Enhance metrics calculation scripts with improved progress tracking and cancellation support

This commit is contained in:
2025-01-28 20:54:05 -05:00
parent a1e3803ca3
commit 9c34e24909
12 changed files with 915 additions and 327 deletions

View File

@@ -1,18 +1,32 @@
const { outputProgress } = require('./utils/progress');
const { outputProgress, formatElapsedTime, estimateRemaining, calculateRate, logError } = require('./utils/progress');
const { getConnection } = require('./utils/db');
async function calculateCategoryMetrics(startTime, totalProducts, processedCount) {
async function calculateCategoryMetrics(startTime, totalProducts, processedCount, isCancelled = false) {
const connection = await getConnection();
try {
if (isCancelled) {
outputProgress({
status: 'cancelled',
operation: 'Category metrics calculation cancelled',
current: processedCount,
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: null,
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
});
return processedCount;
}
outputProgress({
status: 'running',
operation: 'Calculating category metrics',
current: Math.floor(totalProducts * 0.85),
operation: 'Starting category metrics calculation',
current: processedCount,
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, Math.floor(totalProducts * 0.85), totalProducts),
rate: calculateRate(startTime, Math.floor(totalProducts * 0.85)),
percentage: '85'
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
});
// First, calculate base category metrics
@@ -44,6 +58,20 @@ async function calculateCategoryMetrics(startTime, totalProducts, processedCount
last_calculated_at = VALUES(last_calculated_at)
`);
processedCount = Math.floor(totalProducts * 0.90);
outputProgress({
status: 'running',
operation: 'Base category metrics calculated, updating with margin data',
current: processedCount,
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
});
if (isCancelled) return processedCount;
// Then update with margin and turnover data
await connection.query(`
WITH category_sales AS (
@@ -68,6 +96,20 @@ async function calculateCategoryMetrics(startTime, totalProducts, processedCount
cm.last_calculated_at = NOW()
`);
processedCount = Math.floor(totalProducts * 0.95);
outputProgress({
status: 'running',
operation: 'Margin data updated, calculating growth rates',
current: processedCount,
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
});
if (isCancelled) return processedCount;
// Finally update growth rates
await connection.query(`
WITH current_period AS (
@@ -112,6 +154,20 @@ async function calculateCategoryMetrics(startTime, totalProducts, processedCount
WHERE cp.cat_id IS NOT NULL OR pp.cat_id IS NOT NULL
`);
processedCount = Math.floor(totalProducts * 0.97);
outputProgress({
status: 'running',
operation: 'Growth rates calculated, updating time-based metrics',
current: processedCount,
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
});
if (isCancelled) return processedCount;
// Calculate time-based metrics
await connection.query(`
INSERT INTO category_time_metrics (
@@ -157,49 +213,26 @@ async function calculateCategoryMetrics(startTime, totalProducts, processedCount
turnover_rate = VALUES(turnover_rate)
`);
// Calculate sales metrics for different time periods
const periods = [30, 90, 180, 365];
for (const days of periods) {
await connection.query(`
INSERT INTO category_sales_metrics (
category_id,
brand,
period_start,
period_end,
avg_daily_sales,
total_sold,
num_products,
avg_price,
last_calculated_at
)
SELECT
pc.cat_id as category_id,
COALESCE(p.brand, 'Unbranded') as brand,
DATE_SUB(CURDATE(), INTERVAL ? DAY) as period_start,
CURDATE() as period_end,
COALESCE(SUM(o.quantity), 0) / ? as avg_daily_sales,
COALESCE(SUM(o.quantity), 0) as total_sold,
COUNT(DISTINCT p.pid) as num_products,
COALESCE(AVG(o.price), 0) as avg_price,
NOW() as last_calculated_at
FROM product_categories pc
JOIN products p ON pc.pid = p.pid
LEFT JOIN orders o ON p.pid = o.pid
AND o.date >= DATE_SUB(CURDATE(), INTERVAL ? DAY)
AND o.canceled = false
GROUP BY pc.cat_id, p.brand
ON DUPLICATE KEY UPDATE
avg_daily_sales = VALUES(avg_daily_sales),
total_sold = VALUES(total_sold),
num_products = VALUES(num_products),
avg_price = VALUES(avg_price),
last_calculated_at = NOW()
`, [days, days, days]);
}
processedCount = Math.floor(totalProducts * 0.99);
outputProgress({
status: 'running',
operation: 'Time-based metrics calculated',
current: processedCount,
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
});
return Math.floor(totalProducts * 0.9);
return processedCount;
} catch (error) {
logError(error, 'Error calculating category metrics');
throw error;
} finally {
connection.release();
if (connection) {
connection.release();
}
}
}