More gemini suggested improvements for speed

This commit is contained in:
2025-02-10 16:16:01 -05:00
parent a9bccd4d01
commit f4f6215d03
3 changed files with 105 additions and 194 deletions

View File

@@ -446,98 +446,51 @@ async function calculateMetrics() {
FROM revenue_data
`);
// Get total count for percentage calculation (already done in the above query)
// No need for this separate query:
// const [rankingCount] = await connection.query('SELECT MAX(rank_num) as total_count FROM temp_revenue_ranks');
// const totalCount = rankingCount[0].total_count || 1;
// const max_rank = totalCount; // Store max_rank for use in classification
// Perform ABC classification in a single UPDATE statement. This is MUCH faster.
await connection.query(`
UPDATE product_metrics pm
LEFT JOIN temp_revenue_ranks tr ON pm.pid = tr.pid
SET pm.abc_class =
CASE
WHEN tr.pid IS NULL THEN 'C'
WHEN tr.percentile <= ? THEN 'A'
WHEN tr.percentile <= ? THEN 'B'
ELSE 'C'
END,
pm.last_calculated_at = NOW()
`, [abcThresholds.a_threshold, abcThresholds.b_threshold]);
// ABC classification progress tracking
// let abcProcessedCount = 0; // No longer needed - use processedProducts directly
const batchSize = 5000;
let lastProgressUpdate = Date.now();
const progressUpdateInterval = 1000; // Update every second
while (true) {
if (isCancelled) return {
processedProducts: Number(processedProducts) || 0,
processedOrders: Number(processedOrders) || 0,
processedPurchaseOrders: 0,
success: false
};
// Get a batch of PIDs that need updating - REFACTORED to use percentile
const [pids] = await connection.query(`
SELECT pm.pid
FROM product_metrics pm
LEFT JOIN temp_revenue_ranks tr ON pm.pid = tr.pid
WHERE pm.abc_class IS NULL
OR pm.abc_class !=
CASE
WHEN tr.pid IS NULL THEN 'C'
WHEN tr.percentile <= ? THEN 'A'
WHEN tr.percentile <= ? THEN 'B'
ELSE 'C'
END
LIMIT ?
`, [abcThresholds.a_threshold, abcThresholds.b_threshold, batchSize]);
if (pids.length === 0) {
break;
}
// Update just those PIDs - REFACTORED to use percentile
await connection.query(`
UPDATE product_metrics pm
LEFT JOIN temp_revenue_ranks tr ON pm.pid = tr.pid
SET pm.abc_class =
CASE
WHEN tr.pid IS NULL THEN 'C'
WHEN tr.percentile <= ? THEN 'A'
WHEN tr.percentile <= ? THEN 'B'
ELSE 'C'
END,
pm.last_calculated_at = NOW()
WHERE pm.pid IN (?)
`, [abcThresholds.a_threshold, abcThresholds.b_threshold, pids.map(row => row.pid)]);
// abcProcessedCount += pids.length; // No longer needed
processedProducts += pids.length; // Add to the main processedProducts
// Calculate progress ensuring valid numbers
const currentProgress = Math.floor(totalProducts * (0.99 + (processedProducts / (totalProducts || 1)) * 0.01));
processedProducts = Number(currentProgress) || processedProducts || 0;
// Only update progress at most once per second
const now = Date.now();
if (now - lastProgressUpdate >= progressUpdateInterval) {
const progress = ensureValidProgress(processedProducts, totalProducts);
global.outputProgress({
status: 'running',
operation: 'ABC classification progress',
current: progress.current,
total: progress.total,
elapsed: global.formatElapsedTime(startTime),
remaining: global.estimateRemaining(startTime, progress.current, progress.total),
rate: global.calculateRate(startTime, progress.current),
percentage: progress.percentage,
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
lastProgressUpdate = now;
}
// Update database progress
await updateProgress(processedProducts, processedOrders, processedPurchaseOrders);
// Small delay between batches to allow other transactions
await new Promise(resolve => setTimeout(resolve, 100));
}
//Now update turnover rate
await connection.query(`
UPDATE product_metrics pm
JOIN (
SELECT
o.pid,
SUM(o.quantity) as total_sold,
COUNT(DISTINCT DATE(o.date)) as active_days,
AVG(CASE
WHEN p.stock_quantity > 0 THEN p.stock_quantity
ELSE NULL
END) as avg_nonzero_stock
FROM orders o
JOIN products p ON o.pid = p.pid
WHERE o.canceled = false
AND o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 90 DAY)
GROUP BY o.pid
) sales ON pm.pid = sales.pid
SET
pm.turnover_rate = CASE
WHEN sales.avg_nonzero_stock > 0 AND sales.active_days > 0
THEN LEAST(
(sales.total_sold / sales.avg_nonzero_stock) * (365.0 / sales.active_days),
999.99
)
ELSE 0
END,
pm.last_calculated_at = NOW()
`);
processedProducts = totalProducts;
await updateProgress(processedProducts, processedOrders, processedPurchaseOrders);
// Clean up
await connection.query('DROP TEMPORARY TABLE IF EXISTS temp_revenue_ranks');

View File

@@ -219,6 +219,28 @@ async function calculateProductMetrics(startTime, totalProducts, processedCount
JOIN products p ON pm.pid = p.pid
LEFT JOIN temp_sales_metrics sm ON pm.pid = sm.pid
LEFT JOIN temp_purchase_metrics lm ON pm.pid = lm.pid
LEFT JOIN (
SELECT
sf.pid,
AVG(CASE
WHEN o.quantity > 0
THEN ABS(sf.forecast_units - o.quantity) / o.quantity * 100
ELSE 100
END) as avg_forecast_error,
AVG(CASE
WHEN o.quantity > 0
THEN (sf.forecast_units - o.quantity) / o.quantity * 100
ELSE 0
END) as avg_forecast_bias,
MAX(sf.forecast_date) as last_forecast_date
FROM sales_forecasts sf
JOIN orders o ON sf.pid = o.pid
AND DATE(o.date) = sf.forecast_date
WHERE o.canceled = false
AND sf.forecast_date >= DATE_SUB(CURRENT_DATE, INTERVAL 90 DAY)
AND sf.pid IN (?)
GROUP BY sf.pid
) fa ON pm.pid = fa.pid
SET
pm.inventory_value = p.stock_quantity * p.cost_price,
pm.daily_sales_avg = COALESCE(sm.daily_sales_avg, 0),
@@ -229,51 +251,12 @@ async function calculateProductMetrics(startTime, totalProducts, processedCount
pm.first_sale_date = sm.first_sale_date,
pm.last_sale_date = sm.last_sale_date,
pm.avg_lead_time_days = COALESCE(lm.avg_lead_time_days, 30),
pm.days_of_inventory = CASE
WHEN COALESCE(sm.daily_sales_avg, 0) > 0
THEN FLOOR(p.stock_quantity / sm.daily_sales_avg)
ELSE NULL
END,
pm.weeks_of_inventory = CASE
WHEN COALESCE(sm.weekly_sales_avg, 0) > 0
THEN FLOOR(p.stock_quantity / sm.weekly_sales_avg)
ELSE NULL
END,
pm.stock_status = CASE
WHEN p.stock_quantity <= 0 THEN 'Out of Stock'
WHEN COALESCE(sm.daily_sales_avg, 0) = 0 AND p.stock_quantity <= ? THEN 'Low Stock'
WHEN COALESCE(sm.daily_sales_avg, 0) = 0 THEN 'In Stock'
WHEN p.stock_quantity / NULLIF(sm.daily_sales_avg, 0) <= ? THEN 'Critical'
WHEN p.stock_quantity / NULLIF(sm.daily_sales_avg, 0) <= ? THEN 'Reorder'
WHEN p.stock_quantity / NULLIF(sm.daily_sales_avg, 0) > ? THEN 'Overstocked'
ELSE 'Healthy'
END,
pm.reorder_qty = CASE
WHEN COALESCE(sm.daily_sales_avg, 0) > 0 THEN
GREATEST(
CEIL(sm.daily_sales_avg * COALESCE(lm.avg_lead_time_days, 30) * 1.96),
?
)
ELSE ?
END,
pm.overstocked_amt = CASE
WHEN p.stock_quantity / NULLIF(sm.daily_sales_avg, 0) > ?
THEN GREATEST(0, p.stock_quantity - CEIL(sm.daily_sales_avg * ?))
ELSE 0
END,
pm.forecast_accuracy = GREATEST(0, 100 - LEAST(fa.avg_forecast_error, 100)),
pm.forecast_bias = GREATEST(-100, LEAST(fa.avg_forecast_bias, 100)),
pm.last_forecast_date = fa.last_forecast_date,
pm.last_calculated_at = NOW()
WHERE p.pid IN (?)
`, [
defaultThresholds.low_stock_threshold,
defaultThresholds.critical_days,
defaultThresholds.reorder_days,
defaultThresholds.overstock_days,
defaultThresholds.low_stock_threshold,
defaultThresholds.low_stock_threshold,
defaultThresholds.overstock_days,
defaultThresholds.overstock_days,
batch.map(row => row.pid)
]);
`, [batch.map(row => row.pid), batch.map(row => row.pid)]);
lastPid = batch[batch.length - 1].pid;
myProcessedProducts += batch.length; // Increment the *module's* count

View File

@@ -101,12 +101,6 @@ async function calculateSalesForecasts(startTime, totalProducts, processedCount
if (batch.length === 0) break;
// Create temporary tables for better performance
await connection.query('DROP TEMPORARY TABLE IF EXISTS temp_historical_sales');
await connection.query('DROP TEMPORARY TABLE IF EXISTS temp_sales_stats');
await connection.query('DROP TEMPORARY TABLE IF EXISTS temp_recent_trend');
await connection.query('DROP TEMPORARY TABLE IF EXISTS temp_confidence_calc');
// Create optimized temporary tables with indexes
await connection.query(`
CREATE TEMPORARY TABLE temp_historical_sales (
@@ -128,25 +122,15 @@ async function calculateSalesForecasts(startTime, totalProducts, processedCount
days_with_sales INT,
first_sale DATE,
last_sale DATE,
PRIMARY KEY (pid),
INDEX (days_with_sales),
INDEX (last_sale)
) ENGINE=MEMORY
`);
await connection.query(`
CREATE TEMPORARY TABLE temp_recent_trend (
pid BIGINT NOT NULL,
recent_avg_units DECIMAL(10,2),
recent_avg_revenue DECIMAL(15,2),
PRIMARY KEY (pid)
) ENGINE=MEMORY
`);
await connection.query(`
CREATE TEMPORARY TABLE temp_confidence_calc (
CREATE TEMPORARY TABLE temp_recent_stats (
pid BIGINT NOT NULL,
confidence_level TINYINT,
recent_avg_units DECIMAL(10,2),
recent_avg_revenue DECIMAL(15,2),
PRIMARY KEY (pid)
) ENGINE=MEMORY
`);
@@ -167,7 +151,7 @@ async function calculateSalesForecasts(startTime, totalProducts, processedCount
GROUP BY o.pid, DATE(o.date)
`, [batch.map(row => row.pid)]);
// Populate sales stats
// Combine sales stats and recent trend calculations
await connection.query(`
INSERT INTO temp_sales_stats
SELECT
@@ -182,23 +166,40 @@ async function calculateSalesForecasts(startTime, totalProducts, processedCount
GROUP BY pid
`);
// Populate recent trend
// Calculate recent averages
await connection.query(`
INSERT INTO temp_recent_trend
INSERT INTO temp_recent_stats
SELECT
h.pid,
AVG(h.daily_quantity) as recent_avg_units,
AVG(h.daily_revenue) as recent_avg_revenue
FROM temp_historical_sales h
WHERE h.sale_date >= DATE_SUB(CURRENT_DATE, INTERVAL 30 DAY)
GROUP BY h.pid
pid,
AVG(daily_quantity) as recent_avg_units,
AVG(daily_revenue) as recent_avg_revenue
FROM temp_historical_sales
WHERE sale_date >= DATE_SUB(CURRENT_DATE, INTERVAL 30 DAY)
GROUP BY pid
`);
// Calculate confidence levels
// Generate forecasts using temp tables - optimized version
await connection.query(`
INSERT INTO temp_confidence_calc
REPLACE INTO sales_forecasts
(pid, forecast_date, forecast_units, forecast_revenue, confidence_level, last_calculated_at)
SELECT
s.pid,
s.pid,
DATE_ADD(CURRENT_DATE, INTERVAL n.days DAY),
GREATEST(0, ROUND(
CASE
WHEN s.days_with_sales >= n.days
THEN COALESCE(r.recent_avg_units, s.avg_daily_units)
ELSE s.avg_daily_units * (s.days_with_sales / n.days)
END
)),
GREATEST(0, ROUND(
CASE
WHEN s.days_with_sales >= n.days
THEN COALESCE(r.recent_avg_revenue, s.avg_daily_revenue)
ELSE s.avg_daily_revenue * (s.days_with_sales / n.days)
END,
2
)),
LEAST(100, GREATEST(0, ROUND(
(s.days_with_sales / 180.0 * 50) + -- Up to 50 points for history length
(CASE
@@ -213,47 +214,21 @@ async function calculateSalesForecasts(startTime, totalProducts, processedCount
WHEN DATEDIFF(CURRENT_DATE, s.last_sale) <= 30 THEN 10
ELSE 0
END) -- Up to 20 points for recency
))) as confidence_level
FROM temp_sales_stats s
`);
// Generate forecasts using temp tables
await connection.query(`
REPLACE INTO sales_forecasts
(pid, forecast_date, forecast_units, forecast_revenue, confidence_level, last_calculated_at)
SELECT
s.pid,
DATE_ADD(CURRENT_DATE, INTERVAL n.days DAY),
GREATEST(0, ROUND(
CASE
WHEN s.days_with_sales >= n.days THEN COALESCE(t.recent_avg_units, s.avg_daily_units)
ELSE s.avg_daily_units * (s.days_with_sales / n.days)
END
)),
GREATEST(0, ROUND(
CASE
WHEN s.days_with_sales >= n.days THEN COALESCE(t.recent_avg_revenue, s.avg_daily_revenue)
ELSE s.avg_daily_revenue * (s.days_with_sales / n.days)
END,
2
)),
c.confidence_level,
))),
NOW()
FROM temp_sales_stats s
LEFT JOIN temp_recent_stats r ON s.pid = r.pid
CROSS JOIN (
SELECT 30 as days
UNION SELECT 60
UNION SELECT 90
) n
LEFT JOIN temp_recent_trend t ON s.pid = t.pid
LEFT JOIN temp_confidence_calc c ON s.pid = c.pid;
`);
// Clean up temp tables
await connection.query('DROP TEMPORARY TABLE IF EXISTS temp_historical_sales');
await connection.query('DROP TEMPORARY TABLE IF EXISTS temp_sales_stats');
await connection.query('DROP TEMPORARY TABLE IF EXISTS temp_recent_trend');
await connection.query('DROP TEMPORARY TABLE IF EXISTS temp_confidence_calc');
await connection.query('DROP TEMPORARY TABLE IF EXISTS temp_recent_stats');
lastPid = batch[batch.length - 1].pid;
myProcessedProducts += batch.length;