||
rate: calculateRate(startTime, Math.floor(totalProducts * 0.98)),
|
||||
percentage: '98'
|
||||
});
|
||||
|
||||
// Calculate product-level forecasts
|
||||
await connection.query(`
|
||||
INSERT INTO sales_forecasts (
|
||||
product_id,
|
||||
forecast_date,
|
||||
forecast_units,
|
||||
forecast_revenue,
|
||||
confidence_level,
|
||||
last_calculated_at
|
||||
)
|
||||
WITH daily_sales AS (
|
||||
SELECT
|
||||
o.product_id,
|
||||
DATE(o.date) as sale_date,
|
||||
SUM(o.quantity) as daily_quantity,
|
||||
SUM(o.price * o.quantity) as daily_revenue
|
||||
FROM orders o
|
||||
WHERE o.canceled = false
|
||||
AND o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 90 DAY)
|
||||
GROUP BY o.product_id, DATE(o.date)
|
||||
),
|
||||
forecast_dates AS (
|
||||
SELECT
|
||||
DATE_ADD(CURRENT_DATE, INTERVAL n DAY) as forecast_date
|
||||
FROM (
|
||||
SELECT 0 as n UNION SELECT 1 UNION SELECT 2 UNION SELECT 3 UNION SELECT 4 UNION
|
||||
SELECT 5 UNION SELECT 6 UNION SELECT 7 UNION SELECT 8 UNION SELECT 9 UNION
|
||||
SELECT 10 UNION SELECT 11 UNION SELECT 12 UNION SELECT 13 UNION SELECT 14 UNION
|
||||
SELECT 15 UNION SELECT 16 UNION SELECT 17 UNION SELECT 18 UNION SELECT 19 UNION
|
||||
SELECT 20 UNION SELECT 21 UNION SELECT 22 UNION SELECT 23 UNION SELECT 24 UNION
|
||||
SELECT 25 UNION SELECT 26 UNION SELECT 27 UNION SELECT 28 UNION SELECT 29 UNION
|
||||
SELECT 30
|
||||
) numbers
|
||||
),
|
||||
product_stats AS (
|
||||
SELECT
|
||||
ds.product_id,
|
||||
AVG(ds.daily_quantity) as avg_daily_quantity,
|
||||
STDDEV_SAMP(ds.daily_quantity) as std_daily_quantity,
|
||||
AVG(ds.daily_revenue) as avg_daily_revenue,
|
||||
STDDEV_SAMP(ds.daily_revenue) as std_daily_revenue,
|
||||
COUNT(*) as data_points,
|
||||
-- Calculate day-of-week averages
|
||||
AVG(CASE WHEN DAYOFWEEK(ds.sale_date) = 1 THEN ds.daily_revenue END) as sunday_avg,
|
||||
AVG(CASE WHEN DAYOFWEEK(ds.sale_date) = 2 THEN ds.daily_revenue END) as monday_avg,
|
||||
AVG(CASE WHEN DAYOFWEEK(ds.sale_date) = 3 THEN ds.daily_revenue END) as tuesday_avg,
|
||||
AVG(CASE WHEN DAYOFWEEK(ds.sale_date) = 4 THEN ds.daily_revenue END) as wednesday_avg,
|
||||
AVG(CASE WHEN DAYOFWEEK(ds.sale_date) = 5 THEN ds.daily_revenue END) as thursday_avg,
|
||||
AVG(CASE WHEN DAYOFWEEK(ds.sale_date) = 6 THEN ds.daily_revenue END) as friday_avg,
|
||||
AVG(CASE WHEN DAYOFWEEK(ds.sale_date) = 7 THEN ds.daily_revenue END) as saturday_avg
|
||||
FROM daily_sales ds
|
||||
GROUP BY ds.product_id
|
||||
)
|
||||
SELECT
|
||||
ps.product_id,
|
||||
fd.forecast_date,
|
||||
GREATEST(0,
|
||||
ps.avg_daily_quantity *
|
||||
(1 + COALESCE(
|
||||
(SELECT seasonality_factor
|
||||
FROM sales_seasonality
|
||||
WHERE MONTH(fd.forecast_date) = month
|
||||
LIMIT 1),
|
||||
0
|
||||
))
|
||||
) as forecast_units,
|
||||
GREATEST(0,
|
||||
CASE DAYOFWEEK(fd.forecast_date)
|
||||
WHEN 1 THEN COALESCE(ps.sunday_avg, ps.avg_daily_revenue)
|
||||
WHEN 2 THEN COALESCE(ps.monday_avg, ps.avg_daily_revenue)
|
||||
WHEN 3 THEN COALESCE(ps.tuesday_avg, ps.avg_daily_revenue)
|
||||
WHEN 4 THEN COALESCE(ps.wednesday_avg, ps.avg_daily_revenue)
|
||||
WHEN 5 THEN COALESCE(ps.thursday_avg, ps.avg_daily_revenue)
|
||||
WHEN 6 THEN COALESCE(ps.friday_avg, ps.avg_daily_revenue)
|
||||
WHEN 7 THEN COALESCE(ps.saturday_avg, ps.avg_daily_revenue)
|
||||
END *
|
||||
(1 + COALESCE(
|
||||
(SELECT seasonality_factor
|
||||
FROM sales_seasonality
|
||||
WHERE MONTH(fd.forecast_date) = month
|
||||
LIMIT 1),
|
||||
0
|
||||
)) *
|
||||
-- Add some randomness within a small range (±5%)
|
||||
(0.95 + (RAND() * 0.1))
|
||||
) as forecast_revenue,
|
||||
CASE
|
||||
WHEN ps.data_points >= 60 THEN 90
|
||||
WHEN ps.data_points >= 30 THEN 80
|
||||
WHEN ps.data_points >= 14 THEN 70
|
||||
ELSE 60
|
||||
END as confidence_level,
|
||||
NOW() as last_calculated_at
|
||||
FROM product_stats ps
|
||||
CROSS JOIN forecast_dates fd
|
||||
WHERE ps.avg_daily_quantity > 0
|
||||
ON DUPLICATE KEY UPDATE
|
||||
forecast_units = VALUES(forecast_units),
|
||||
forecast_revenue = VALUES(forecast_revenue),
|
||||
confidence_level = VALUES(confidence_level),
|
||||
last_calculated_at = NOW()
|
||||
`);
|
||||
|
||||
// Calculate category-level forecasts
|
||||
await connection.query(`
|
||||
INSERT INTO category_forecasts (
|
||||
category_id,
|
||||
forecast_date,
|
||||
forecast_units,
|
||||
forecast_revenue,
|
||||
confidence_level,
|
||||
last_calculated_at
|
||||
)
|
||||
WITH category_daily_sales AS (
|
||||
SELECT
|
||||
pc.category_id,
|
||||
DATE(o.date) as sale_date,
|
||||
SUM(o.quantity) as daily_quantity,
|
||||
SUM(o.price * o.quantity) as daily_revenue
|
||||
FROM orders o
|
||||
JOIN product_categories pc ON o.product_id = pc.product_id
|
||||
WHERE o.canceled = false
|
||||
AND o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 90 DAY)
|
||||
GROUP BY pc.category_id, DATE(o.date)
|
||||
),
|
||||
forecast_dates AS (
|
||||
SELECT
|
||||
DATE_ADD(CURRENT_DATE, INTERVAL n DAY) as forecast_date
|
||||
FROM (
|
||||
SELECT 0 as n UNION SELECT 1 UNION SELECT 2 UNION SELECT 3 UNION SELECT 4 UNION
|
||||
SELECT 5 UNION SELECT 6 UNION SELECT 7 UNION SELECT 8 UNION SELECT 9 UNION
|
||||
SELECT 10 UNION SELECT 11 UNION SELECT 12 UNION SELECT 13 UNION SELECT 14 UNION
|
||||
SELECT 15 UNION SELECT 16 UNION SELECT 17 UNION SELECT 18 UNION SELECT 19 UNION
|
||||
SELECT 20 UNION SELECT 21 UNION SELECT 22 UNION SELECT 23 UNION SELECT 24 UNION
|
||||
SELECT 25 UNION SELECT 26 UNION SELECT 27 UNION SELECT 28 UNION SELECT 29 UNION
|
||||
SELECT 30
|
||||
) numbers
|
||||
),
|
||||
category_stats AS (
|
||||
SELECT
|
||||
cds.category_id,
|
||||
AVG(cds.daily_quantity) as avg_daily_quantity,
|
||||
STDDEV_SAMP(cds.daily_quantity) as std_daily_quantity,
|
||||
AVG(cds.daily_revenue) as avg_daily_revenue,
|
||||
STDDEV_SAMP(cds.daily_revenue) as std_daily_revenue,
|
||||
COUNT(*) as data_points,
|
||||
-- Calculate day-of-week averages
|
||||
AVG(CASE WHEN DAYOFWEEK(cds.sale_date) = 1 THEN cds.daily_revenue END) as sunday_avg,
|
||||
AVG(CASE WHEN DAYOFWEEK(cds.sale_date) = 2 THEN cds.daily_revenue END) as monday_avg,
|
||||
AVG(CASE WHEN DAYOFWEEK(cds.sale_date) = 3 THEN cds.daily_revenue END) as tuesday_avg,
|
||||
AVG(CASE WHEN DAYOFWEEK(cds.sale_date) = 4 THEN cds.daily_revenue END) as wednesday_avg,
|
||||
AVG(CASE WHEN DAYOFWEEK(cds.sale_date) = 5 THEN cds.daily_revenue END) as thursday_avg,
|
||||
AVG(CASE WHEN DAYOFWEEK(cds.sale_date) = 6 THEN cds.daily_revenue END) as friday_avg,
|
||||
AVG(CASE WHEN DAYOFWEEK(cds.sale_date) = 7 THEN cds.daily_revenue END) as saturday_avg
|
||||
FROM category_daily_sales cds
|
||||
GROUP BY cds.category_id
|
||||
)
|
||||
SELECT
|
||||
cs.category_id,
|
||||
fd.forecast_date,
|
||||
GREATEST(0,
|
||||
cs.avg_daily_quantity *
|
||||
(1 + COALESCE(
|
||||
(SELECT seasonality_factor
|
||||
FROM sales_seasonality
|
||||
WHERE MONTH(fd.forecast_date) = month
|
||||
LIMIT 1),
|
||||
0
|
||||
))
|
||||
) as forecast_units,
|
||||
GREATEST(0,
|
||||
CASE DAYOFWEEK(fd.forecast_date)
|
||||
WHEN 1 THEN COALESCE(cs.sunday_avg, cs.avg_daily_revenue)
|
||||
WHEN 2 THEN COALESCE(cs.monday_avg, cs.avg_daily_revenue)
|
||||
WHEN 3 THEN COALESCE(cs.tuesday_avg, cs.avg_daily_revenue)
|
||||
WHEN 4 THEN COALESCE(cs.wednesday_avg, cs.avg_daily_revenue)
|
||||
WHEN 5 THEN COALESCE(cs.thursday_avg, cs.avg_daily_revenue)
|
||||
WHEN 6 THEN COALESCE(cs.friday_avg, cs.avg_daily_revenue)
|
||||
WHEN 7 THEN COALESCE(cs.saturday_avg, cs.avg_daily_revenue)
|
||||
END *
|
||||
(1 + COALESCE(
|
||||
(SELECT seasonality_factor
|
||||
FROM sales_seasonality
|
||||
WHERE MONTH(fd.forecast_date) = month
|
||||
LIMIT 1),
|
||||
0
|
||||
)) *
|
||||
-- Add some randomness within a small range (±5%)
|
||||
(0.95 + (RAND() * 0.1))
|
||||
) as forecast_revenue,
|
||||
CASE
|
||||
WHEN cs.data_points >= 60 THEN 90
|
||||
WHEN cs.data_points >= 30 THEN 80
|
||||
WHEN cs.data_points >= 14 THEN 70
|
||||
ELSE 60
|
||||
END as confidence_level,
|
||||
NOW() as last_calculated_at
|
||||
FROM category_stats cs
|
||||
CROSS JOIN forecast_dates fd
|
||||
WHERE cs.avg_daily_quantity > 0
|
||||
ON DUPLICATE KEY UPDATE
|
||||
forecast_units = VALUES(forecast_units),
|
||||
forecast_revenue = VALUES(forecast_revenue),
|
||||
confidence_level = VALUES(confidence_level),
|
||||
last_calculated_at = NOW()
|
||||
`);
|
||||
|
||||
return Math.floor(totalProducts * 1.0);
|
||||
} finally {
|
||||
connection.release();
|
||||
}
|
||||
}
|
||||
|
||||
module.exports = calculateSalesForecasts;
|
||||
Reference in New Issue
Block a user