6 Commits

Author SHA1 Message Date
eea57528ab Try to speed up category calcs 2025-02-10 11:21:20 -05:00
3d2d1b3946 Try to speed up brand calcs 2025-02-10 10:20:32 -05:00
d936d50f83 Vendor calculate script fix 2025-02-10 09:26:24 -05:00
610e26689c Try to speed up calculate script + fixes 2025-02-10 01:29:01 -05:00
7ff757203f Calculate script fixes 2025-02-09 15:40:57 -05:00
843ce71506 Make calculations incremental 2025-02-09 13:35:44 -05:00
19 changed files with 2339 additions and 3106 deletions

View File

@@ -1,185 +0,0 @@
1. **Missing Updates for Reorder Point and Safety Stock** [RESOLVED - product-metrics.js]
- **Problem:** In the **product_metrics** table (used by the inventory health view), the fields **reorder_point** and **safety_stock** are never updated in the product metrics calculations. Although a helper function (`calculateReorderQuantities`) exists and computes these values, the update query in the `calculateProductMetrics` function does not assign any values to these columns.
- **Effect:** The inventory health view relies on these fields (using COALESCE to default them to 0), which means that stock might never be classified as "Reorder" or "Healthy" based on the proper reorder point or safety stock calculations.
- **Example:** Even if a product's base metrics would require a reorder (for example, if its days of inventory are low), the view always shows a value of 0 for reorder_point and safety_stock.
- **Fix:** Update the product metrics query (or add a subsequent update) so that **pm.reorder_point** and **pm.safety_stock** are calculated (for instance, by integrating the logic from `calculateReorderQuantities`) and stored in the table.
2. **Overwritten Module Exports When Combining Scripts** [RESOLVED - calculate-metrics.js]
- **Problem:** The code provided shows two distinct exports. The main metrics calculation module exports `calculateMetrics` (along with cancel and getProgress helpers), but later in the same concatenated file the module exports are overwritten.
- **Effect:** If these two code sections end up in a single module file, the export for the main calculation will be lost. This would break any code that calls the overall metrics calculation.
- **Example:** An external caller expecting to run `calculateMetrics` would instead receive the `calculateProductMetrics` function.
- **Fix:** Make sure each script resides in its own module file. Verify that the module boundaries and exports are not accidentally merged or overwritten when deployed.
3. **Potential Formula Issue in EOQ Calculation (Reorder Qty)** [RESOLVED - product-metrics.js]
- **Problem:** The helper function `calculateReorderQuantities` uses an EOQ formula with a holding cost expressed as a percentage (0.25) rather than a perunit cost.
- **Effect:** If the intent was to use the traditional EOQ formula (which expects a holding cost per unit rather than a percentage), this could lead to an incorrect reorder quantity.
- **Example:** For a given annual demand and fixed order cost, the computed reorder quantity might be higher or lower than expected.
- **Fix:** Double-check the EOQ formula. If the intention is to compute based on a percentage, then document that clearly; otherwise, adjust the formula to use the proper holding cost value.
4. **Potential Overlap or Redundancy in GMROI Calculation** [RESOLVED - time-aggregates.js]
- **Problem:** In the time aggregates function, GMROI is calculated in two steps. The initial INSERT query computes GMROI as
`CASE WHEN s.inventory_value > 0 THEN (s.total_revenue - s.total_cost) / s.inventory_value ELSE 0 END`
and then a subsequent UPDATE query recalculates it as an annualized value using gross profit and active days.
- **Effect:** Overwriting a computed value may be intentional to refine the metric, but if not coordinated it can cause confusion or unexpected output in the `product_time_aggregates` table.
- **Example:** A product's GMROI might first appear as a simple ratio but then be updated to a scaled value based on the number of active days, which could lead to inconsistent reporting if not documented.
- **Fix:** Consolidated the GMROI calculation into a single step in the initial INSERT query, properly handling annualization and NULL values.
5. **Handling of Products Without Orders or Purchase Data** [RESOLVED - time-aggregates.js]
- **Problem:** In the INSERT query of the time aggregates function, the UNION covers two cases: one for products with order data (from `monthly_sales`) and one for products that have entries in `monthly_stock` but no matching order data.
- **Effect:** If a product has neither orders nor purchase orders, it won't get an entry in `product_time_aggregates`. Depending on business rules, this might be acceptable or might mean missing data.
- **Example:** A product that's new or rarely ordered might not appear in the time aggregates view, potentially affecting downstream calculations.
- **Fix:** Added an `all_products` CTE and modified the JOIN structure to ensure every product gets an entry with appropriate default values, even if it has no orders or purchase orders.
6. **Redundant Recalculation of Vendor Metrics**
- **Problem:** Similar concepts from prior scripts where cumulative metrics (like **total_revenue** and **total_cost**) are calculated in multiple query steps without necessary validation or optimization. In the vendor metrics script, calculations for total revenue and margin are performed within a `WITH` clause, which is then used in other parts of the process, making it more complex than needed.
- **Effect:** There's unnecessary duplication in querying the same data multiple times across subqueries. It could result in decreased performance and may even lead to excess computation if the subqueries are not optimized or correctly indexed.
- **Example:** Vendor sales and vendor purchase orders (PO) metrics are calculated in separate `WITH` clauses, leading to repeated calculations.
- **Fix:** Synthesize the required metrics into fewer queries or reuse the results within the `WITH` clause itself. Avoid redundant calculations of **revenue** and **cost** unless truly necessary.
7. **Handling Products Without Orders or Purchase Orders**
- **Problem:** In your `calculateVendorMetrics` script, the initial insert for vendor sales doesn't fully address the products that might not have matching orders or purchase orders. If a vendor has products without any sales within the last 12 months, the results may not be fully accurate unless handled explicitly.
- **Effect:** If no orders exist for a product associated with a particular vendor, that product will not contribute to the vendor's metrics, potentially omitting important data when calculating **total_orders** or **total_revenue**.
- **Example:** The scripted statistics fill gaps, but products with no recent purchase or sales orders might not be counted accurately.
- **Fix:** Include logic to handle scenarios where these products still need to be part of the vendor calculation. Use a `LEFT JOIN` wherever possible to account for cases without sales or purchase orders.
8. **Redundant `ON DUPLICATE KEY UPDATE`**
- **Problem:** Multiple queries in the `calculateVendorMetrics` script use `ON DUPLICATE KEY UPDATE` clauses to handle repeated metrics updates. This is useful for ensuring the most up-to-date calculations but can cause inconsistencies if multiple calculations happen for the same product or vendor simultaneously.
- **Effect:** This approach can lead to an inaccurate update of brand-specific data when insertion and update overlap. Each time you add a new batch, an existing entry could be overwritten if not handled correctly.
- **Example:** Vendor country, category, or sales-related metrics could unintentionally update during processing.
- **Fix:** Match on current status more robustly in case of existing rows to avoid unnecessary updates. Ensure that the key used for `ON DUPLICATE KEY` aligns with any foreign key relationships that might indicate an already processed entry.
9. **SQL Query Performance with Multiple Nested `WITH` Clauses**
- **Problem:** Heavily nested queries (especially **WITH** clauses) may lead to slow performance depending on the size of the dataset.
- **Effect:** Computational burden could be high when the database is large, e.g., querying **purchase orders**, **vendor sales**, and **product info** simultaneously. Even with proper indexes, the deployment might struggle in production environments.
- **Example:** Multiple `WITH` clauses in the vendor and brand metrics calculation scripts might work fine in small datasets but degrade performance in production.
- **Fix:** Combine some subqueries and reduce the layer of computations needed for calculating final metrics. Test performance on a production-sized dataset to see how nested queries are handled.
10. **Missing Updates for Reorder Metrics (Vendor/Brand)**
- **Previously Identified Issue:** Inconsistent updates for **reorder_point** and **safety_stock** across earlier scripts.
- **Current Impact on This Script:** The vendor and brand metrics do not have explicit updates for reorder point or safety stock, which are essential for inventory evaluation.
- **Effect:** The correct thresholds and reorder logic for vendor product inventory aren't fully accounted for in these scripts.
- **Fix:** Integrate relevant logic to update **reorder_point** or **safety_stock** within the vendor and brand metrics calculations. Ensure that it's consistently computed and stored.
11. **Data Integrity and Consistency**
**w**hen tracking sales growth or performance
- **Problem:** Brand metrics include a sales growth clause where negative results can sometimes be skewed severely if period data varies considerably.
- **Effect:** If period boundaries are incorrect or records are missing, this can create drastic growth rate calculations.
- **Example:** If the "previous" period has no sales but "current" has a substantial increase, the growth rate will show as **100%**.
- **Fix:** Implement checks that ensure both periods are valid and that the system calculates growth accurately, avoiding growth rates based solely on potential outliers. Replace consistent gaps with a no-growth rate or a meaningful zero.
12. **Exclusion of Vendors With No Sales**
The vendor metrics query is driven by the `vendor_sales` CTE, which aggregates data only for vendors that have orders in the past 12 months.
- **Impact:** Vendors that have purchase activity (or simply exist in vendor_details) but no recent sales won't show up in vendor_metrics. This could cause the frontend to miss metrics for vendors that might still be important.
- **Fix:** Consider adding a UNION or changing the driving set so that all vendors (for example, from vendor_details) are included—even if they have zero sales.
13. **Identical Formulas for On-Time Delivery and Order Fill Rates**
Both metrics are calculated as `(received_orders / total_orders) * 100`.
- **Impact:** If the business expects these to be distinct (for example, one might factor in on-time receipt versus mere receipt), then showing identical values on the frontend could be misleading.
- **Fix:** Verify and adjust the formulas if on-time delivery and order fill rates should be computed differently.
14. **Handling Nulls and Defaults in Aggregations**
The query uses COALESCE in most places, but be sure that every aggregated value (like average lead time) correctly defaults when no data is present.
- **Impact:** Incorrect defaults might cause odd or missing numbers on the production interface.
- **Fix:** Double-check that all numeric aggregates reliably default to 0 where needed.
15. **Inconsistent Stock Filtering Conditions**
In the main brand metrics query the CTE filters products with the condition
`p.stock_quantity <= 5000 AND p.stock_quantity >= 0`
whereas in the brand time-based metrics query the condition is only `p.stock_quantity <= 5000`.
- **Impact:** This discrepancy may lead to inconsistent numbers (for example, if any products have negative stock, which might be due to data issues) between overall brand metrics and time-based metrics on the frontend.
- **Fix:** Standardize the filtering criteria so that both queries treat out-of-range stock values in the same way.
16. **Growth Rate Calculation Periods**
The growth rate is computed by comparing revenue from the last 3 months ("current") against a period from 1512 months ago ("previous").
- **Impact:** This narrow window may not reflect typical year-over-year performance and could lead to volatile or unexpected growth percentages on the frontend.
- **Fix:** Revisit the business logic for growth—if a longer or different comparison period is preferred, adjust the date intervals accordingly.
17. **Potential NULLs in Aggregated Time-Based Metrics**
In the brand time-based metrics query, aggregate expressions such as `SUM(o.quantity * o.price)` aren't wrapped with COALESCE.
- **Impact:** If there are no orders for a given brand/month, these sums might return NULL rather than 0, which could propagate into the frontend display.
- **Fix:** Wrap such aggregates in COALESCE (e.g. `COALESCE(SUM(o.quantity * o.price), 0)`) to ensure a default numeric value.
18. **Grouping by Category Status in Base Metrics Insert**
- **Problem:** The INSERT for base category metrics groups by both `c.cat_id` and `c.status` even though the table's primary key is just `category_id`.
- **Effect:** If a category's status changes over time, the grouping may produce unexpected updates (or even multiple groups before the duplicate key update kicks in), possibly causing the wrong status or aggregated figures to be stored.
- **Example:** A category that toggles between "active" and "inactive" might have its metrics calculated differently on different runs.
- **Fix:** Ensure that the grouping keys match the primary key (or that the status update logic is exactly as intended) so that a single row per category is maintained.
19. **Potential Null Handling in Margin Calculations**
- **Problem:** In the query for category time metrics, the calculation of average margin uses expressions such as `SUM(o.quantity * (o.price - GREATEST(p.cost_price, 0)))` without using `COALESCE` on `p.cost_price`.
- **Effect:** If any product's `cost_price` is `NULL`, then `GREATEST(p.cost_price, 0)` returns `NULL` and the resulting sum (and thus the margin) could become `NULL` rather than defaulting to 0. This might lead to missing or misleading margin figures on the frontend.
- **Example:** A product with a missing cost price would make the entire margin expression evaluate to `NULL` even when sales exist.
- **Fix:** Replace `GREATEST(p.cost_price, 0)` with `GREATEST(COALESCE(p.cost_price, 0), 0)` (or simply use `COALESCE(p.cost_price, 0)`) to ensure that missing values are handled.
20. **Data Coverage in Growth Rate Calculation**
- **Problem:** The growth rate update depends on multiple CTEs (current period, previous period, and trend analysis) that require a minimum amount of data (for instance, `HAVING COUNT(*) >= 6` in the trend_stats CTE).
- **Effect:** Categories with insufficient historical data will fall into the "ELSE" branch (or may even be skipped if no revenue is present), which might result in a growth rate of 0.0 or an unexpected value.
- **Example:** A newly created category that has only two months of data won't have trend analysis, so its growth rate will be calculated solely by the simple difference, which might not reflect true performance.
- **Fix:** Confirm that this fallback behavior is acceptable for production; if not, adjust the logic so that every category receives a consistent growth rate even with sparse data.
21. **Omission of Forecasts for ZeroSales Categories**
- **Observation:** The categorysales metrics query uses a `HAVING AVG(cs.daily_quantity) > 0` clause.
- **Effect:** Categories without any average daily sales will not receive a forecast record in `category_sales_metrics`. If the frontend expects a row (even with zeros) for every category, this will lead to missing data.
- **Fix:** Verify that it's acceptable for categories with no sales to have no forecast entry. If not, adjust the query so that a default forecast (with zeros) is inserted.
22. **Randomness in Category-Level Forecast Revenue Calculation**
- **Problem:** In the category-level forecasts query, the forecast revenue is multiplied by a factor of `(0.95 + (RAND() * 0.1))`.
- **Effect:** This introduces randomness into the forecast figures so that repeated runs could yield slightly different values. If deterministic forecasts are expected on the production frontend, this could lead to inconsistent displays.
- **Example:** The same category might show a 5% higher forecast on one run and 3% on another because of the random multiplier.
- **Fix:** Confirm that this randomness is intentional for your forecasting model; if forecasts are meant to be reproducible, remove or replace the `RAND()` factor with a fixed multiplier.
23. **Multi-Statement Cleanup of Temporary Tables**
- **Problem:** The cleanup query drops multiple temporary tables in one call (separated by semicolons).
- **Effect:** If your Node.js MySQL driver isn't configured to allow multi-statement execution, this query may fail, leaving temporary tables behind. Leftover temporary tables might eventually cause conflicts or resource issues.
- **Example:** Running the cleanup query could produce an error like "multi-statement queries not enabled," preventing proper cleanup.
- **Fix:** Either configure your database connection to allow multi-statements or issue separate queries for each temporary table drop to ensure that the cleanup runs successfully.
24. **Handling Products with No Sales Data**
- **Problem:** In the product-level forecast calculation, the CTE `daily_stats` includes a `HAVING AVG(ds.daily_quantity) > 0` clause.
- **Effect:** Products that have no sales (or a zero average daily quantity) will be excluded from the forecasts. This means the frontend won't show forecasts for nonselling products, which might be acceptable but could also be a completeness issue.
- **Example:** A product that has never sold will not appear in the `sales_forecasts` table.
- **Fix:** Confirm that it is intended for forecasts to be generated only for products with some sales activity. If forecasts are required for all products, adjust the query to insert default forecast records for products with zero sales.
25. **Complexity of the Forecast Formula Involving the Seasonality Factor**
- **Issue:**
The sales forecast calculations incorporate an adjustment factor using `COALESCE(sf.seasonality_factor, 0)` to modify forecast units and revenue. This means that if the seasonality data is missing (or not populated), the factor defaults to 0.
- **Potential Problem:**
A default value of 0 will drastically alter the forecast calculations—often leading to a forecast of 0 or an overly dampened forecast—when in reality the intended behavior might be to use a neutral multiplier (typically 1.0). This could result in forecasts that are not reflective of the actual seasonal impact, thereby skewing the figures that reach the frontend.
- **Fix:**
Review your data source for seasonality (the `sales_seasonality` table) and ensure it's consistently populated. Alternatively, if missing seasonality data is possible, consider using a more neutral default (such as 1.0) in your COALESCE. This change would prevent the forecast formulas from over-simplifying (or even nullifying) the forecast output due to missing seasonality factors.
26. **Group By with Seasonality Factor Variability**
- **Observation:** In the forecast insertion query, the GROUP BY clause includes `sf.seasonality_factor` along with other fields.
- **Effect:** If the seasonality factor differs (or is `NULL` versus a value) for different forecast dates, this might result in multiple rows for the same product and forecast date. However, the `ON DUPLICATE KEY UPDATE` clause will merge them—but only if the primary key (pid, forecast_date) is truly unique.
- **Fix:** Verify that the grouping produces exactly one row per product per forecast date. If there's potential for multiple rows due to seasonality variability, consider applying a COALESCE or an aggregation on the seasonality factor so that it does not affect grouping.
27. **Memory Management for Temporary Tables** [RESOLVED - calculate-metrics.js]
- **Problem:** In metrics calculations, temporary tables aren't always properly cleaned up if the process fails between creation and the DROP statement.
- **Effect:** If a process fails after creating temporary tables but before dropping them, these tables remain in memory until the connection is closed. In a production environment with multiple calculation runs, this could lead to memory leaks or table name conflicts.
- **Example:** The `temp_revenue_ranks` table creation in ABC classification could remain if the process fails before reaching the DROP statement.
- **Fix:** Implement proper cleanup in a finally block or use transaction management that ensures temporary tables are always cleaned up, even in failure scenarios.

View File

@@ -102,17 +102,19 @@ CREATE TABLE IF NOT EXISTS product_time_aggregates (
INDEX idx_date (year, month) INDEX idx_date (year, month)
); );
-- Create vendor_details table -- Create vendor details table
CREATE TABLE vendor_details ( CREATE TABLE IF NOT EXISTS vendor_details (
vendor VARCHAR(100) PRIMARY KEY, vendor VARCHAR(100) NOT NULL,
contact_name VARCHAR(100), contact_name VARCHAR(100),
email VARCHAR(255), email VARCHAR(100),
phone VARCHAR(50), phone VARCHAR(20),
status VARCHAR(20) DEFAULT 'active', status VARCHAR(20) DEFAULT 'active',
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP, notes TEXT,
updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP, created_at TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
INDEX idx_status (status) updated_at TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
) ENGINE=InnoDB; PRIMARY KEY (vendor),
INDEX idx_vendor_status (status)
);
-- New table for vendor metrics -- New table for vendor metrics
CREATE TABLE IF NOT EXISTS vendor_metrics ( CREATE TABLE IF NOT EXISTS vendor_metrics (
@@ -124,13 +126,13 @@ CREATE TABLE IF NOT EXISTS vendor_metrics (
order_fill_rate DECIMAL(5,2), order_fill_rate DECIMAL(5,2),
total_orders INT DEFAULT 0, total_orders INT DEFAULT 0,
total_late_orders INT DEFAULT 0, total_late_orders INT DEFAULT 0,
total_purchase_value DECIMAL(10,3) DEFAULT 0, total_purchase_value DECIMAL(15,3) DEFAULT 0,
avg_order_value DECIMAL(10,3), avg_order_value DECIMAL(15,3),
-- Product metrics -- Product metrics
active_products INT DEFAULT 0, active_products INT DEFAULT 0,
total_products INT DEFAULT 0, total_products INT DEFAULT 0,
-- Financial metrics -- Financial metrics
total_revenue DECIMAL(10,3) DEFAULT 0, total_revenue DECIMAL(15,3) DEFAULT 0,
avg_margin_percent DECIMAL(5,2), avg_margin_percent DECIMAL(5,2),
-- Status -- Status
status VARCHAR(20) DEFAULT 'active', status VARCHAR(20) DEFAULT 'active',
@@ -408,4 +410,21 @@ LEFT JOIN
category_metrics cm ON c.cat_id = cm.category_id; category_metrics cm ON c.cat_id = cm.category_id;
-- Re-enable foreign key checks -- Re-enable foreign key checks
SET FOREIGN_KEY_CHECKS = 1; SET FOREIGN_KEY_CHECKS = 1;
-- Create table for sales seasonality factors
CREATE TABLE IF NOT EXISTS sales_seasonality (
month INT NOT NULL,
seasonality_factor DECIMAL(5,3) DEFAULT 0,
last_updated TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
PRIMARY KEY (month),
CHECK (month BETWEEN 1 AND 12),
CHECK (seasonality_factor BETWEEN -1.0 AND 1.0)
);
-- Insert default seasonality factors (neutral)
INSERT INTO sales_seasonality (month, seasonality_factor)
VALUES
(1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 0),
(7, 0), (8, 0), (9, 0), (10, 0), (11, 0), (12, 0)
ON DUPLICATE KEY UPDATE last_updated = CURRENT_TIMESTAMP;

View File

@@ -79,6 +79,18 @@ CREATE TABLE categories (
INDEX idx_name_type (name, type) INDEX idx_name_type (name, type)
) ENGINE=InnoDB; ) ENGINE=InnoDB;
-- Create vendor_details table
CREATE TABLE vendor_details (
vendor VARCHAR(100) PRIMARY KEY,
contact_name VARCHAR(100),
email VARCHAR(255),
phone VARCHAR(50),
status VARCHAR(20) DEFAULT 'active',
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
INDEX idx_status (status)
) ENGINE=InnoDB;
-- Create product_categories junction table -- Create product_categories junction table
CREATE TABLE product_categories ( CREATE TABLE product_categories (
cat_id BIGINT NOT NULL, cat_id BIGINT NOT NULL,

View File

@@ -44,34 +44,6 @@ global.clearProgress = progress.clearProgress;
global.getProgress = progress.getProgress; global.getProgress = progress.getProgress;
global.logError = progress.logError; global.logError = progress.logError;
// List of temporary tables used in the calculation process
const TEMP_TABLES = [
'temp_revenue_ranks',
'temp_sales_metrics',
'temp_purchase_metrics',
'temp_product_metrics',
'temp_vendor_metrics',
'temp_category_metrics',
'temp_brand_metrics',
'temp_forecast_dates',
'temp_daily_sales',
'temp_product_stats',
'temp_category_sales',
'temp_category_stats'
];
// Add cleanup function for temporary tables
async function cleanupTemporaryTables(connection) {
try {
for (const table of TEMP_TABLES) {
await connection.query(`DROP TEMPORARY TABLE IF EXISTS ${table}`);
}
} catch (error) {
logError(error, 'Error cleaning up temporary tables');
throw error; // Re-throw to be handled by the caller
}
}
const { getConnection, closePool } = require('./metrics/utils/db'); const { getConnection, closePool } = require('./metrics/utils/db');
const calculateProductMetrics = require('./metrics/product-metrics'); const calculateProductMetrics = require('./metrics/product-metrics');
const calculateTimeAggregates = require('./metrics/time-aggregates'); const calculateTimeAggregates = require('./metrics/time-aggregates');
@@ -132,17 +104,54 @@ async function calculateMetrics() {
WHERE status = 'running' WHERE status = 'running'
`); `);
// Get counts from all relevant tables // Get counts of records that need updating based on last calculation time
const [[productCount], [orderCount], [poCount]] = await Promise.all([ const [[productCount], [orderCount], [poCount]] = await Promise.all([
connection.query('SELECT COUNT(*) as total FROM products'), connection.query(`
connection.query('SELECT COUNT(*) as total FROM orders'), SELECT COUNT(DISTINCT p.pid) as total
connection.query('SELECT COUNT(*) as total FROM purchase_orders') FROM products p
FORCE INDEX (PRIMARY)
LEFT JOIN calculate_status cs ON cs.module_name = 'product_metrics'
LEFT JOIN orders o FORCE INDEX (idx_orders_metrics) ON p.pid = o.pid
AND o.updated > COALESCE(cs.last_calculation_timestamp, '1970-01-01')
AND o.canceled = false
LEFT JOIN purchase_orders po FORCE INDEX (idx_purchase_orders_metrics) ON p.pid = po.pid
AND po.updated > COALESCE(cs.last_calculation_timestamp, '1970-01-01')
WHERE p.updated > COALESCE(cs.last_calculation_timestamp, '1970-01-01')
OR o.pid IS NOT NULL
OR po.pid IS NOT NULL
`),
connection.query(`
SELECT COUNT(DISTINCT o.id) as total
FROM orders o
FORCE INDEX (idx_orders_metrics)
LEFT JOIN calculate_status cs ON cs.module_name = 'product_metrics'
WHERE o.updated > COALESCE(cs.last_calculation_timestamp, '1970-01-01')
AND o.canceled = false
`),
connection.query(`
SELECT COUNT(DISTINCT po.id) as total
FROM purchase_orders po
FORCE INDEX (idx_purchase_orders_metrics)
LEFT JOIN calculate_status cs ON cs.module_name = 'product_metrics'
WHERE po.updated > COALESCE(cs.last_calculation_timestamp, '1970-01-01')
`)
]); ]);
totalProducts = productCount.total; totalProducts = productCount.total;
totalOrders = orderCount.total; totalOrders = orderCount.total;
totalPurchaseOrders = poCount.total; totalPurchaseOrders = poCount.total;
// If nothing needs updating, we can exit early
if (totalProducts === 0 && totalOrders === 0 && totalPurchaseOrders === 0) {
console.log('No records need updating');
return {
processedProducts: 0,
processedOrders: 0,
processedPurchaseOrders: 0,
success: true
};
}
// Create history record for this calculation // Create history record for this calculation
const [historyResult] = await connection.query(` const [historyResult] = await connection.query(`
INSERT INTO calculate_history ( INSERT INTO calculate_history (
@@ -267,7 +276,7 @@ async function calculateMetrics() {
}); });
if (!SKIP_PRODUCT_METRICS) { if (!SKIP_PRODUCT_METRICS) {
const result = await calculateProductMetrics(startTime, totalProducts); const result = await calculateProductMetrics(startTime, totalProducts, processedProducts, isCancelled);
await updateProgress(result.processedProducts, result.processedOrders, result.processedPurchaseOrders); await updateProgress(result.processedProducts, result.processedOrders, result.processedPurchaseOrders);
if (!result.success) { if (!result.success) {
throw new Error('Product metrics calculation failed'); throw new Error('Product metrics calculation failed');
@@ -678,26 +687,19 @@ async function calculateMetrics() {
throw error; throw error;
} finally { } finally {
if (connection) { if (connection) {
// Ensure temporary tables are cleaned up
await cleanupTemporaryTables(connection);
connection.release(); connection.release();
} }
// Close the connection pool when we're done
await closePool();
} }
} catch (error) { } finally {
success = false; // Close the connection pool when we're done
logError(error, 'Error in metrics calculation'); await closePool();
throw error;
} }
} }
// Export as a module with all necessary functions // Export both functions and progress checker
module.exports = { module.exports = calculateMetrics;
calculateMetrics, module.exports.cancelCalculation = cancelCalculation;
cancelCalculation, module.exports.getProgress = global.getProgress;
getProgress: global.getProgress
};
// Run directly if called from command line // Run directly if called from command line
if (require.main === module) { if (require.main === module) {

View File

@@ -1,107 +0,0 @@
const path = require('path');
const { spawn } = require('child_process');
function outputProgress(data) {
if (!data.status) {
data = {
status: 'running',
...data
};
}
console.log(JSON.stringify(data));
}
function runScript(scriptPath) {
return new Promise((resolve, reject) => {
const child = spawn('node', [scriptPath], {
stdio: ['inherit', 'pipe', 'pipe']
});
let output = '';
child.stdout.on('data', (data) => {
const lines = data.toString().split('\n');
lines.filter(line => line.trim()).forEach(line => {
try {
console.log(line); // Pass through the JSON output
output += line + '\n';
} catch (e) {
console.log(line); // If not JSON, just log it directly
}
});
});
child.stderr.on('data', (data) => {
console.error(data.toString());
});
child.on('close', (code) => {
if (code !== 0) {
reject(new Error(`Script ${scriptPath} exited with code ${code}`));
} else {
resolve(output);
}
});
child.on('error', (err) => {
reject(err);
});
});
}
async function fullReset() {
try {
// Step 1: Reset Database
outputProgress({
operation: 'Starting full reset',
message: 'Step 1/3: Resetting database...'
});
await runScript(path.join(__dirname, 'reset-db.js'));
outputProgress({
status: 'complete',
operation: 'Database reset step complete',
message: 'Database reset finished, moving to import...'
});
// Step 2: Import from Production
outputProgress({
operation: 'Starting import',
message: 'Step 2/3: Importing from production...'
});
await runScript(path.join(__dirname, 'import-from-prod.js'));
outputProgress({
status: 'complete',
operation: 'Import step complete',
message: 'Import finished, moving to metrics calculation...'
});
// Step 3: Calculate Metrics
outputProgress({
operation: 'Starting metrics calculation',
message: 'Step 3/3: Calculating metrics...'
});
await runScript(path.join(__dirname, 'calculate-metrics.js'));
// Final completion message
outputProgress({
status: 'complete',
operation: 'Full reset complete',
message: 'Successfully completed all steps: database reset, import, and metrics calculation'
});
} catch (error) {
outputProgress({
status: 'error',
operation: 'Full reset failed',
error: error.message,
stack: error.stack
});
process.exit(1);
}
}
// Run if called directly
if (require.main === module) {
fullReset();
}
module.exports = fullReset;

View File

@@ -1,100 +0,0 @@
const path = require('path');
const { spawn } = require('child_process');
function outputProgress(data) {
if (!data.status) {
data = {
status: 'running',
...data
};
}
console.log(JSON.stringify(data));
}
function runScript(scriptPath) {
return new Promise((resolve, reject) => {
const child = spawn('node', [scriptPath], {
stdio: ['inherit', 'pipe', 'pipe']
});
let output = '';
child.stdout.on('data', (data) => {
const lines = data.toString().split('\n');
lines.filter(line => line.trim()).forEach(line => {
try {
console.log(line); // Pass through the JSON output
output += line + '\n';
} catch (e) {
console.log(line); // If not JSON, just log it directly
}
});
});
child.stderr.on('data', (data) => {
console.error(data.toString());
});
child.on('close', (code) => {
if (code !== 0) {
reject(new Error(`Script ${scriptPath} exited with code ${code}`));
} else {
resolve(output);
}
});
child.on('error', (err) => {
reject(err);
});
});
}
async function fullUpdate() {
try {
// Step 1: Import from Production
outputProgress({
operation: 'Starting full update',
message: 'Step 1/2: Importing from production...'
});
await runScript(path.join(__dirname, 'import-from-prod.js'));
outputProgress({
status: 'complete',
operation: 'Import step complete',
message: 'Import finished, moving to metrics calculation...'
});
// Step 2: Calculate Metrics
outputProgress({
operation: 'Starting metrics calculation',
message: 'Step 2/2: Calculating metrics...'
});
await runScript(path.join(__dirname, 'calculate-metrics.js'));
outputProgress({
status: 'complete',
operation: 'Metrics step complete',
message: 'Metrics calculation finished'
});
// Final completion message
outputProgress({
status: 'complete',
operation: 'Full update complete',
message: 'Successfully completed all steps: import and metrics calculation'
});
} catch (error) {
outputProgress({
status: 'error',
operation: 'Full update failed',
error: error.message,
stack: error.stack
});
process.exit(1);
}
}
// Run if called directly
if (require.main === module) {
fullUpdate();
}
module.exports = fullUpdate;

View File

@@ -4,19 +4,50 @@ const { getConnection } = require('./utils/db');
async function calculateBrandMetrics(startTime, totalProducts, processedCount = 0, isCancelled = false) { async function calculateBrandMetrics(startTime, totalProducts, processedCount = 0, isCancelled = false) {
const connection = await getConnection(); const connection = await getConnection();
let success = false; let success = false;
let processedOrders = 0; const BATCH_SIZE = 5000;
try { try {
// Get last calculation timestamp
const [lastCalc] = await connection.query(`
SELECT last_calculation_timestamp
FROM calculate_status
WHERE module_name = 'brand_metrics'
`);
const lastCalculationTime = lastCalc[0]?.last_calculation_timestamp || '1970-01-01';
// Get total count of brands needing updates
const [brandCount] = await connection.query(`
SELECT COUNT(DISTINCT p.brand) as count
FROM products p
LEFT JOIN orders o ON p.pid = o.pid AND o.updated > ?
WHERE p.brand IS NOT NULL
AND (
p.updated > ?
OR o.id IS NOT NULL
)
`, [lastCalculationTime, lastCalculationTime]);
const totalBrands = brandCount[0].count;
if (totalBrands === 0) {
console.log('No brands need metric updates');
return {
processedProducts: 0,
processedOrders: 0,
processedPurchaseOrders: 0,
success: true
};
}
if (isCancelled) { if (isCancelled) {
outputProgress({ outputProgress({
status: 'cancelled', status: 'cancelled',
operation: 'Brand metrics calculation cancelled', operation: 'Brand metrics calculation cancelled',
current: processedCount, current: processedCount,
total: totalProducts, total: totalBrands,
elapsed: formatElapsedTime(startTime), elapsed: formatElapsedTime(startTime),
remaining: null, remaining: null,
rate: calculateRate(startTime, processedCount), rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1), percentage: ((processedCount / totalBrands) * 100).toFixed(1),
timing: { timing: {
start_time: new Date(startTime).toISOString(), start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(), end_time: new Date().toISOString(),
@@ -31,23 +62,15 @@ async function calculateBrandMetrics(startTime, totalProducts, processedCount =
}; };
} }
// Get order count that will be processed
const [orderCount] = await connection.query(`
SELECT COUNT(*) as count
FROM orders o
WHERE o.canceled = false
`);
processedOrders = orderCount[0].count;
outputProgress({ outputProgress({
status: 'running', status: 'running',
operation: 'Starting brand metrics calculation', operation: 'Starting brand metrics calculation',
current: processedCount, current: processedCount,
total: totalProducts, total: totalBrands,
elapsed: formatElapsedTime(startTime), elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts), remaining: estimateRemaining(startTime, processedCount, totalBrands),
rate: calculateRate(startTime, processedCount), rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1), percentage: ((processedCount / totalBrands) * 100).toFixed(1),
timing: { timing: {
start_time: new Date(startTime).toISOString(), start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(), end_time: new Date().toISOString(),
@@ -55,237 +78,189 @@ async function calculateBrandMetrics(startTime, totalProducts, processedCount =
} }
}); });
// Calculate brand metrics with optimized queries // Process in batches
await connection.query(` let lastBrand = '';
INSERT INTO brand_metrics ( while (true) {
brand, if (isCancelled) break;
product_count,
active_products, const [batch] = await connection.query(`
total_stock_units, SELECT DISTINCT p.brand
total_stock_cost,
total_stock_retail,
total_revenue,
avg_margin,
growth_rate
)
WITH filtered_products AS (
SELECT
p.*,
CASE
WHEN p.stock_quantity <= 5000 AND p.stock_quantity >= 0
THEN p.pid
END as valid_pid,
CASE
WHEN p.visible = true
AND p.stock_quantity <= 5000
AND p.stock_quantity >= 0
THEN p.pid
END as active_pid,
CASE
WHEN p.stock_quantity IS NULL
OR p.stock_quantity < 0
OR p.stock_quantity > 5000
THEN 0
ELSE p.stock_quantity
END as valid_stock
FROM products p FROM products p
FORCE INDEX (idx_brand)
LEFT JOIN orders o FORCE INDEX (idx_orders_metrics) ON p.pid = o.pid AND o.updated > ?
WHERE p.brand IS NOT NULL WHERE p.brand IS NOT NULL
), AND p.brand > ?
sales_periods AS ( AND (
p.updated > ?
OR o.id IS NOT NULL
)
ORDER BY p.brand
LIMIT ?
`, [lastCalculationTime, lastBrand, lastCalculationTime, BATCH_SIZE]);
if (batch.length === 0) break;
// Create temporary tables for better performance
await connection.query('DROP TEMPORARY TABLE IF EXISTS temp_product_stats');
await connection.query('DROP TEMPORARY TABLE IF EXISTS temp_sales_stats');
await connection.query(`
CREATE TEMPORARY TABLE temp_product_stats (
brand VARCHAR(100) NOT NULL,
product_count INT,
active_products INT,
total_stock_units INT,
total_stock_cost DECIMAL(15,2),
total_stock_retail DECIMAL(15,2),
total_revenue DECIMAL(15,2),
avg_margin DECIMAL(5,2),
PRIMARY KEY (brand),
INDEX (total_revenue),
INDEX (product_count)
) ENGINE=MEMORY
`);
await connection.query(`
CREATE TEMPORARY TABLE temp_sales_stats (
brand VARCHAR(100) NOT NULL,
current_period_sales DECIMAL(15,2),
previous_period_sales DECIMAL(15,2),
PRIMARY KEY (brand),
INDEX (current_period_sales),
INDEX (previous_period_sales)
) ENGINE=MEMORY
`);
// Populate product stats with optimized index usage
await connection.query(`
INSERT INTO temp_product_stats
SELECT SELECT
p.brand, p.brand,
SUM(o.quantity * (o.price - COALESCE(o.discount, 0))) as period_revenue, COUNT(DISTINCT p.pid) as product_count,
SUM(o.quantity * (o.price - COALESCE(o.discount, 0) - p.cost_price)) as period_margin, COUNT(DISTINCT CASE WHEN p.visible = true THEN p.pid END) as active_products,
COUNT(DISTINCT DATE(o.date)) as period_days, COALESCE(SUM(p.stock_quantity), 0) as total_stock_units,
CASE COALESCE(SUM(p.stock_quantity * p.cost_price), 0) as total_stock_cost,
WHEN o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 3 MONTH) THEN 'current' COALESCE(SUM(p.stock_quantity * p.price), 0) as total_stock_retail,
WHEN o.date BETWEEN DATE_SUB(CURRENT_DATE, INTERVAL 15 MONTH) COALESCE(SUM(pm.total_revenue), 0) as total_revenue,
AND DATE_SUB(CURRENT_DATE, INTERVAL 12 MONTH) THEN 'previous' COALESCE(AVG(NULLIF(pm.avg_margin_percent, 0)), 0) as avg_margin
END as period_type FROM products p
FROM filtered_products p FORCE INDEX (idx_brand)
JOIN orders o ON p.pid = o.pid LEFT JOIN product_metrics pm FORCE INDEX (PRIMARY) ON p.pid = pm.pid
WHERE o.canceled = false WHERE p.brand IN (?)
AND o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 15 MONTH) AND (
GROUP BY p.brand, period_type p.updated > ?
), OR EXISTS (
brand_data AS ( SELECT 1 FROM orders o FORCE INDEX (idx_orders_metrics)
SELECT WHERE o.pid = p.pid
p.brand, AND o.updated > ?
COUNT(DISTINCT p.valid_pid) as product_count,
COUNT(DISTINCT p.active_pid) as active_products,
SUM(p.valid_stock) as total_stock_units,
SUM(p.valid_stock * p.cost_price) as total_stock_cost,
SUM(p.valid_stock * p.price) as total_stock_retail,
COALESCE(SUM(o.quantity * (o.price - COALESCE(o.discount, 0))), 0) as total_revenue,
CASE
WHEN SUM(o.quantity * o.price) > 0
THEN GREATEST(
-100.0,
LEAST(
100.0,
(
SUM(o.quantity * o.price) - -- Use gross revenue (before discounts)
SUM(o.quantity * COALESCE(p.cost_price, 0)) -- Total costs
) * 100.0 /
NULLIF(SUM(o.quantity * o.price), 0) -- Divide by gross revenue
)
)
ELSE 0
END as avg_margin
FROM filtered_products p
LEFT JOIN orders o ON p.pid = o.pid AND o.canceled = false
GROUP BY p.brand
)
SELECT
bd.brand,
bd.product_count,
bd.active_products,
bd.total_stock_units,
bd.total_stock_cost,
bd.total_stock_retail,
bd.total_revenue,
bd.avg_margin,
CASE
WHEN MAX(CASE WHEN sp.period_type = 'previous' THEN sp.period_revenue END) = 0
AND MAX(CASE WHEN sp.period_type = 'current' THEN sp.period_revenue END) > 0
THEN 100.0
WHEN MAX(CASE WHEN sp.period_type = 'previous' THEN sp.period_revenue END) = 0
THEN 0.0
ELSE GREATEST(
-100.0,
LEAST(
((MAX(CASE WHEN sp.period_type = 'current' THEN sp.period_revenue END) -
MAX(CASE WHEN sp.period_type = 'previous' THEN sp.period_revenue END)) /
NULLIF(ABS(MAX(CASE WHEN sp.period_type = 'previous' THEN sp.period_revenue END)), 0)) * 100.0,
999.99
) )
) )
END as growth_rate GROUP BY p.brand
FROM brand_data bd `, [batch.map(row => row.brand), lastCalculationTime, lastCalculationTime]);
LEFT JOIN sales_periods sp ON bd.brand = sp.brand
GROUP BY bd.brand, bd.product_count, bd.active_products, bd.total_stock_units,
bd.total_stock_cost, bd.total_stock_retail, bd.total_revenue, bd.avg_margin
ON DUPLICATE KEY UPDATE
product_count = VALUES(product_count),
active_products = VALUES(active_products),
total_stock_units = VALUES(total_stock_units),
total_stock_cost = VALUES(total_stock_cost),
total_stock_retail = VALUES(total_stock_retail),
total_revenue = VALUES(total_revenue),
avg_margin = VALUES(avg_margin),
growth_rate = VALUES(growth_rate),
last_calculated_at = CURRENT_TIMESTAMP
`);
processedCount = Math.floor(totalProducts * 0.97); // Populate sales stats with optimized date handling
outputProgress({ await connection.query(`
status: 'running', INSERT INTO temp_sales_stats
operation: 'Brand metrics calculated, starting time-based metrics', WITH date_ranges AS (
current: processedCount, SELECT
total: totalProducts, DATE_SUB(CURRENT_DATE, INTERVAL 30 DAY) as current_start,
elapsed: formatElapsedTime(startTime), CURRENT_DATE as current_end,
remaining: estimateRemaining(startTime, processedCount, totalProducts), DATE_SUB(CURRENT_DATE, INTERVAL 60 DAY) as previous_start,
rate: calculateRate(startTime, processedCount), DATE_SUB(CURRENT_DATE, INTERVAL 30 DAY) as previous_end
percentage: ((processedCount / totalProducts) * 100).toFixed(1), )
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
if (isCancelled) return {
processedProducts: processedCount,
processedOrders,
processedPurchaseOrders: 0,
success
};
// Calculate brand time-based metrics with optimized query
await connection.query(`
INSERT INTO brand_time_metrics (
brand,
year,
month,
product_count,
active_products,
total_stock_units,
total_stock_cost,
total_stock_retail,
total_revenue,
avg_margin
)
WITH filtered_products AS (
SELECT
p.*,
CASE WHEN p.stock_quantity <= 5000 THEN p.pid END as valid_pid,
CASE WHEN p.visible = true AND p.stock_quantity <= 5000 THEN p.pid END as active_pid,
CASE
WHEN p.stock_quantity IS NULL OR p.stock_quantity < 0 OR p.stock_quantity > 5000 THEN 0
ELSE p.stock_quantity
END as valid_stock
FROM products p
WHERE p.brand IS NOT NULL
),
monthly_metrics AS (
SELECT SELECT
p.brand, p.brand,
YEAR(o.date) as year, COALESCE(SUM(
MONTH(o.date) as month, CASE WHEN o.date >= dr.current_start
COUNT(DISTINCT p.valid_pid) as product_count, THEN o.quantity * o.price
COUNT(DISTINCT p.active_pid) as active_products,
SUM(p.valid_stock) as total_stock_units,
SUM(p.valid_stock * p.cost_price) as total_stock_cost,
SUM(p.valid_stock * p.price) as total_stock_retail,
SUM(o.quantity * o.price) as total_revenue,
CASE
WHEN SUM(o.quantity * o.price) > 0
THEN GREATEST(
-100.0,
LEAST(
100.0,
(
SUM(o.quantity * o.price) - -- Use gross revenue (before discounts)
SUM(o.quantity * COALESCE(p.cost_price, 0)) -- Total costs
) * 100.0 /
NULLIF(SUM(o.quantity * o.price), 0) -- Divide by gross revenue
)
)
ELSE 0 ELSE 0
END as avg_margin END
FROM filtered_products p ), 0) as current_period_sales,
LEFT JOIN orders o ON p.pid = o.pid AND o.canceled = false COALESCE(SUM(
WHERE o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 12 MONTH) CASE WHEN o.date >= dr.previous_start AND o.date < dr.current_start
GROUP BY p.brand, YEAR(o.date), MONTH(o.date) THEN o.quantity * o.price
) ELSE 0
SELECT * END
FROM monthly_metrics ), 0) as previous_period_sales
ON DUPLICATE KEY UPDATE FROM products p
product_count = VALUES(product_count), FORCE INDEX (idx_brand)
active_products = VALUES(active_products), INNER JOIN orders o FORCE INDEX (idx_orders_metrics) ON p.pid = o.pid
total_stock_units = VALUES(total_stock_units), CROSS JOIN date_ranges dr
total_stock_cost = VALUES(total_stock_cost), WHERE p.brand IN (?)
total_stock_retail = VALUES(total_stock_retail), AND o.canceled = false
total_revenue = VALUES(total_revenue), AND o.date >= dr.previous_start
avg_margin = VALUES(avg_margin) AND o.updated > ?
`); GROUP BY p.brand
`, [batch.map(row => row.brand), lastCalculationTime]);
processedCount = Math.floor(totalProducts * 0.99); // Update metrics using temp tables with optimized calculations
outputProgress({ await connection.query(`
status: 'running', INSERT INTO brand_metrics (
operation: 'Brand time-based metrics calculated', brand,
current: processedCount, product_count,
total: totalProducts, active_products,
elapsed: formatElapsedTime(startTime), total_stock_units,
remaining: estimateRemaining(startTime, processedCount, totalProducts), total_stock_cost,
rate: calculateRate(startTime, processedCount), total_stock_retail,
percentage: ((processedCount / totalProducts) * 100).toFixed(1), total_revenue,
timing: { avg_margin,
start_time: new Date(startTime).toISOString(), growth_rate,
end_time: new Date().toISOString(), last_calculated_at
elapsed_seconds: Math.round((Date.now() - startTime) / 1000) )
} SELECT
}); ps.brand,
ps.product_count,
ps.active_products,
ps.total_stock_units,
ps.total_stock_cost,
ps.total_stock_retail,
ps.total_revenue,
ps.avg_margin,
CASE
WHEN COALESCE(ss.previous_period_sales, 0) = 0 AND COALESCE(ss.current_period_sales, 0) > 0 THEN 100
WHEN COALESCE(ss.previous_period_sales, 0) = 0 THEN 0
ELSE ROUND(LEAST(999.99, GREATEST(-100,
((ss.current_period_sales / NULLIF(ss.previous_period_sales, 0)) - 1) * 100
)), 2)
END as growth_rate,
NOW() as last_calculated_at
FROM temp_product_stats ps
LEFT JOIN temp_sales_stats ss ON ps.brand = ss.brand
ON DUPLICATE KEY UPDATE
product_count = VALUES(product_count),
active_products = VALUES(active_products),
total_stock_units = VALUES(total_stock_units),
total_stock_cost = VALUES(total_stock_cost),
total_stock_retail = VALUES(total_stock_retail),
total_revenue = VALUES(total_revenue),
avg_margin = VALUES(avg_margin),
growth_rate = VALUES(growth_rate),
last_calculated_at = NOW()
`);
// Clean up temp tables
await connection.query('DROP TEMPORARY TABLE IF EXISTS temp_product_stats');
await connection.query('DROP TEMPORARY TABLE IF EXISTS temp_sales_stats');
lastBrand = batch[batch.length - 1].brand;
processedCount += batch.length;
outputProgress({
status: 'running',
operation: 'Processing brand metrics batch',
current: processedCount,
total: totalBrands,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalBrands),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalBrands) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
}
// If we get here, everything completed successfully // If we get here, everything completed successfully
success = true; success = true;
@@ -299,7 +274,7 @@ async function calculateBrandMetrics(startTime, totalProducts, processedCount =
return { return {
processedProducts: processedCount, processedProducts: processedCount,
processedOrders, processedOrders: 0,
processedPurchaseOrders: 0, processedPurchaseOrders: 0,
success success
}; };

View File

@@ -4,19 +4,52 @@ const { getConnection } = require('./utils/db');
async function calculateCategoryMetrics(startTime, totalProducts, processedCount = 0, isCancelled = false) { async function calculateCategoryMetrics(startTime, totalProducts, processedCount = 0, isCancelled = false) {
const connection = await getConnection(); const connection = await getConnection();
let success = false; let success = false;
let processedOrders = 0; const BATCH_SIZE = 5000;
try { try {
// Get last calculation timestamp
const [lastCalc] = await connection.query(`
SELECT last_calculation_timestamp
FROM calculate_status
WHERE module_name = 'category_metrics'
`);
const lastCalculationTime = lastCalc[0]?.last_calculation_timestamp || '1970-01-01';
// Get total count of categories needing updates
const [categoryCount] = await connection.query(`
SELECT COUNT(DISTINCT c.cat_id) as count
FROM categories c
JOIN product_categories pc ON c.cat_id = pc.cat_id
LEFT JOIN products p ON pc.pid = p.pid AND p.updated > ?
LEFT JOIN orders o ON p.pid = o.pid AND o.updated > ?
WHERE c.status = 'active'
AND (
p.pid IS NOT NULL
OR o.id IS NOT NULL
)
`, [lastCalculationTime, lastCalculationTime]);
const totalCategories = categoryCount[0].count;
if (totalCategories === 0) {
console.log('No categories need metric updates');
return {
processedProducts: 0,
processedOrders: 0,
processedPurchaseOrders: 0,
success: true
};
}
if (isCancelled) { if (isCancelled) {
outputProgress({ outputProgress({
status: 'cancelled', status: 'cancelled',
operation: 'Category metrics calculation cancelled', operation: 'Category metrics calculation cancelled',
current: processedCount, current: processedCount,
total: totalProducts, total: totalCategories,
elapsed: formatElapsedTime(startTime), elapsed: formatElapsedTime(startTime),
remaining: null, remaining: null,
rate: calculateRate(startTime, processedCount), rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1), percentage: ((processedCount / totalCategories) * 100).toFixed(1),
timing: { timing: {
start_time: new Date(startTime).toISOString(), start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(), end_time: new Date().toISOString(),
@@ -31,69 +64,15 @@ async function calculateCategoryMetrics(startTime, totalProducts, processedCount
}; };
} }
// Get order count that will be processed
const [orderCount] = await connection.query(`
SELECT COUNT(*) as count
FROM orders o
WHERE o.canceled = false
`);
processedOrders = orderCount[0].count;
outputProgress({ outputProgress({
status: 'running', status: 'running',
operation: 'Starting category metrics calculation', operation: 'Starting category metrics calculation',
current: processedCount, current: processedCount,
total: totalProducts, total: totalCategories,
elapsed: formatElapsedTime(startTime), elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts), remaining: estimateRemaining(startTime, processedCount, totalCategories),
rate: calculateRate(startTime, processedCount), rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1), percentage: ((processedCount / totalCategories) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
// First, calculate base category metrics
await connection.query(`
INSERT INTO category_metrics (
category_id,
product_count,
active_products,
total_value,
status,
last_calculated_at
)
SELECT
c.cat_id,
COUNT(DISTINCT p.pid) as product_count,
COUNT(DISTINCT CASE WHEN p.visible = true THEN p.pid END) as active_products,
COALESCE(SUM(p.stock_quantity * p.cost_price), 0) as total_value,
c.status,
NOW() as last_calculated_at
FROM categories c
LEFT JOIN product_categories pc ON c.cat_id = pc.cat_id
LEFT JOIN products p ON pc.pid = p.pid
GROUP BY c.cat_id, c.status
ON DUPLICATE KEY UPDATE
product_count = VALUES(product_count),
active_products = VALUES(active_products),
total_value = VALUES(total_value),
status = VALUES(status),
last_calculated_at = VALUES(last_calculated_at)
`);
processedCount = Math.floor(totalProducts * 0.90);
outputProgress({
status: 'running',
operation: 'Base category metrics calculated, updating with margin data',
current: processedCount,
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
timing: { timing: {
start_time: new Date(startTime).toISOString(), start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(), end_time: new Date().toISOString(),
@@ -101,395 +80,191 @@ async function calculateCategoryMetrics(startTime, totalProducts, processedCount
} }
}); });
if (isCancelled) return { // Process in batches
processedProducts: processedCount, let lastCatId = 0;
processedOrders, while (true) {
processedPurchaseOrders: 0, if (isCancelled) break;
success
};
// Then update with margin and turnover data const [batch] = await connection.query(`
await connection.query(` SELECT DISTINCT c.cat_id
WITH category_sales AS ( FROM categories c
FORCE INDEX (PRIMARY)
JOIN product_categories pc FORCE INDEX (idx_category) ON c.cat_id = pc.cat_id
LEFT JOIN products p FORCE INDEX (PRIMARY) ON pc.pid = p.pid AND p.updated > ?
LEFT JOIN orders o FORCE INDEX (idx_orders_metrics) ON p.pid = o.pid AND o.updated > ?
WHERE c.status = 'active'
AND c.cat_id > ?
AND (
p.pid IS NOT NULL
OR o.id IS NOT NULL
)
ORDER BY c.cat_id
LIMIT ?
`, [lastCalculationTime, lastCalculationTime, lastCatId, BATCH_SIZE]);
if (batch.length === 0) break;
// Create temporary tables for better performance
await connection.query('DROP TEMPORARY TABLE IF EXISTS temp_product_stats');
await connection.query('DROP TEMPORARY TABLE IF EXISTS temp_sales_stats');
await connection.query(`
CREATE TEMPORARY TABLE temp_product_stats (
cat_id BIGINT NOT NULL,
product_count INT,
active_products INT,
total_value DECIMAL(15,2),
avg_margin DECIMAL(5,2),
turnover_rate DECIMAL(10,2),
PRIMARY KEY (cat_id),
INDEX (product_count),
INDEX (total_value)
) ENGINE=MEMORY
`);
await connection.query(`
CREATE TEMPORARY TABLE temp_sales_stats (
cat_id BIGINT NOT NULL,
recent_revenue DECIMAL(15,2),
previous_revenue DECIMAL(15,2),
PRIMARY KEY (cat_id),
INDEX (recent_revenue),
INDEX (previous_revenue)
) ENGINE=MEMORY
`);
// Populate product stats with optimized index usage
await connection.query(`
INSERT INTO temp_product_stats
SELECT SELECT
pc.cat_id, c.cat_id,
SUM(o.quantity * o.price) as total_sales, COUNT(DISTINCT p.pid) as product_count,
SUM(o.quantity * (o.price - p.cost_price)) as total_margin, COUNT(DISTINCT CASE WHEN p.visible = true THEN p.pid END) as active_products,
SUM(o.quantity) as units_sold, COALESCE(SUM(p.stock_quantity * p.cost_price), 0) as total_value,
AVG(GREATEST(p.stock_quantity, 0)) as avg_stock, COALESCE(AVG(NULLIF(pm.avg_margin_percent, 0)), 0) as avg_margin,
COUNT(DISTINCT DATE(o.date)) as active_days COALESCE(AVG(NULLIF(pm.turnover_rate, 0)), 0) as turnover_rate
FROM product_categories pc FROM categories c
JOIN products p ON pc.pid = p.pid FORCE INDEX (PRIMARY)
JOIN orders o ON p.pid = o.pid INNER JOIN product_categories pc FORCE INDEX (idx_category) ON c.cat_id = pc.cat_id
LEFT JOIN turnover_config tc ON LEFT JOIN products p FORCE INDEX (PRIMARY) ON pc.pid = p.pid
(tc.category_id = pc.cat_id AND tc.vendor = p.vendor) OR LEFT JOIN product_metrics pm FORCE INDEX (PRIMARY) ON p.pid = pm.pid
(tc.category_id = pc.cat_id AND tc.vendor IS NULL) OR WHERE c.cat_id IN (?)
(tc.category_id IS NULL AND tc.vendor = p.vendor) OR AND (
(tc.category_id IS NULL AND tc.vendor IS NULL) p.updated > ?
WHERE o.canceled = false OR EXISTS (
AND o.date >= DATE_SUB(CURRENT_DATE, INTERVAL COALESCE(tc.calculation_period_days, 30) DAY) SELECT 1 FROM orders o FORCE INDEX (idx_orders_metrics)
GROUP BY pc.cat_id WHERE o.pid = p.pid
) AND o.updated > ?
UPDATE category_metrics cm )
JOIN category_sales cs ON cm.category_id = cs.cat_id
LEFT JOIN turnover_config tc ON
(tc.category_id = cm.category_id AND tc.vendor IS NULL) OR
(tc.category_id IS NULL AND tc.vendor IS NULL)
SET
cm.avg_margin = COALESCE(cs.total_margin * 100.0 / NULLIF(cs.total_sales, 0), 0),
cm.turnover_rate = CASE
WHEN cs.avg_stock > 0 AND cs.active_days > 0
THEN LEAST(
(cs.units_sold / cs.avg_stock) * (365.0 / cs.active_days),
999.99
) )
ELSE 0 GROUP BY c.cat_id
END, `, [batch.map(row => row.cat_id), lastCalculationTime, lastCalculationTime]);
cm.last_calculated_at = NOW()
`);
processedCount = Math.floor(totalProducts * 0.95); // Populate sales stats with optimized date handling
outputProgress({ await connection.query(`
status: 'running', INSERT INTO temp_sales_stats
operation: 'Margin data updated, calculating growth rates', WITH date_ranges AS (
current: processedCount, SELECT
total: totalProducts, DATE_SUB(CURRENT_DATE, INTERVAL 30 DAY) as current_start,
elapsed: formatElapsedTime(startTime), CURRENT_DATE as current_end,
remaining: estimateRemaining(startTime, processedCount, totalProducts), DATE_SUB(CURRENT_DATE, INTERVAL 60 DAY) as previous_start,
rate: calculateRate(startTime, processedCount), DATE_SUB(CURRENT_DATE, INTERVAL 30 DAY) as previous_end
percentage: ((processedCount / totalProducts) * 100).toFixed(1), )
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
if (isCancelled) return {
processedProducts: processedCount,
processedOrders,
processedPurchaseOrders: 0,
success
};
// Finally update growth rates
await connection.query(`
WITH current_period AS (
SELECT SELECT
pc.cat_id, c.cat_id,
SUM(o.quantity * (o.price - COALESCE(o.discount, 0)) / COALESCE(SUM(
(1 + COALESCE(ss.seasonality_factor, 0))) as revenue, CASE WHEN o.date >= dr.current_start
SUM(o.quantity * (o.price - COALESCE(o.discount, 0) - p.cost_price)) as gross_profit, THEN o.quantity * o.price
COUNT(DISTINCT DATE(o.date)) as days ELSE 0
FROM product_categories pc END
JOIN products p ON pc.pid = p.pid ), 0) as recent_revenue,
JOIN orders o ON p.pid = o.pid COALESCE(SUM(
LEFT JOIN sales_seasonality ss ON MONTH(o.date) = ss.month CASE WHEN o.date >= dr.previous_start AND o.date < dr.current_start
WHERE o.canceled = false THEN o.quantity * o.price
AND o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 3 MONTH) ELSE 0
GROUP BY pc.cat_id END
), ), 0) as previous_revenue
previous_period AS ( FROM categories c
SELECT FORCE INDEX (PRIMARY)
pc.cat_id, INNER JOIN product_categories pc FORCE INDEX (idx_category) ON c.cat_id = pc.cat_id
SUM(o.quantity * (o.price - COALESCE(o.discount, 0)) / INNER JOIN products p FORCE INDEX (PRIMARY) ON pc.pid = p.pid
(1 + COALESCE(ss.seasonality_factor, 0))) as revenue, INNER JOIN orders o FORCE INDEX (idx_orders_metrics) ON p.pid = o.pid
COUNT(DISTINCT DATE(o.date)) as days
FROM product_categories pc
JOIN products p ON pc.pid = p.pid
JOIN orders o ON p.pid = o.pid
LEFT JOIN sales_seasonality ss ON MONTH(o.date) = ss.month
WHERE o.canceled = false
AND o.date BETWEEN DATE_SUB(CURRENT_DATE, INTERVAL 15 MONTH)
AND DATE_SUB(CURRENT_DATE, INTERVAL 12 MONTH)
GROUP BY pc.cat_id
),
trend_data AS (
SELECT
pc.cat_id,
MONTH(o.date) as month,
SUM(o.quantity * (o.price - COALESCE(o.discount, 0)) /
(1 + COALESCE(ss.seasonality_factor, 0))) as revenue,
COUNT(DISTINCT DATE(o.date)) as days_in_month
FROM product_categories pc
JOIN products p ON pc.pid = p.pid
JOIN orders o ON p.pid = o.pid
LEFT JOIN sales_seasonality ss ON MONTH(o.date) = ss.month
WHERE o.canceled = false
AND o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 15 MONTH)
GROUP BY pc.cat_id, MONTH(o.date)
),
trend_stats AS (
SELECT
cat_id,
COUNT(*) as n,
AVG(month) as avg_x,
AVG(revenue / NULLIF(days_in_month, 0)) as avg_y,
SUM(month * (revenue / NULLIF(days_in_month, 0))) as sum_xy,
SUM(month * month) as sum_xx
FROM trend_data
GROUP BY cat_id
HAVING COUNT(*) >= 6
),
trend_analysis AS (
SELECT
cat_id,
((n * sum_xy) - (avg_x * n * avg_y)) /
NULLIF((n * sum_xx) - (n * avg_x * avg_x), 0) as trend_slope,
avg_y as avg_daily_revenue
FROM trend_stats
),
margin_calc AS (
SELECT
pc.cat_id,
CASE
WHEN SUM(o.quantity * o.price) > 0 THEN
GREATEST(
-100.0,
LEAST(
100.0,
(
SUM(o.quantity * o.price) - -- Use gross revenue (before discounts)
SUM(o.quantity * COALESCE(p.cost_price, 0)) -- Total costs
) * 100.0 /
NULLIF(SUM(o.quantity * o.price), 0) -- Divide by gross revenue
)
)
ELSE NULL
END as avg_margin
FROM product_categories pc
JOIN products p ON pc.pid = p.pid
JOIN orders o ON p.pid = o.pid
WHERE o.canceled = false
AND o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 3 MONTH)
GROUP BY pc.cat_id
)
UPDATE category_metrics cm
LEFT JOIN current_period cp ON cm.category_id = cp.cat_id
LEFT JOIN previous_period pp ON cm.category_id = pp.cat_id
LEFT JOIN trend_analysis ta ON cm.category_id = ta.cat_id
LEFT JOIN margin_calc mc ON cm.category_id = mc.cat_id
SET
cm.growth_rate = CASE
WHEN pp.revenue = 0 AND COALESCE(cp.revenue, 0) > 0 THEN 100.0
WHEN pp.revenue = 0 OR cp.revenue IS NULL THEN 0.0
WHEN ta.trend_slope IS NOT NULL THEN
GREATEST(
-100.0,
LEAST(
(ta.trend_slope / NULLIF(ta.avg_daily_revenue, 0)) * 365 * 100,
999.99
)
)
ELSE
GREATEST(
-100.0,
LEAST(
((COALESCE(cp.revenue, 0) - pp.revenue) /
NULLIF(ABS(pp.revenue), 0)) * 100.0,
999.99
)
)
END,
cm.avg_margin = COALESCE(mc.avg_margin, cm.avg_margin),
cm.last_calculated_at = NOW()
WHERE cp.cat_id IS NOT NULL OR pp.cat_id IS NOT NULL
`);
processedCount = Math.floor(totalProducts * 0.97);
outputProgress({
status: 'running',
operation: 'Growth rates calculated, updating time-based metrics',
current: processedCount,
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
if (isCancelled) return {
processedProducts: processedCount,
processedOrders,
processedPurchaseOrders: 0,
success
};
// Calculate time-based metrics
await connection.query(`
INSERT INTO category_time_metrics (
category_id,
year,
month,
product_count,
active_products,
total_value,
total_revenue,
avg_margin,
turnover_rate
)
SELECT
pc.cat_id,
YEAR(o.date) as year,
MONTH(o.date) as month,
COUNT(DISTINCT p.pid) as product_count,
COUNT(DISTINCT CASE WHEN p.visible = true THEN p.pid END) as active_products,
SUM(p.stock_quantity * p.cost_price) as total_value,
SUM(o.quantity * o.price) as total_revenue,
CASE
WHEN SUM(o.quantity * o.price) > 0 THEN
LEAST(
GREATEST(
SUM(o.quantity * (o.price - GREATEST(p.cost_price, 0))) * 100.0 /
SUM(o.quantity * o.price),
-100
),
100
)
ELSE 0
END as avg_margin,
COALESCE(
LEAST(
SUM(o.quantity) / NULLIF(AVG(GREATEST(p.stock_quantity, 0)), 0),
999.99
),
0
) as turnover_rate
FROM product_categories pc
JOIN products p ON pc.pid = p.pid
JOIN orders o ON p.pid = o.pid
WHERE o.canceled = false
AND o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 12 MONTH)
GROUP BY pc.cat_id, YEAR(o.date), MONTH(o.date)
ON DUPLICATE KEY UPDATE
product_count = VALUES(product_count),
active_products = VALUES(active_products),
total_value = VALUES(total_value),
total_revenue = VALUES(total_revenue),
avg_margin = VALUES(avg_margin),
turnover_rate = VALUES(turnover_rate)
`);
processedCount = Math.floor(totalProducts * 0.99);
outputProgress({
status: 'running',
operation: 'Time-based metrics calculated, updating category-sales metrics',
current: processedCount,
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
if (isCancelled) return {
processedProducts: processedCount,
processedOrders,
processedPurchaseOrders: 0,
success
};
// Calculate category-sales metrics
await connection.query(`
INSERT INTO category_sales_metrics (
category_id,
brand,
period_start,
period_end,
avg_daily_sales,
total_sold,
num_products,
avg_price,
last_calculated_at
)
WITH date_ranges AS (
SELECT
DATE_SUB(CURRENT_DATE, INTERVAL 30 DAY) as period_start,
CURRENT_DATE as period_end
UNION ALL
SELECT
DATE_SUB(CURRENT_DATE, INTERVAL 90 DAY),
DATE_SUB(CURRENT_DATE, INTERVAL 31 DAY)
UNION ALL
SELECT
DATE_SUB(CURRENT_DATE, INTERVAL 180 DAY),
DATE_SUB(CURRENT_DATE, INTERVAL 91 DAY)
UNION ALL
SELECT
DATE_SUB(CURRENT_DATE, INTERVAL 365 DAY),
DATE_SUB(CURRENT_DATE, INTERVAL 181 DAY)
),
sales_data AS (
SELECT
pc.cat_id,
COALESCE(p.brand, 'Unknown') as brand,
dr.period_start,
dr.period_end,
COUNT(DISTINCT p.pid) as num_products,
SUM(o.quantity) as total_sold,
SUM(o.quantity * o.price) as total_revenue,
COUNT(DISTINCT DATE(o.date)) as num_days
FROM products p
JOIN product_categories pc ON p.pid = pc.pid
JOIN orders o ON p.pid = o.pid
CROSS JOIN date_ranges dr CROSS JOIN date_ranges dr
WHERE o.canceled = false WHERE c.cat_id IN (?)
AND o.date BETWEEN dr.period_start AND dr.period_end AND o.canceled = false
GROUP BY pc.cat_id, p.brand, dr.period_start, dr.period_end AND o.date >= dr.previous_start
) AND o.updated > ?
SELECT GROUP BY c.cat_id
cat_id as category_id, `, [batch.map(row => row.cat_id), lastCalculationTime]);
brand,
period_start,
period_end,
CASE
WHEN num_days > 0
THEN total_sold / num_days
ELSE 0
END as avg_daily_sales,
total_sold,
num_products,
CASE
WHEN total_sold > 0
THEN total_revenue / total_sold
ELSE 0
END as avg_price,
NOW() as last_calculated_at
FROM sales_data
ON DUPLICATE KEY UPDATE
avg_daily_sales = VALUES(avg_daily_sales),
total_sold = VALUES(total_sold),
num_products = VALUES(num_products),
avg_price = VALUES(avg_price),
last_calculated_at = VALUES(last_calculated_at)
`);
processedCount = Math.floor(totalProducts * 1.0); // Update metrics using temp tables with optimized calculations
outputProgress({ await connection.query(`
status: 'running', INSERT INTO category_metrics (
operation: 'Category-sales metrics calculated', category_id,
current: processedCount, product_count,
total: totalProducts, active_products,
elapsed: formatElapsedTime(startTime), total_value,
remaining: estimateRemaining(startTime, processedCount, totalProducts), avg_margin,
rate: calculateRate(startTime, processedCount), turnover_rate,
percentage: ((processedCount / totalProducts) * 100).toFixed(1), growth_rate,
timing: { status,
start_time: new Date(startTime).toISOString(), last_calculated_at
end_time: new Date().toISOString(), )
elapsed_seconds: Math.round((Date.now() - startTime) / 1000) SELECT
} c.cat_id,
}); ps.product_count,
ps.active_products,
ps.total_value,
ps.avg_margin,
ps.turnover_rate,
CASE
WHEN COALESCE(ss.previous_revenue, 0) = 0 AND COALESCE(ss.recent_revenue, 0) > 0 THEN 100
WHEN COALESCE(ss.previous_revenue, 0) = 0 THEN 0
ELSE ROUND(LEAST(999.99, GREATEST(-100,
((ss.recent_revenue / NULLIF(ss.previous_revenue, 0)) - 1) * 100
)), 2)
END as growth_rate,
c.status,
NOW() as last_calculated_at
FROM categories c
FORCE INDEX (PRIMARY)
LEFT JOIN temp_product_stats ps ON c.cat_id = ps.cat_id
LEFT JOIN temp_sales_stats ss ON c.cat_id = ss.cat_id
WHERE c.cat_id IN (?)
ON DUPLICATE KEY UPDATE
product_count = VALUES(product_count),
active_products = VALUES(active_products),
total_value = VALUES(total_value),
avg_margin = VALUES(avg_margin),
turnover_rate = VALUES(turnover_rate),
growth_rate = VALUES(growth_rate),
status = VALUES(status),
last_calculated_at = NOW()
`, [batch.map(row => row.cat_id)]);
// Clean up temp tables
await connection.query('DROP TEMPORARY TABLE IF EXISTS temp_product_stats');
await connection.query('DROP TEMPORARY TABLE IF EXISTS temp_sales_stats');
lastCatId = batch[batch.length - 1].cat_id;
processedCount += batch.length;
outputProgress({
status: 'running',
operation: 'Processing category metrics batch',
current: processedCount,
total: totalCategories,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalCategories),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalCategories) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
}
// If we get here, everything completed successfully // If we get here, everything completed successfully
success = true; success = true;
@@ -503,7 +278,7 @@ async function calculateCategoryMetrics(startTime, totalProducts, processedCount
return { return {
processedProducts: processedCount, processedProducts: processedCount,
processedOrders, processedOrders: 0,
processedPurchaseOrders: 0, processedPurchaseOrders: 0,
success success
}; };

View File

@@ -4,9 +4,39 @@ const { getConnection } = require('./utils/db');
async function calculateFinancialMetrics(startTime, totalProducts, processedCount = 0, isCancelled = false) { async function calculateFinancialMetrics(startTime, totalProducts, processedCount = 0, isCancelled = false) {
const connection = await getConnection(); const connection = await getConnection();
let success = false; let success = false;
let processedOrders = 0; const BATCH_SIZE = 5000;
try { try {
// Get last calculation timestamp
const [lastCalc] = await connection.query(`
SELECT last_calculation_timestamp
FROM calculate_status
WHERE module_name = 'financial_metrics'
`);
const lastCalculationTime = lastCalc[0]?.last_calculation_timestamp || '1970-01-01';
// Get total count of products needing updates
if (!totalProducts) {
const [productCount] = await connection.query(`
SELECT COUNT(DISTINCT p.pid) as count
FROM products p
LEFT JOIN orders o ON p.pid = o.pid AND o.updated > ?
WHERE p.updated > ?
OR o.pid IS NOT NULL
`, [lastCalculationTime, lastCalculationTime]);
totalProducts = productCount[0].count;
}
if (totalProducts === 0) {
console.log('No products need financial metric updates');
return {
processedProducts: 0,
processedOrders: 0,
processedPurchaseOrders: 0,
success: true
};
}
if (isCancelled) { if (isCancelled) {
outputProgress({ outputProgress({
status: 'cancelled', status: 'cancelled',
@@ -31,15 +61,6 @@ async function calculateFinancialMetrics(startTime, totalProducts, processedCoun
}; };
} }
// Get order count that will be processed
const [orderCount] = await connection.query(`
SELECT COUNT(*) as count
FROM orders o
WHERE o.canceled = false
AND DATE(o.date) >= DATE_SUB(CURDATE(), INTERVAL 12 MONTH)
`);
processedOrders = orderCount[0].count;
outputProgress({ outputProgress({
status: 'running', status: 'running',
operation: 'Starting financial metrics calculation', operation: 'Starting financial metrics calculation',
@@ -56,110 +77,80 @@ async function calculateFinancialMetrics(startTime, totalProducts, processedCoun
} }
}); });
// Calculate financial metrics with optimized query // Process in batches
await connection.query(` let lastPid = 0;
WITH product_financials AS ( while (true) {
SELECT if (isCancelled) break;
p.pid,
p.cost_price * p.stock_quantity as inventory_value, const [batch] = await connection.query(`
SUM(o.quantity * o.price) as total_revenue, SELECT DISTINCT p.pid
SUM(o.quantity * p.cost_price) as cost_of_goods_sold,
SUM(o.quantity * (o.price - p.cost_price)) as gross_profit,
MIN(o.date) as first_sale_date,
MAX(o.date) as last_sale_date,
DATEDIFF(MAX(o.date), MIN(o.date)) + 1 as calculation_period_days,
COUNT(DISTINCT DATE(o.date)) as active_days
FROM products p FROM products p
LEFT JOIN orders o ON p.pid = o.pid LEFT JOIN orders o ON p.pid = o.pid
WHERE o.canceled = false WHERE p.pid > ?
AND DATE(o.date) >= DATE_SUB(CURDATE(), INTERVAL 12 MONTH) AND (
GROUP BY p.pid p.updated > ?
) OR EXISTS (
UPDATE product_metrics pm SELECT 1 FROM orders o2
JOIN product_financials pf ON pm.pid = pf.pid WHERE o2.pid = p.pid
SET AND o2.updated > ?
pm.inventory_value = COALESCE(pf.inventory_value, 0), )
pm.total_revenue = COALESCE(pf.total_revenue, 0), )
pm.cost_of_goods_sold = COALESCE(pf.cost_of_goods_sold, 0), ORDER BY p.pid
pm.gross_profit = COALESCE(pf.gross_profit, 0), LIMIT ?
pm.gmroi = CASE `, [lastPid, lastCalculationTime, lastCalculationTime, BATCH_SIZE]);
WHEN COALESCE(pf.inventory_value, 0) > 0 AND pf.active_days > 0 THEN
(COALESCE(pf.gross_profit, 0) * (365.0 / pf.active_days)) / COALESCE(pf.inventory_value, 0)
ELSE 0
END,
pm.last_calculated_at = CURRENT_TIMESTAMP
`);
processedCount = Math.floor(totalProducts * 0.65); if (batch.length === 0) break;
outputProgress({
status: 'running',
operation: 'Base financial metrics calculated, updating time aggregates',
current: processedCount,
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
if (isCancelled) return { // Update financial metrics for this batch
processedProducts: processedCount, await connection.query(`
processedOrders, UPDATE product_metrics pm
processedPurchaseOrders: 0, JOIN (
success SELECT
}; p.pid,
p.cost_price * p.stock_quantity as inventory_value,
SUM(o.quantity * o.price) as total_revenue,
SUM(o.quantity * p.cost_price) as cost_of_goods_sold,
SUM(o.quantity * (o.price - p.cost_price)) as gross_profit,
COUNT(DISTINCT DATE(o.date)) as active_days
FROM products p
LEFT JOIN orders o ON p.pid = o.pid
AND o.canceled = false
AND o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 90 DAY)
WHERE p.pid IN (?)
GROUP BY p.pid
) fin ON pm.pid = fin.pid
SET
pm.inventory_value = COALESCE(fin.inventory_value, 0),
pm.total_revenue = COALESCE(fin.total_revenue, 0),
pm.cost_of_goods_sold = COALESCE(fin.cost_of_goods_sold, 0),
pm.gross_profit = COALESCE(fin.gross_profit, 0),
pm.gmroi = CASE
WHEN COALESCE(fin.inventory_value, 0) > 0 AND fin.active_days > 0
THEN (COALESCE(fin.gross_profit, 0) * (365.0 / fin.active_days)) / COALESCE(fin.inventory_value, 0)
ELSE 0
END,
pm.last_calculated_at = NOW()
`, [batch.map(row => row.pid)]);
// Update time-based aggregates with optimized query lastPid = batch[batch.length - 1].pid;
await connection.query(` processedCount += batch.length;
WITH monthly_financials AS (
SELECT
p.pid,
YEAR(o.date) as year,
MONTH(o.date) as month,
p.cost_price * p.stock_quantity as inventory_value,
SUM(o.quantity * (o.price - p.cost_price)) as gross_profit,
COUNT(DISTINCT DATE(o.date)) as active_days,
MIN(o.date) as period_start,
MAX(o.date) as period_end
FROM products p
LEFT JOIN orders o ON p.pid = o.pid
WHERE o.canceled = false
GROUP BY p.pid, YEAR(o.date), MONTH(o.date)
)
UPDATE product_time_aggregates pta
JOIN monthly_financials mf ON pta.pid = mf.pid
AND pta.year = mf.year
AND pta.month = mf.month
SET
pta.inventory_value = COALESCE(mf.inventory_value, 0),
pta.gmroi = CASE
WHEN COALESCE(mf.inventory_value, 0) > 0 AND mf.active_days > 0 THEN
(COALESCE(mf.gross_profit, 0) * (365.0 / mf.active_days)) / COALESCE(mf.inventory_value, 0)
ELSE 0
END
`);
processedCount = Math.floor(totalProducts * 0.70); outputProgress({
outputProgress({ status: 'running',
status: 'running', operation: 'Processing financial metrics batch',
operation: 'Time-based aggregates updated', current: processedCount,
current: processedCount, total: totalProducts,
total: totalProducts, elapsed: formatElapsedTime(startTime),
elapsed: formatElapsedTime(startTime), remaining: estimateRemaining(startTime, processedCount, totalProducts),
remaining: estimateRemaining(startTime, processedCount, totalProducts), rate: calculateRate(startTime, processedCount),
rate: calculateRate(startTime, processedCount), percentage: ((processedCount / totalProducts) * 100).toFixed(1),
percentage: ((processedCount / totalProducts) * 100).toFixed(1), timing: {
timing: { start_time: new Date(startTime).toISOString(),
start_time: new Date(startTime).toISOString(), end_time: new Date().toISOString(),
end_time: new Date().toISOString(), elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
elapsed_seconds: Math.round((Date.now() - startTime) / 1000) }
} });
}); }
// If we get here, everything completed successfully // If we get here, everything completed successfully
success = true; success = true;
@@ -173,7 +164,7 @@ async function calculateFinancialMetrics(startTime, totalProducts, processedCoun
return { return {
processedProducts: processedCount, processedProducts: processedCount,
processedOrders, processedOrders: 0,
processedPurchaseOrders: 0, processedPurchaseOrders: 0,
success success
}; };

View File

@@ -16,16 +16,42 @@ async function calculateProductMetrics(startTime, totalProducts, processedCount
const BATCH_SIZE = 5000; const BATCH_SIZE = 5000;
try { try {
// Skip flags are inherited from the parent scope // Get last calculation timestamp
const SKIP_PRODUCT_BASE_METRICS = 0; const [lastCalc] = await connection.query(`
const SKIP_PRODUCT_TIME_AGGREGATES = 0; SELECT last_calculation_timestamp
FROM calculate_status
WHERE module_name = 'product_metrics'
`);
const lastCalculationTime = lastCalc[0]?.last_calculation_timestamp || '1970-01-01';
// Get total product count if not provided // Get total product count if not provided
if (!totalProducts) { if (!totalProducts) {
const [productCount] = await connection.query('SELECT COUNT(*) as count FROM products'); const [productCount] = await connection.query(`
SELECT COUNT(DISTINCT p.pid) as count
FROM products p
LEFT JOIN orders o ON p.pid = o.pid AND o.updated > ?
LEFT JOIN purchase_orders po ON p.pid = po.pid AND po.updated > ?
WHERE p.updated > ?
OR o.pid IS NOT NULL
OR po.pid IS NOT NULL
`, [lastCalculationTime, lastCalculationTime, lastCalculationTime]);
totalProducts = productCount[0].count; totalProducts = productCount[0].count;
} }
if (totalProducts === 0) {
console.log('No products need updating');
return {
processedProducts: 0,
processedOrders: 0,
processedPurchaseOrders: 0,
success: true
};
}
// Skip flags are inherited from the parent scope
const SKIP_PRODUCT_BASE_METRICS = 0;
const SKIP_PRODUCT_TIME_AGGREGATES = 0;
if (isCancelled) { if (isCancelled) {
outputProgress({ outputProgress({
status: 'cancelled', status: 'cancelled',
@@ -93,10 +119,39 @@ async function calculateProductMetrics(startTime, totalProducts, processedCount
processedOrders = orderCount[0].count; processedOrders = orderCount[0].count;
// Clear temporary tables // Clear temporary tables
await connection.query('TRUNCATE TABLE temp_sales_metrics'); await connection.query('DROP TEMPORARY TABLE IF EXISTS temp_sales_metrics');
await connection.query('TRUNCATE TABLE temp_purchase_metrics'); await connection.query('DROP TEMPORARY TABLE IF EXISTS temp_purchase_metrics');
// Populate temp_sales_metrics with base stats and sales averages // Create optimized temporary tables with indexes
await connection.query(`
CREATE TEMPORARY TABLE temp_sales_metrics (
pid BIGINT NOT NULL,
daily_sales_avg DECIMAL(10,3),
weekly_sales_avg DECIMAL(10,3),
monthly_sales_avg DECIMAL(10,3),
total_revenue DECIMAL(10,2),
avg_margin_percent DECIMAL(5,2),
first_sale_date DATE,
last_sale_date DATE,
PRIMARY KEY (pid),
INDEX (daily_sales_avg),
INDEX (total_revenue)
) ENGINE=MEMORY
`);
await connection.query(`
CREATE TEMPORARY TABLE temp_purchase_metrics (
pid BIGINT NOT NULL,
avg_lead_time_days DECIMAL(5,1),
last_purchase_date DATE,
first_received_date DATE,
last_received_date DATE,
PRIMARY KEY (pid),
INDEX (avg_lead_time_days)
) ENGINE=MEMORY
`);
// Populate temp_sales_metrics with base stats and sales averages using FORCE INDEX
await connection.query(` await connection.query(`
INSERT INTO temp_sales_metrics INSERT INTO temp_sales_metrics
SELECT SELECT
@@ -113,13 +168,21 @@ async function calculateProductMetrics(startTime, totalProducts, processedCount
MIN(o.date) as first_sale_date, MIN(o.date) as first_sale_date,
MAX(o.date) as last_sale_date MAX(o.date) as last_sale_date
FROM products p FROM products p
LEFT JOIN orders o ON p.pid = o.pid FORCE INDEX (PRIMARY)
AND o.canceled = false LEFT JOIN orders o FORCE INDEX (idx_orders_metrics) ON p.pid = o.pid
AND o.date >= DATE_SUB(CURDATE(), INTERVAL 90 DAY) AND o.canceled = false
AND o.date >= DATE_SUB(CURDATE(), INTERVAL 90 DAY)
WHERE p.updated > ?
OR EXISTS (
SELECT 1 FROM orders o2 FORCE INDEX (idx_orders_metrics)
WHERE o2.pid = p.pid
AND o2.canceled = false
AND o2.updated > ?
)
GROUP BY p.pid GROUP BY p.pid
`); `, [lastCalculationTime, lastCalculationTime]);
// Populate temp_purchase_metrics // Populate temp_purchase_metrics with optimized index usage
await connection.query(` await connection.query(`
INSERT INTO temp_purchase_metrics INSERT INTO temp_purchase_metrics
SELECT SELECT
@@ -129,21 +192,38 @@ async function calculateProductMetrics(startTime, totalProducts, processedCount
MIN(po.received_date) as first_received_date, MIN(po.received_date) as first_received_date,
MAX(po.received_date) as last_received_date MAX(po.received_date) as last_received_date
FROM products p FROM products p
LEFT JOIN purchase_orders po ON p.pid = po.pid FORCE INDEX (PRIMARY)
AND po.received_date IS NOT NULL LEFT JOIN purchase_orders po FORCE INDEX (idx_po_metrics) ON p.pid = po.pid
AND po.date >= DATE_SUB(CURDATE(), INTERVAL 365 DAY) AND po.received_date IS NOT NULL
AND po.date >= DATE_SUB(CURDATE(), INTERVAL 365 DAY)
WHERE p.updated > ?
OR EXISTS (
SELECT 1 FROM purchase_orders po2 FORCE INDEX (idx_po_metrics)
WHERE po2.pid = p.pid
AND po2.updated > ?
)
GROUP BY p.pid GROUP BY p.pid
`); `, [lastCalculationTime, lastCalculationTime]);
// Process updates in batches // Process updates in batches, but only for affected products
let lastPid = 0; let lastPid = 0;
while (true) { while (true) {
if (isCancelled) break; if (isCancelled) break;
const [batch] = await connection.query( const [batch] = await connection.query(`
'SELECT pid FROM products WHERE pid > ? ORDER BY pid LIMIT ?', SELECT DISTINCT p.pid
[lastPid, BATCH_SIZE] FROM products p
); LEFT JOIN orders o ON p.pid = o.pid AND o.updated > ?
LEFT JOIN purchase_orders po ON p.pid = po.pid AND po.updated > ?
WHERE p.pid > ?
AND (
p.updated > ?
OR o.pid IS NOT NULL
OR po.pid IS NOT NULL
)
ORDER BY p.pid
LIMIT ?
`, [lastCalculationTime, lastCalculationTime, lastPid, lastCalculationTime, BATCH_SIZE]);
if (batch.length === 0) break; if (batch.length === 0) break;
@@ -153,7 +233,7 @@ async function calculateProductMetrics(startTime, totalProducts, processedCount
LEFT JOIN temp_sales_metrics sm ON pm.pid = sm.pid LEFT JOIN temp_sales_metrics sm ON pm.pid = sm.pid
LEFT JOIN temp_purchase_metrics lm ON pm.pid = lm.pid LEFT JOIN temp_purchase_metrics lm ON pm.pid = lm.pid
SET SET
pm.inventory_value = p.stock_quantity * NULLIF(p.cost_price, 0), pm.inventory_value = p.stock_quantity * p.cost_price,
pm.daily_sales_avg = COALESCE(sm.daily_sales_avg, 0), pm.daily_sales_avg = COALESCE(sm.daily_sales_avg, 0),
pm.weekly_sales_avg = COALESCE(sm.weekly_sales_avg, 0), pm.weekly_sales_avg = COALESCE(sm.weekly_sales_avg, 0),
pm.monthly_sales_avg = COALESCE(sm.monthly_sales_avg, 0), pm.monthly_sales_avg = COALESCE(sm.monthly_sales_avg, 0),
@@ -164,12 +244,12 @@ async function calculateProductMetrics(startTime, totalProducts, processedCount
pm.avg_lead_time_days = COALESCE(lm.avg_lead_time_days, 30), pm.avg_lead_time_days = COALESCE(lm.avg_lead_time_days, 30),
pm.days_of_inventory = CASE pm.days_of_inventory = CASE
WHEN COALESCE(sm.daily_sales_avg, 0) > 0 WHEN COALESCE(sm.daily_sales_avg, 0) > 0
THEN FLOOR(p.stock_quantity / NULLIF(sm.daily_sales_avg, 0)) THEN FLOOR(p.stock_quantity / sm.daily_sales_avg)
ELSE NULL ELSE NULL
END, END,
pm.weeks_of_inventory = CASE pm.weeks_of_inventory = CASE
WHEN COALESCE(sm.weekly_sales_avg, 0) > 0 WHEN COALESCE(sm.weekly_sales_avg, 0) > 0
THEN FLOOR(p.stock_quantity / NULLIF(sm.weekly_sales_avg, 0)) THEN FLOOR(p.stock_quantity / sm.weekly_sales_avg)
ELSE NULL ELSE NULL
END, END,
pm.stock_status = CASE pm.stock_status = CASE
@@ -181,21 +261,10 @@ async function calculateProductMetrics(startTime, totalProducts, processedCount
WHEN p.stock_quantity / NULLIF(sm.daily_sales_avg, 0) > ? THEN 'Overstocked' WHEN p.stock_quantity / NULLIF(sm.daily_sales_avg, 0) > ? THEN 'Overstocked'
ELSE 'Healthy' ELSE 'Healthy'
END, END,
pm.safety_stock = CASE
WHEN COALESCE(sm.daily_sales_avg, 0) > 0 THEN
CEIL(sm.daily_sales_avg * SQRT(COALESCE(lm.avg_lead_time_days, 30)) * 1.96)
ELSE ?
END,
pm.reorder_point = CASE
WHEN COALESCE(sm.daily_sales_avg, 0) > 0 THEN
CEIL(sm.daily_sales_avg * COALESCE(lm.avg_lead_time_days, 30)) +
CEIL(sm.daily_sales_avg * SQRT(COALESCE(lm.avg_lead_time_days, 30)) * 1.96)
ELSE ?
END,
pm.reorder_qty = CASE pm.reorder_qty = CASE
WHEN COALESCE(sm.daily_sales_avg, 0) > 0 AND NULLIF(p.cost_price, 0) IS NOT NULL THEN WHEN COALESCE(sm.daily_sales_avg, 0) > 0 THEN
GREATEST( GREATEST(
CEIL(SQRT((2 * (sm.daily_sales_avg * 365) * 25) / (NULLIF(p.cost_price, 0) * 0.25))), CEIL(sm.daily_sales_avg * COALESCE(lm.avg_lead_time_days, 30) * 1.96),
? ?
) )
ELSE ? ELSE ?
@@ -206,22 +275,18 @@ async function calculateProductMetrics(startTime, totalProducts, processedCount
ELSE 0 ELSE 0
END, END,
pm.last_calculated_at = NOW() pm.last_calculated_at = NOW()
WHERE p.pid IN (${batch.map(() => '?').join(',')}) WHERE p.pid IN (?)
`, `, [
[
defaultThresholds.low_stock_threshold, defaultThresholds.low_stock_threshold,
defaultThresholds.critical_days, defaultThresholds.critical_days,
defaultThresholds.reorder_days, defaultThresholds.reorder_days,
defaultThresholds.overstock_days, defaultThresholds.overstock_days,
defaultThresholds.low_stock_threshold, defaultThresholds.low_stock_threshold,
defaultThresholds.low_stock_threshold, defaultThresholds.low_stock_threshold,
defaultThresholds.low_stock_threshold,
defaultThresholds.low_stock_threshold,
defaultThresholds.overstock_days, defaultThresholds.overstock_days,
defaultThresholds.overstock_days, defaultThresholds.overstock_days,
...batch.map(row => row.pid) batch.map(row => row.pid)
] ]);
);
lastPid = batch[batch.length - 1].pid; lastPid = batch[batch.length - 1].pid;
processedCount += batch.length; processedCount += batch.length;
@@ -547,7 +612,7 @@ async function calculateProductMetrics(startTime, totalProducts, processedCount
// If we get here, everything completed successfully // If we get here, everything completed successfully
success = true; success = true;
// Update calculate_status // Update calculate_status with current timestamp
await connection.query(` await connection.query(`
INSERT INTO calculate_status (module_name, last_calculation_timestamp) INSERT INTO calculate_status (module_name, last_calculation_timestamp)
VALUES ('product_metrics', NOW()) VALUES ('product_metrics', NOW())
@@ -618,9 +683,9 @@ function calculateReorderQuantities(stock, stock_status, daily_sales_avg, avg_le
if (daily_sales_avg > 0) { if (daily_sales_avg > 0) {
const annual_demand = daily_sales_avg * 365; const annual_demand = daily_sales_avg * 365;
const order_cost = 25; // Fixed cost per order const order_cost = 25; // Fixed cost per order
const holding_cost = config.cost_price * 0.25; // 25% of unit cost as annual holding cost const holding_cost_percent = 0.25; // 25% annual holding cost
reorder_qty = Math.ceil(Math.sqrt((2 * annual_demand * order_cost) / holding_cost)); reorder_qty = Math.ceil(Math.sqrt((2 * annual_demand * order_cost) / holding_cost_percent));
} else { } else {
// If no sales data, use a basic calculation // If no sales data, use a basic calculation
reorder_qty = Math.max(safety_stock, config.low_stock_threshold); reorder_qty = Math.max(safety_stock, config.low_stock_threshold);

View File

@@ -4,19 +4,50 @@ const { getConnection } = require('./utils/db');
async function calculateSalesForecasts(startTime, totalProducts, processedCount = 0, isCancelled = false) { async function calculateSalesForecasts(startTime, totalProducts, processedCount = 0, isCancelled = false) {
const connection = await getConnection(); const connection = await getConnection();
let success = false; let success = false;
let processedOrders = 0; const BATCH_SIZE = 5000;
try { try {
// Get last calculation timestamp
const [lastCalc] = await connection.query(`
SELECT last_calculation_timestamp
FROM calculate_status
WHERE module_name = 'sales_forecasts'
`);
const lastCalculationTime = lastCalc[0]?.last_calculation_timestamp || '1970-01-01';
// Get total count of products needing updates
const [productCount] = await connection.query(`
SELECT COUNT(DISTINCT p.pid) as count
FROM products p
LEFT JOIN orders o ON p.pid = o.pid AND o.updated > ?
WHERE p.visible = true
AND (
p.updated > ?
OR o.id IS NOT NULL
)
`, [lastCalculationTime, lastCalculationTime]);
const totalProductsToUpdate = productCount[0].count;
if (totalProductsToUpdate === 0) {
console.log('No products need forecast updates');
return {
processedProducts: 0,
processedOrders: 0,
processedPurchaseOrders: 0,
success: true
};
}
if (isCancelled) { if (isCancelled) {
outputProgress({ outputProgress({
status: 'cancelled', status: 'cancelled',
operation: 'Sales forecasts calculation cancelled', operation: 'Sales forecast calculation cancelled',
current: processedCount, current: processedCount,
total: totalProducts, total: totalProductsToUpdate,
elapsed: formatElapsedTime(startTime), elapsed: formatElapsedTime(startTime),
remaining: null, remaining: null,
rate: calculateRate(startTime, processedCount), rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1), percentage: ((processedCount / totalProductsToUpdate) * 100).toFixed(1),
timing: { timing: {
start_time: new Date(startTime).toISOString(), start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(), end_time: new Date().toISOString(),
@@ -31,24 +62,15 @@ async function calculateSalesForecasts(startTime, totalProducts, processedCount
}; };
} }
// Get order count that will be processed
const [orderCount] = await connection.query(`
SELECT COUNT(*) as count
FROM orders o
WHERE o.canceled = false
AND o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 90 DAY)
`);
processedOrders = orderCount[0].count;
outputProgress({ outputProgress({
status: 'running', status: 'running',
operation: 'Starting sales forecasts calculation', operation: 'Starting sales forecast calculation',
current: processedCount, current: processedCount,
total: totalProducts, total: totalProductsToUpdate,
elapsed: formatElapsedTime(startTime), elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts), remaining: estimateRemaining(startTime, processedCount, totalProductsToUpdate),
rate: calculateRate(startTime, processedCount), rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1), percentage: ((processedCount / totalProductsToUpdate) * 100).toFixed(1),
timing: { timing: {
start_time: new Date(startTime).toISOString(), start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(), end_time: new Date().toISOString(),
@@ -56,365 +78,201 @@ async function calculateSalesForecasts(startTime, totalProducts, processedCount
} }
}); });
// First, create a temporary table for forecast dates // Process in batches
await connection.query(` let lastPid = '';
CREATE TEMPORARY TABLE IF NOT EXISTS temp_forecast_dates ( while (true) {
forecast_date DATE, if (isCancelled) break;
day_of_week INT,
month INT,
PRIMARY KEY (forecast_date)
)
`);
await connection.query(` const [batch] = await connection.query(`
INSERT INTO temp_forecast_dates SELECT DISTINCT p.pid
SELECT FROM products p
DATE_ADD(CURRENT_DATE, INTERVAL n DAY) as forecast_date, FORCE INDEX (PRIMARY)
DAYOFWEEK(DATE_ADD(CURRENT_DATE, INTERVAL n DAY)) as day_of_week, LEFT JOIN orders o FORCE INDEX (idx_orders_metrics) ON p.pid = o.pid AND o.updated > ?
MONTH(DATE_ADD(CURRENT_DATE, INTERVAL n DAY)) as month WHERE p.visible = true
FROM ( AND p.pid > ?
SELECT a.N + b.N * 10 as n AND (
FROM p.updated > ?
(SELECT 0 as N UNION SELECT 1 UNION SELECT 2 UNION SELECT 3 UNION SELECT 4 UNION OR o.id IS NOT NULL
SELECT 5 UNION SELECT 6 UNION SELECT 7 UNION SELECT 8 UNION SELECT 9) a, )
(SELECT 0 as N UNION SELECT 1 UNION SELECT 2) b ORDER BY p.pid
ORDER BY n LIMIT ?
LIMIT 31 `, [lastCalculationTime, lastPid, lastCalculationTime, BATCH_SIZE]);
) numbers
`);
processedCount = Math.floor(totalProducts * 0.92); if (batch.length === 0) break;
outputProgress({
status: 'running',
operation: 'Forecast dates prepared, calculating daily sales stats',
current: processedCount,
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
if (isCancelled) return { // Create temporary tables for better performance
processedProducts: processedCount, await connection.query('DROP TEMPORARY TABLE IF EXISTS temp_historical_sales');
processedOrders, await connection.query('DROP TEMPORARY TABLE IF EXISTS temp_sales_stats');
processedPurchaseOrders: 0, await connection.query('DROP TEMPORARY TABLE IF EXISTS temp_recent_trend');
success await connection.query('DROP TEMPORARY TABLE IF EXISTS temp_confidence_calc');
};
// Create temporary table for daily sales stats // Create optimized temporary tables with indexes
await connection.query(` await connection.query(`
CREATE TEMPORARY TABLE IF NOT EXISTS temp_daily_sales AS CREATE TEMPORARY TABLE temp_historical_sales (
SELECT pid BIGINT NOT NULL,
o.pid, sale_date DATE NOT NULL,
DAYOFWEEK(o.date) as day_of_week, daily_quantity INT,
SUM(o.quantity) as daily_quantity, daily_revenue DECIMAL(15,2),
SUM(o.price * o.quantity) as daily_revenue, PRIMARY KEY (pid, sale_date),
COUNT(DISTINCT DATE(o.date)) as day_count INDEX (sale_date)
FROM orders o ) ENGINE=MEMORY
WHERE o.canceled = false `);
AND o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 90 DAY)
GROUP BY o.pid, DAYOFWEEK(o.date)
`);
processedCount = Math.floor(totalProducts * 0.94); await connection.query(`
outputProgress({ CREATE TEMPORARY TABLE temp_sales_stats (
status: 'running', pid BIGINT NOT NULL,
operation: 'Daily sales stats calculated, preparing product stats', avg_daily_units DECIMAL(10,2),
current: processedCount, avg_daily_revenue DECIMAL(15,2),
total: totalProducts, std_daily_units DECIMAL(10,2),
elapsed: formatElapsedTime(startTime), days_with_sales INT,
remaining: estimateRemaining(startTime, processedCount, totalProducts), first_sale DATE,
rate: calculateRate(startTime, processedCount), last_sale DATE,
percentage: ((processedCount / totalProducts) * 100).toFixed(1), PRIMARY KEY (pid),
timing: { INDEX (days_with_sales),
start_time: new Date(startTime).toISOString(), INDEX (last_sale)
end_time: new Date().toISOString(), ) ENGINE=MEMORY
elapsed_seconds: Math.round((Date.now() - startTime) / 1000) `);
}
});
if (isCancelled) return { await connection.query(`
processedProducts: processedCount, CREATE TEMPORARY TABLE temp_recent_trend (
processedOrders, pid BIGINT NOT NULL,
processedPurchaseOrders: 0, recent_avg_units DECIMAL(10,2),
success recent_avg_revenue DECIMAL(15,2),
}; PRIMARY KEY (pid)
) ENGINE=MEMORY
`);
// Create temporary table for product stats await connection.query(`
await connection.query(` CREATE TEMPORARY TABLE temp_confidence_calc (
CREATE TEMPORARY TABLE IF NOT EXISTS temp_product_stats AS pid BIGINT NOT NULL,
SELECT confidence_level TINYINT,
pid, PRIMARY KEY (pid)
AVG(daily_revenue) as overall_avg_revenue, ) ENGINE=MEMORY
SUM(day_count) as total_days `);
FROM temp_daily_sales
GROUP BY pid
`);
processedCount = Math.floor(totalProducts * 0.96); // Populate historical sales with optimized index usage
outputProgress({ await connection.query(`
status: 'running', INSERT INTO temp_historical_sales
operation: 'Product stats prepared, calculating product-level forecasts',
current: processedCount,
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
if (isCancelled) return {
processedProducts: processedCount,
processedOrders,
processedPurchaseOrders: 0,
success
};
// Calculate product-level forecasts
await connection.query(`
INSERT INTO sales_forecasts (
pid,
forecast_date,
forecast_units,
forecast_revenue,
confidence_level,
last_calculated_at
)
WITH daily_stats AS (
SELECT SELECT
ds.pid, o.pid,
AVG(ds.daily_quantity) as avg_daily_qty, DATE(o.date) as sale_date,
STDDEV(ds.daily_quantity) as std_daily_qty, SUM(o.quantity) as daily_quantity,
COUNT(DISTINCT ds.day_count) as data_points, SUM(o.quantity * o.price) as daily_revenue
SUM(ds.day_count) as total_days, FROM orders o
AVG(ds.daily_revenue) as avg_daily_revenue, FORCE INDEX (idx_orders_metrics)
STDDEV(ds.daily_revenue) as std_daily_revenue, WHERE o.canceled = false
MIN(ds.daily_quantity) as min_daily_qty, AND o.pid IN (?)
MAX(ds.daily_quantity) as max_daily_qty, AND o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 180 DAY)
-- Calculate variance without using LAG GROUP BY o.pid, DATE(o.date)
COALESCE( `, [batch.map(row => row.pid)]);
STDDEV(ds.daily_quantity) / NULLIF(AVG(ds.daily_quantity), 0),
0
) as daily_variance_ratio
FROM temp_daily_sales ds
GROUP BY ds.pid
HAVING AVG(ds.daily_quantity) > 0
)
SELECT
ds.pid,
fd.forecast_date,
GREATEST(0,
ROUND(
ds.avg_daily_qty *
(1 + COALESCE(sf.seasonality_factor, 0)) *
CASE
WHEN ds.std_daily_qty / NULLIF(ds.avg_daily_qty, 0) > 1.5 THEN 0.85
WHEN ds.std_daily_qty / NULLIF(ds.avg_daily_qty, 0) > 1.0 THEN 0.9
WHEN ds.std_daily_qty / NULLIF(ds.avg_daily_qty, 0) > 0.5 THEN 0.95
ELSE 1.0
END,
2
)
) as forecast_units,
GREATEST(0,
ROUND(
COALESCE(
CASE
WHEN ds.data_points >= 4 THEN ds.avg_daily_revenue
ELSE ps.overall_avg_revenue
END *
(1 + COALESCE(sf.seasonality_factor, 0)) *
CASE
WHEN ds.std_daily_revenue / NULLIF(ds.avg_daily_revenue, 0) > 1.5 THEN 0.85
WHEN ds.std_daily_revenue / NULLIF(ds.avg_daily_revenue, 0) > 1.0 THEN 0.9
WHEN ds.std_daily_revenue / NULLIF(ds.avg_daily_revenue, 0) > 0.5 THEN 0.95
ELSE 1.0
END,
0
),
2
)
) as forecast_revenue,
CASE
WHEN ds.total_days >= 60 AND ds.daily_variance_ratio < 0.5 THEN 90
WHEN ds.total_days >= 60 THEN 85
WHEN ds.total_days >= 30 AND ds.daily_variance_ratio < 0.5 THEN 80
WHEN ds.total_days >= 30 THEN 75
WHEN ds.total_days >= 14 AND ds.daily_variance_ratio < 0.5 THEN 70
WHEN ds.total_days >= 14 THEN 65
ELSE 60
END as confidence_level,
NOW() as last_calculated_at
FROM daily_stats ds
JOIN temp_product_stats ps ON ds.pid = ps.pid
CROSS JOIN temp_forecast_dates fd
LEFT JOIN sales_seasonality sf ON fd.month = sf.month
GROUP BY ds.pid, fd.forecast_date, ps.overall_avg_revenue, sf.seasonality_factor
ON DUPLICATE KEY UPDATE
forecast_units = VALUES(forecast_units),
forecast_revenue = VALUES(forecast_revenue),
confidence_level = VALUES(confidence_level),
last_calculated_at = NOW()
`);
processedCount = Math.floor(totalProducts * 0.98); // Populate sales stats
outputProgress({ await connection.query(`
status: 'running', INSERT INTO temp_sales_stats
operation: 'Product forecasts calculated, preparing category stats', SELECT
current: processedCount, pid,
total: totalProducts, AVG(daily_quantity) as avg_daily_units,
elapsed: formatElapsedTime(startTime), AVG(daily_revenue) as avg_daily_revenue,
remaining: estimateRemaining(startTime, processedCount, totalProducts), STDDEV(daily_quantity) as std_daily_units,
rate: calculateRate(startTime, processedCount), COUNT(*) as days_with_sales,
percentage: ((processedCount / totalProducts) * 100).toFixed(1), MIN(sale_date) as first_sale,
timing: { MAX(sale_date) as last_sale
start_time: new Date(startTime).toISOString(), FROM temp_historical_sales
end_time: new Date().toISOString(), GROUP BY pid
elapsed_seconds: Math.round((Date.now() - startTime) / 1000) `);
}
});
if (isCancelled) return { // Populate recent trend
processedProducts: processedCount, await connection.query(`
processedOrders, INSERT INTO temp_recent_trend
processedPurchaseOrders: 0, SELECT
success h.pid,
}; AVG(h.daily_quantity) as recent_avg_units,
AVG(h.daily_revenue) as recent_avg_revenue
FROM temp_historical_sales h
WHERE h.sale_date >= DATE_SUB(CURRENT_DATE, INTERVAL 30 DAY)
GROUP BY h.pid
`);
// Create temporary table for category stats // Calculate confidence levels
await connection.query(` await connection.query(`
CREATE TEMPORARY TABLE IF NOT EXISTS temp_category_sales AS INSERT INTO temp_confidence_calc
SELECT SELECT
pc.cat_id, s.pid,
DAYOFWEEK(o.date) as day_of_week, LEAST(100, GREATEST(0, ROUND(
SUM(o.quantity) as daily_quantity, (s.days_with_sales / 180.0 * 50) + -- Up to 50 points for history length
SUM(o.price * o.quantity) as daily_revenue, (CASE
COUNT(DISTINCT DATE(o.date)) as day_count WHEN s.std_daily_units = 0 OR s.avg_daily_units = 0 THEN 0
FROM orders o WHEN (s.std_daily_units / s.avg_daily_units) <= 0.5 THEN 30
JOIN product_categories pc ON o.pid = pc.pid WHEN (s.std_daily_units / s.avg_daily_units) <= 1.0 THEN 20
WHERE o.canceled = false WHEN (s.std_daily_units / s.avg_daily_units) <= 2.0 THEN 10
AND o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 90 DAY) ELSE 0
GROUP BY pc.cat_id, DAYOFWEEK(o.date) END) + -- Up to 30 points for consistency
`); (CASE
WHEN DATEDIFF(CURRENT_DATE, s.last_sale) <= 7 THEN 20
WHEN DATEDIFF(CURRENT_DATE, s.last_sale) <= 30 THEN 10
ELSE 0
END) -- Up to 20 points for recency
))) as confidence_level
FROM temp_sales_stats s
`);
await connection.query(` // Generate forecasts using temp tables
CREATE TEMPORARY TABLE IF NOT EXISTS temp_category_stats AS await connection.query(`
SELECT REPLACE INTO sales_forecasts
cat_id, (pid, forecast_date, forecast_units, forecast_revenue, confidence_level, last_calculated_at)
AVG(daily_revenue) as overall_avg_revenue, SELECT
SUM(day_count) as total_days s.pid,
FROM temp_category_sales DATE_ADD(CURRENT_DATE, INTERVAL n.days DAY),
GROUP BY cat_id GREATEST(0, ROUND(
`);
processedCount = Math.floor(totalProducts * 0.99);
outputProgress({
status: 'running',
operation: 'Category stats prepared, calculating category-level forecasts',
current: processedCount,
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
if (isCancelled) return {
processedProducts: processedCount,
processedOrders,
processedPurchaseOrders: 0,
success
};
// Calculate category-level forecasts
await connection.query(`
INSERT INTO category_forecasts (
category_id,
forecast_date,
forecast_units,
forecast_revenue,
confidence_level,
last_calculated_at
)
SELECT
cs.cat_id as category_id,
fd.forecast_date,
GREATEST(0,
AVG(cs.daily_quantity) *
(1 + COALESCE(sf.seasonality_factor, 0))
) as forecast_units,
GREATEST(0,
COALESCE(
CASE CASE
WHEN SUM(cs.day_count) >= 4 THEN AVG(cs.daily_revenue) WHEN s.days_with_sales >= n.days THEN COALESCE(t.recent_avg_units, s.avg_daily_units)
ELSE ct.overall_avg_revenue ELSE s.avg_daily_units * (s.days_with_sales / n.days)
END * END
(1 + COALESCE(sf.seasonality_factor, 0)) * )),
(0.95 + (RAND() * 0.1)), GREATEST(0, ROUND(
0 CASE
) WHEN s.days_with_sales >= n.days THEN COALESCE(t.recent_avg_revenue, s.avg_daily_revenue)
) as forecast_revenue, ELSE s.avg_daily_revenue * (s.days_with_sales / n.days)
CASE END,
WHEN ct.total_days >= 60 THEN 90 2
WHEN ct.total_days >= 30 THEN 80 )),
WHEN ct.total_days >= 14 THEN 70 c.confidence_level,
ELSE 60 NOW()
END as confidence_level, FROM temp_sales_stats s
NOW() as last_calculated_at CROSS JOIN (
FROM temp_category_sales cs SELECT 30 as days
JOIN temp_category_stats ct ON cs.cat_id = ct.cat_id UNION SELECT 60
CROSS JOIN temp_forecast_dates fd UNION SELECT 90
LEFT JOIN sales_seasonality sf ON fd.month = sf.month ) n
GROUP BY cs.cat_id, fd.forecast_date, ct.overall_avg_revenue, ct.total_days, sf.seasonality_factor LEFT JOIN temp_recent_trend t ON s.pid = t.pid
HAVING AVG(cs.daily_quantity) > 0 LEFT JOIN temp_confidence_calc c ON s.pid = c.pid;
ON DUPLICATE KEY UPDATE `);
forecast_units = VALUES(forecast_units),
forecast_revenue = VALUES(forecast_revenue),
confidence_level = VALUES(confidence_level),
last_calculated_at = NOW()
`);
// Clean up temporary tables // Clean up temp tables
await connection.query(` await connection.query('DROP TEMPORARY TABLE IF EXISTS temp_historical_sales');
DROP TEMPORARY TABLE IF EXISTS temp_forecast_dates; await connection.query('DROP TEMPORARY TABLE IF EXISTS temp_sales_stats');
DROP TEMPORARY TABLE IF EXISTS temp_daily_sales; await connection.query('DROP TEMPORARY TABLE IF EXISTS temp_recent_trend');
DROP TEMPORARY TABLE IF EXISTS temp_product_stats; await connection.query('DROP TEMPORARY TABLE IF EXISTS temp_confidence_calc');
DROP TEMPORARY TABLE IF EXISTS temp_category_sales;
DROP TEMPORARY TABLE IF EXISTS temp_category_stats;
`);
processedCount = Math.floor(totalProducts * 1.0); lastPid = batch[batch.length - 1].pid;
outputProgress({ processedCount += batch.length;
status: 'running',
operation: 'Category forecasts calculated and temporary tables cleaned up', outputProgress({
current: processedCount, status: 'running',
total: totalProducts, operation: 'Processing sales forecast batch',
elapsed: formatElapsedTime(startTime), current: processedCount,
remaining: estimateRemaining(startTime, processedCount, totalProducts), total: totalProductsToUpdate,
rate: calculateRate(startTime, processedCount), elapsed: formatElapsedTime(startTime),
percentage: ((processedCount / totalProducts) * 100).toFixed(1), remaining: estimateRemaining(startTime, processedCount, totalProductsToUpdate),
timing: { rate: calculateRate(startTime, processedCount),
start_time: new Date(startTime).toISOString(), percentage: ((processedCount / totalProductsToUpdate) * 100).toFixed(1),
end_time: new Date().toISOString(), timing: {
elapsed_seconds: Math.round((Date.now() - startTime) / 1000) start_time: new Date(startTime).toISOString(),
} end_time: new Date().toISOString(),
}); elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
}
// If we get here, everything completed successfully // If we get here, everything completed successfully
success = true; success = true;
@@ -428,7 +286,7 @@ async function calculateSalesForecasts(startTime, totalProducts, processedCount
return { return {
processedProducts: processedCount, processedProducts: processedCount,
processedOrders, processedOrders: 0,
processedPurchaseOrders: 0, processedPurchaseOrders: 0,
success success
}; };

View File

@@ -4,9 +4,39 @@ const { getConnection } = require('./utils/db');
async function calculateTimeAggregates(startTime, totalProducts, processedCount = 0, isCancelled = false) { async function calculateTimeAggregates(startTime, totalProducts, processedCount = 0, isCancelled = false) {
const connection = await getConnection(); const connection = await getConnection();
let success = false; let success = false;
let processedOrders = 0; const BATCH_SIZE = 5000;
try { try {
// Get last calculation timestamp
const [lastCalc] = await connection.query(`
SELECT last_calculation_timestamp
FROM calculate_status
WHERE module_name = 'time_aggregates'
`);
const lastCalculationTime = lastCalc[0]?.last_calculation_timestamp || '1970-01-01';
// Get total count of products needing updates
if (!totalProducts) {
const [productCount] = await connection.query(`
SELECT COUNT(DISTINCT p.pid) as count
FROM products p
LEFT JOIN orders o ON p.pid = o.pid AND o.updated > ?
WHERE p.updated > ?
OR o.pid IS NOT NULL
`, [lastCalculationTime, lastCalculationTime]);
totalProducts = productCount[0].count;
}
if (totalProducts === 0) {
console.log('No products need time aggregate updates');
return {
processedProducts: 0,
processedOrders: 0,
processedPurchaseOrders: 0,
success: true
};
}
if (isCancelled) { if (isCancelled) {
outputProgress({ outputProgress({
status: 'cancelled', status: 'cancelled',
@@ -31,14 +61,6 @@ async function calculateTimeAggregates(startTime, totalProducts, processedCount
}; };
} }
// Get order count that will be processed
const [orderCount] = await connection.query(`
SELECT COUNT(*) as count
FROM orders o
WHERE o.canceled = false
`);
processedOrders = orderCount[0].count;
outputProgress({ outputProgress({
status: 'running', status: 'running',
operation: 'Starting time aggregates calculation', operation: 'Starting time aggregates calculation',
@@ -55,223 +77,140 @@ async function calculateTimeAggregates(startTime, totalProducts, processedCount
} }
}); });
// Initial insert of time-based aggregates // Process in batches
await connection.query(` let lastPid = 0;
INSERT INTO product_time_aggregates ( while (true) {
pid, if (isCancelled) break;
year,
month, const [batch] = await connection.query(`
total_quantity_sold, SELECT DISTINCT p.pid
total_revenue, FROM products p
total_cost, FORCE INDEX (PRIMARY)
order_count, LEFT JOIN orders o FORCE INDEX (idx_orders_metrics) ON p.pid = o.pid
stock_received, WHERE p.pid > ?
stock_ordered, AND (
avg_price, p.updated > ?
profit_margin, OR EXISTS (
inventory_value, SELECT 1
gmroi FROM orders o2 FORCE INDEX (idx_orders_metrics)
) WHERE o2.pid = p.pid
WITH monthly_sales AS ( AND o2.updated > ?
)
)
ORDER BY p.pid
LIMIT ?
`, [lastPid, lastCalculationTime, lastCalculationTime, BATCH_SIZE]);
if (batch.length === 0) break;
// Calculate and update time aggregates for this batch using temporary table
await connection.query('DROP TEMPORARY TABLE IF EXISTS temp_time_aggregates');
await connection.query(`
CREATE TEMPORARY TABLE temp_time_aggregates (
pid BIGINT NOT NULL,
year INT NOT NULL,
month INT NOT NULL,
total_quantity_sold INT DEFAULT 0,
total_revenue DECIMAL(10,3) DEFAULT 0,
total_cost DECIMAL(10,3) DEFAULT 0,
order_count INT DEFAULT 0,
stock_received INT DEFAULT 0,
stock_ordered INT DEFAULT 0,
avg_price DECIMAL(10,3),
profit_margin DECIMAL(10,3),
inventory_value DECIMAL(10,3),
gmroi DECIMAL(10,3),
PRIMARY KEY (pid, year, month),
INDEX (pid),
INDEX (year, month)
) ENGINE=MEMORY
`);
// Populate temporary table
await connection.query(`
INSERT INTO temp_time_aggregates
SELECT SELECT
o.pid, p.pid,
YEAR(o.date) as year, YEAR(o.date) as year,
MONTH(o.date) as month, MONTH(o.date) as month,
SUM(o.quantity) as total_quantity_sold, SUM(o.quantity) as total_quantity_sold,
SUM((o.price - COALESCE(o.discount, 0)) * o.quantity) as total_revenue, SUM(o.quantity * o.price) as total_revenue,
SUM(COALESCE(p.cost_price, 0) * o.quantity) as total_cost, SUM(o.quantity * p.cost_price) as total_cost,
COUNT(DISTINCT o.order_number) as order_count, COUNT(DISTINCT o.order_number) as order_count,
AVG(o.price - COALESCE(o.discount, 0)) as avg_price, COALESCE(SUM(CASE WHEN po.received_date IS NOT NULL THEN po.received ELSE 0 END), 0) as stock_received,
COALESCE(SUM(po.ordered), 0) as stock_ordered,
AVG(o.price) as avg_price,
CASE CASE
WHEN SUM((o.price - COALESCE(o.discount, 0)) * o.quantity) > 0 WHEN SUM(o.quantity * o.price) > 0
THEN ((SUM((o.price - COALESCE(o.discount, 0)) * o.quantity) - SUM(COALESCE(p.cost_price, 0) * o.quantity)) THEN ((SUM(o.quantity * o.price) - SUM(o.quantity * p.cost_price)) / SUM(o.quantity * o.price)) * 100
/ SUM((o.price - COALESCE(o.discount, 0)) * o.quantity)) * 100
ELSE 0 ELSE 0
END as profit_margin, END as profit_margin,
p.cost_price * p.stock_quantity as inventory_value, p.cost_price * p.stock_quantity as inventory_value,
COUNT(DISTINCT DATE(o.date)) as active_days CASE
FROM orders o WHEN p.cost_price * p.stock_quantity > 0
JOIN products p ON o.pid = p.pid THEN (SUM(o.quantity * (o.price - p.cost_price))) / (p.cost_price * p.stock_quantity)
WHERE o.canceled = false ELSE 0
GROUP BY o.pid, YEAR(o.date), MONTH(o.date) END as gmroi
),
monthly_stock AS (
SELECT
pid,
YEAR(date) as year,
MONTH(date) as month,
SUM(received) as stock_received,
SUM(ordered) as stock_ordered
FROM purchase_orders
GROUP BY pid, YEAR(date), MONTH(date)
),
base_products AS (
SELECT
p.pid,
p.cost_price * p.stock_quantity as inventory_value
FROM products p FROM products p
) FORCE INDEX (PRIMARY)
SELECT INNER JOIN orders o FORCE INDEX (idx_orders_metrics) ON p.pid = o.pid
COALESCE(s.pid, ms.pid) as pid, AND o.canceled = false
COALESCE(s.year, ms.year) as year, AND o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 12 MONTH)
COALESCE(s.month, ms.month) as month, LEFT JOIN purchase_orders po FORCE INDEX (idx_po_metrics) ON p.pid = po.pid
COALESCE(s.total_quantity_sold, 0) as total_quantity_sold, AND po.date >= DATE_SUB(CURRENT_DATE, INTERVAL 12 MONTH)
COALESCE(s.total_revenue, 0) as total_revenue, WHERE p.pid IN (?)
COALESCE(s.total_cost, 0) as total_cost,
COALESCE(s.order_count, 0) as order_count,
COALESCE(ms.stock_received, 0) as stock_received,
COALESCE(ms.stock_ordered, 0) as stock_ordered,
COALESCE(s.avg_price, 0) as avg_price,
COALESCE(s.profit_margin, 0) as profit_margin,
COALESCE(s.inventory_value, bp.inventory_value, 0) as inventory_value,
CASE
WHEN COALESCE(s.inventory_value, bp.inventory_value, 0) > 0
AND COALESCE(s.active_days, 0) > 0
THEN (COALESCE(s.total_revenue - s.total_cost, 0) * (365.0 / s.active_days))
/ COALESCE(s.inventory_value, bp.inventory_value)
ELSE 0
END as gmroi
FROM (
SELECT * FROM monthly_sales s
UNION ALL
SELECT
ms.pid,
ms.year,
ms.month,
0 as total_quantity_sold,
0 as total_revenue,
0 as total_cost,
0 as order_count,
NULL as avg_price,
0 as profit_margin,
NULL as inventory_value,
0 as active_days
FROM monthly_stock ms
WHERE NOT EXISTS (
SELECT 1 FROM monthly_sales s2
WHERE s2.pid = ms.pid
AND s2.year = ms.year
AND s2.month = ms.month
)
) s
LEFT JOIN monthly_stock ms
ON s.pid = ms.pid
AND s.year = ms.year
AND s.month = ms.month
JOIN base_products bp ON COALESCE(s.pid, ms.pid) = bp.pid
UNION
SELECT
ms.pid,
ms.year,
ms.month,
0 as total_quantity_sold,
0 as total_revenue,
0 as total_cost,
0 as order_count,
ms.stock_received,
ms.stock_ordered,
0 as avg_price,
0 as profit_margin,
bp.inventory_value,
0 as gmroi
FROM monthly_stock ms
JOIN base_products bp ON ms.pid = bp.pid
WHERE NOT EXISTS (
SELECT 1 FROM (
SELECT * FROM monthly_sales
UNION ALL
SELECT
ms2.pid,
ms2.year,
ms2.month,
0, 0, 0, 0, NULL, 0, NULL, 0
FROM monthly_stock ms2
WHERE NOT EXISTS (
SELECT 1 FROM monthly_sales s2
WHERE s2.pid = ms2.pid
AND s2.year = ms2.year
AND s2.month = ms2.month
)
) s
WHERE s.pid = ms.pid
AND s.year = ms.year
AND s.month = ms.month
)
ON DUPLICATE KEY UPDATE
total_quantity_sold = VALUES(total_quantity_sold),
total_revenue = VALUES(total_revenue),
total_cost = VALUES(total_cost),
order_count = VALUES(order_count),
stock_received = VALUES(stock_received),
stock_ordered = VALUES(stock_ordered),
avg_price = VALUES(avg_price),
profit_margin = VALUES(profit_margin),
inventory_value = VALUES(inventory_value),
gmroi = VALUES(gmroi)
`);
processedCount = Math.floor(totalProducts * 0.60);
outputProgress({
status: 'running',
operation: 'Base time aggregates calculated, updating financial metrics',
current: processedCount,
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
if (isCancelled) return {
processedProducts: processedCount,
processedOrders,
processedPurchaseOrders: 0,
success
};
// Update with financial metrics
await connection.query(`
UPDATE product_time_aggregates pta
JOIN (
SELECT
p.pid,
YEAR(o.date) as year,
MONTH(o.date) as month,
p.cost_price * p.stock_quantity as inventory_value,
SUM(o.quantity * (o.price - p.cost_price)) as gross_profit,
COUNT(DISTINCT DATE(o.date)) as active_days
FROM products p
LEFT JOIN orders o ON p.pid = o.pid
WHERE o.canceled = false
GROUP BY p.pid, YEAR(o.date), MONTH(o.date) GROUP BY p.pid, YEAR(o.date), MONTH(o.date)
) fin ON pta.pid = fin.pid HAVING year IS NOT NULL AND month IS NOT NULL
AND pta.year = fin.year `, [batch.map(row => row.pid)]);
AND pta.month = fin.month
SET
pta.inventory_value = COALESCE(fin.inventory_value, 0)
`);
processedCount = Math.floor(totalProducts * 0.65); // Update from temporary table
outputProgress({ await connection.query(`
status: 'running', INSERT INTO product_time_aggregates (
operation: 'Financial metrics updated', pid, year, month,
current: processedCount, total_quantity_sold, total_revenue, total_cost,
total: totalProducts, order_count, stock_received, stock_ordered,
elapsed: formatElapsedTime(startTime), avg_price, profit_margin, inventory_value, gmroi
remaining: estimateRemaining(startTime, processedCount, totalProducts), )
rate: calculateRate(startTime, processedCount), SELECT
percentage: ((processedCount / totalProducts) * 100).toFixed(1), pid, year, month,
timing: { total_quantity_sold, total_revenue, total_cost,
start_time: new Date(startTime).toISOString(), order_count, stock_received, stock_ordered,
end_time: new Date().toISOString(), avg_price, profit_margin, inventory_value, gmroi
elapsed_seconds: Math.round((Date.now() - startTime) / 1000) FROM temp_time_aggregates
} ON DUPLICATE KEY UPDATE
}); total_quantity_sold = VALUES(total_quantity_sold),
total_revenue = VALUES(total_revenue),
total_cost = VALUES(total_cost),
order_count = VALUES(order_count),
stock_received = VALUES(stock_received),
stock_ordered = VALUES(stock_ordered),
avg_price = VALUES(avg_price),
profit_margin = VALUES(profit_margin),
inventory_value = VALUES(inventory_value),
gmroi = VALUES(gmroi)
`);
await connection.query('DROP TEMPORARY TABLE IF EXISTS temp_time_aggregates');
lastPid = batch[batch.length - 1].pid;
processedCount += batch.length;
outputProgress({
status: 'running',
operation: 'Processing time aggregates batch',
current: processedCount,
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
}
// If we get here, everything completed successfully // If we get here, everything completed successfully
success = true; success = true;
@@ -285,7 +224,7 @@ async function calculateTimeAggregates(startTime, totalProducts, processedCount
return { return {
processedProducts: processedCount, processedProducts: processedCount,
processedOrders, processedOrders: 0,
processedPurchaseOrders: 0, processedPurchaseOrders: 0,
success success
}; };

View File

@@ -4,20 +4,57 @@ const { getConnection } = require('./utils/db');
async function calculateVendorMetrics(startTime, totalProducts, processedCount = 0, isCancelled = false) { async function calculateVendorMetrics(startTime, totalProducts, processedCount = 0, isCancelled = false) {
const connection = await getConnection(); const connection = await getConnection();
let success = false; let success = false;
let processedOrders = 0; const BATCH_SIZE = 5000;
let processedPurchaseOrders = 0;
try { try {
// Get last calculation timestamp
const [lastCalc] = await connection.query(`
SELECT last_calculation_timestamp
FROM calculate_status
WHERE module_name = 'vendor_metrics'
`);
const lastCalculationTime = lastCalc[0]?.last_calculation_timestamp || '1970-01-01';
// Get total count of vendors needing updates using EXISTS for better performance
const [vendorCount] = await connection.query(`
SELECT COUNT(DISTINCT v.vendor) as count
FROM vendor_details v
WHERE v.status = 'active'
AND (
EXISTS (
SELECT 1 FROM products p
WHERE p.vendor = v.vendor
AND p.updated > ?
)
OR EXISTS (
SELECT 1 FROM purchase_orders po
WHERE po.vendor = v.vendor
AND po.updated > ?
)
)
`, [lastCalculationTime, lastCalculationTime]);
const totalVendors = vendorCount[0].count;
if (totalVendors === 0) {
console.log('No vendors need metric updates');
return {
processedProducts: 0,
processedOrders: 0,
processedPurchaseOrders: 0,
success: true
};
}
if (isCancelled) { if (isCancelled) {
outputProgress({ outputProgress({
status: 'cancelled', status: 'cancelled',
operation: 'Vendor metrics calculation cancelled', operation: 'Vendor metrics calculation cancelled',
current: processedCount, current: processedCount,
total: totalProducts, total: totalVendors,
elapsed: formatElapsedTime(startTime), elapsed: formatElapsedTime(startTime),
remaining: null, remaining: null,
rate: calculateRate(startTime, processedCount), rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1), percentage: ((processedCount / totalVendors) * 100).toFixed(1),
timing: { timing: {
start_time: new Date(startTime).toISOString(), start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(), end_time: new Date().toISOString(),
@@ -26,37 +63,21 @@ async function calculateVendorMetrics(startTime, totalProducts, processedCount =
}); });
return { return {
processedProducts: processedCount, processedProducts: processedCount,
processedOrders, processedOrders: 0,
processedPurchaseOrders, processedPurchaseOrders: 0,
success success
}; };
} }
// Get counts of records that will be processed
const [[orderCount], [poCount]] = await Promise.all([
connection.query(`
SELECT COUNT(*) as count
FROM orders o
WHERE o.canceled = false
`),
connection.query(`
SELECT COUNT(*) as count
FROM purchase_orders po
WHERE po.status != 0
`)
]);
processedOrders = orderCount.count;
processedPurchaseOrders = poCount.count;
outputProgress({ outputProgress({
status: 'running', status: 'running',
operation: 'Starting vendor metrics calculation', operation: 'Starting vendor metrics calculation',
current: processedCount, current: processedCount,
total: totalProducts, total: totalVendors,
elapsed: formatElapsedTime(startTime), elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts), remaining: estimateRemaining(startTime, processedCount, totalVendors),
rate: calculateRate(startTime, processedCount), rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1), percentage: ((processedCount / totalVendors) * 100).toFixed(1),
timing: { timing: {
start_time: new Date(startTime).toISOString(), start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(), end_time: new Date().toISOString(),
@@ -64,278 +85,192 @@ async function calculateVendorMetrics(startTime, totalProducts, processedCount =
} }
}); });
// First ensure all vendors exist in vendor_details // Process in batches
await connection.query(` let lastVendor = '';
INSERT IGNORE INTO vendor_details (vendor, status, created_at, updated_at) while (true) {
SELECT DISTINCT if (isCancelled) break;
vendor,
'active' as status,
NOW() as created_at,
NOW() as updated_at
FROM products
WHERE vendor IS NOT NULL
`);
processedCount = Math.floor(totalProducts * 0.8); // Get batch of vendors using EXISTS for better performance
outputProgress({ const [batch] = await connection.query(`
status: 'running', SELECT DISTINCT v.vendor
operation: 'Vendor details updated, calculating metrics', FROM vendor_details v
current: processedCount, WHERE v.status = 'active'
total: totalProducts, AND v.vendor > ?
elapsed: formatElapsedTime(startTime), AND (
remaining: estimateRemaining(startTime, processedCount, totalProducts), EXISTS (
rate: calculateRate(startTime, processedCount), SELECT 1
percentage: ((processedCount / totalProducts) * 100).toFixed(1), FROM products p
timing: { WHERE p.vendor = v.vendor
start_time: new Date(startTime).toISOString(), AND p.updated > ?
end_time: new Date().toISOString(), )
elapsed_seconds: Math.round((Date.now() - startTime) / 1000) OR EXISTS (
} SELECT 1
}); FROM purchase_orders po
WHERE po.vendor = v.vendor
AND po.updated > ?
)
)
ORDER BY v.vendor
LIMIT ?
`, [lastVendor, lastCalculationTime, lastCalculationTime, BATCH_SIZE]);
if (isCancelled) return { if (batch.length === 0) break;
processedProducts: processedCount,
processedOrders,
processedPurchaseOrders,
success
};
// Now calculate vendor metrics // Create temporary tables with optimized structure and indexes
await connection.query(` await connection.query('DROP TEMPORARY TABLE IF EXISTS temp_purchase_stats');
INSERT INTO vendor_metrics ( await connection.query('DROP TEMPORARY TABLE IF EXISTS temp_product_stats');
vendor,
total_revenue, await connection.query(`
total_orders, CREATE TEMPORARY TABLE temp_purchase_stats (
total_late_orders, vendor VARCHAR(100) NOT NULL,
avg_lead_time_days, avg_lead_time_days DECIMAL(10,2),
on_time_delivery_rate, total_orders INT,
order_fill_rate, total_late_orders INT,
avg_order_value, total_purchase_value DECIMAL(15,2),
active_products, avg_order_value DECIMAL(15,2),
total_products, on_time_delivery_rate DECIMAL(5,2),
total_purchase_value, order_fill_rate DECIMAL(5,2),
avg_margin_percent, PRIMARY KEY (vendor),
status, INDEX (total_orders),
last_calculated_at INDEX (total_purchase_value)
) ) ENGINE=MEMORY
WITH vendor_sales AS ( `);
await connection.query(`
CREATE TEMPORARY TABLE temp_product_stats (
vendor VARCHAR(100) NOT NULL,
total_products INT,
active_products INT,
avg_margin_percent DECIMAL(5,2),
total_revenue DECIMAL(15,2),
PRIMARY KEY (vendor),
INDEX (total_products),
INDEX (total_revenue)
) ENGINE=MEMORY
`);
// Populate purchase_stats temp table with optimized index usage
await connection.query(`
INSERT INTO temp_purchase_stats
SELECT
po.vendor,
AVG(DATEDIFF(po.received_date, po.date)) as avg_lead_time_days,
COUNT(DISTINCT po.po_id) as total_orders,
COUNT(CASE WHEN DATEDIFF(po.received_date, po.date) > 30 THEN 1 END) as total_late_orders,
SUM(po.ordered * po.po_cost_price) as total_purchase_value,
AVG(po.ordered * po.po_cost_price) as avg_order_value,
(COUNT(CASE WHEN DATEDIFF(po.received_date, po.date) <= 30 THEN 1 END) / COUNT(*)) * 100 as on_time_delivery_rate,
(SUM(LEAST(po.received, po.ordered)) / NULLIF(SUM(po.ordered), 0)) * 100 as order_fill_rate
FROM purchase_orders po
FORCE INDEX (idx_vendor)
WHERE po.vendor IN (?)
AND po.received_date IS NOT NULL
AND po.date >= DATE_SUB(CURRENT_DATE, INTERVAL 365 DAY)
AND po.updated > ?
GROUP BY po.vendor
`, [batch.map(row => row.vendor), lastCalculationTime]);
// Populate product stats with optimized index usage
await connection.query(`
INSERT INTO temp_product_stats
SELECT SELECT
p.vendor, p.vendor,
SUM(o.quantity * o.price) as total_revenue, COUNT(DISTINCT p.pid) as product_count,
COUNT(DISTINCT o.id) as total_orders, COUNT(DISTINCT CASE WHEN p.visible = true THEN p.pid END) as active_products,
COUNT(DISTINCT p.pid) as active_products, AVG(pm.avg_margin_percent) as avg_margin,
SUM(o.quantity * (o.price - p.cost_price)) as total_margin SUM(pm.total_revenue) as total_revenue
FROM products p FROM products p
JOIN orders o ON p.pid = o.pid FORCE INDEX (idx_vendor)
WHERE o.canceled = false LEFT JOIN product_metrics pm FORCE INDEX (PRIMARY) ON p.pid = pm.pid
AND o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 12 MONTH) WHERE p.vendor IN (?)
AND (
p.updated > ?
OR EXISTS (
SELECT 1 FROM orders o FORCE INDEX (idx_orders_metrics)
WHERE o.pid = p.pid
AND o.updated > ?
)
)
GROUP BY p.vendor GROUP BY p.vendor
), `, [batch.map(row => row.vendor), lastCalculationTime, lastCalculationTime]);
vendor_po AS (
SELECT // Update metrics using temp tables with optimized join order
p.vendor, await connection.query(`
COUNT(DISTINCT CASE WHEN po.receiving_status = 40 THEN po.id END) as received_orders, INSERT INTO vendor_metrics (
COUNT(DISTINCT po.id) as total_orders,
AVG(CASE
WHEN po.receiving_status = 40
THEN DATEDIFF(po.received_date, po.date)
END) as avg_lead_time_days,
SUM(po.ordered * po.po_cost_price) as total_purchase_value
FROM products p
JOIN purchase_orders po ON p.pid = po.pid
WHERE po.date >= DATE_SUB(CURRENT_DATE, INTERVAL 12 MONTH)
GROUP BY p.vendor
),
vendor_products AS (
SELECT
vendor, vendor,
COUNT(DISTINCT pid) as total_products avg_lead_time_days,
FROM products on_time_delivery_rate,
GROUP BY vendor order_fill_rate,
) total_orders,
SELECT total_late_orders,
vs.vendor, total_purchase_value,
COALESCE(vs.total_revenue, 0) as total_revenue, avg_order_value,
COALESCE(vp.total_orders, 0) as total_orders, active_products,
COALESCE(vp.total_orders - vp.received_orders, 0) as total_late_orders, total_products,
COALESCE(vp.avg_lead_time_days, 0) as avg_lead_time_days, total_revenue,
CASE avg_margin_percent,
WHEN vp.total_orders > 0 status,
THEN (vp.received_orders / vp.total_orders) * 100 last_calculated_at
ELSE 0 )
END as on_time_delivery_rate,
CASE
WHEN vp.total_orders > 0
THEN (vp.received_orders / vp.total_orders) * 100
ELSE 0
END as order_fill_rate,
CASE
WHEN vs.total_orders > 0
THEN vs.total_revenue / vs.total_orders
ELSE 0
END as avg_order_value,
COALESCE(vs.active_products, 0) as active_products,
COALESCE(vpr.total_products, 0) as total_products,
COALESCE(vp.total_purchase_value, 0) as total_purchase_value,
CASE
WHEN vs.total_revenue > 0
THEN (vs.total_margin / vs.total_revenue) * 100
ELSE 0
END as avg_margin_percent,
'active' as status,
NOW() as last_calculated_at
FROM vendor_sales vs
LEFT JOIN vendor_po vp ON vs.vendor = vp.vendor
LEFT JOIN vendor_products vpr ON vs.vendor = vpr.vendor
WHERE vs.vendor IS NOT NULL
ON DUPLICATE KEY UPDATE
total_revenue = VALUES(total_revenue),
total_orders = VALUES(total_orders),
total_late_orders = VALUES(total_late_orders),
avg_lead_time_days = VALUES(avg_lead_time_days),
on_time_delivery_rate = VALUES(on_time_delivery_rate),
order_fill_rate = VALUES(order_fill_rate),
avg_order_value = VALUES(avg_order_value),
active_products = VALUES(active_products),
total_products = VALUES(total_products),
total_purchase_value = VALUES(total_purchase_value),
avg_margin_percent = VALUES(avg_margin_percent),
status = VALUES(status),
last_calculated_at = VALUES(last_calculated_at)
`);
processedCount = Math.floor(totalProducts * 0.9);
outputProgress({
status: 'running',
operation: 'Vendor metrics calculated, updating time-based metrics',
current: processedCount,
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
if (isCancelled) return {
processedProducts: processedCount,
processedOrders,
processedPurchaseOrders,
success
};
// Calculate time-based metrics
await connection.query(`
INSERT INTO vendor_time_metrics (
vendor,
year,
month,
total_orders,
late_orders,
avg_lead_time_days,
total_purchase_value,
total_revenue,
avg_margin_percent
)
WITH monthly_orders AS (
SELECT SELECT
p.vendor, v.vendor,
YEAR(o.date) as year, COALESCE(ps.avg_lead_time_days, 0) as avg_lead_time_days,
MONTH(o.date) as month, COALESCE(ps.on_time_delivery_rate, 0) as on_time_delivery_rate,
COUNT(DISTINCT o.id) as total_orders, COALESCE(ps.order_fill_rate, 0) as order_fill_rate,
SUM(o.quantity * o.price) as total_revenue, COALESCE(ps.total_orders, 0) as total_orders,
SUM(o.quantity * (o.price - p.cost_price)) as total_margin COALESCE(ps.total_late_orders, 0) as total_late_orders,
FROM products p COALESCE(ps.total_purchase_value, 0) as total_purchase_value,
JOIN orders o ON p.pid = o.pid COALESCE(ps.avg_order_value, 0) as avg_order_value,
WHERE o.canceled = false COALESCE(prs.active_products, 0) as active_products,
AND o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 12 MONTH) COALESCE(prs.total_products, 0) as total_products,
AND p.vendor IS NOT NULL COALESCE(prs.total_revenue, 0) as total_revenue,
GROUP BY p.vendor, YEAR(o.date), MONTH(o.date) COALESCE(prs.avg_margin_percent, 0) as avg_margin_percent,
), v.status,
monthly_po AS ( NOW() as last_calculated_at
SELECT FROM vendor_details v
p.vendor, FORCE INDEX (PRIMARY)
YEAR(po.date) as year, LEFT JOIN temp_purchase_stats ps ON v.vendor = ps.vendor
MONTH(po.date) as month, LEFT JOIN temp_product_stats prs ON v.vendor = prs.vendor
COUNT(DISTINCT po.id) as total_po, WHERE v.vendor IN (?)
COUNT(DISTINCT CASE ON DUPLICATE KEY UPDATE
WHEN po.receiving_status = 40 AND po.received_date > po.expected_date avg_lead_time_days = VALUES(avg_lead_time_days),
THEN po.id on_time_delivery_rate = VALUES(on_time_delivery_rate),
END) as late_orders, order_fill_rate = VALUES(order_fill_rate),
AVG(CASE total_orders = VALUES(total_orders),
WHEN po.receiving_status = 40 total_late_orders = VALUES(total_late_orders),
THEN DATEDIFF(po.received_date, po.date) total_purchase_value = VALUES(total_purchase_value),
END) as avg_lead_time_days, avg_order_value = VALUES(avg_order_value),
SUM(po.ordered * po.po_cost_price) as total_purchase_value active_products = VALUES(active_products),
FROM products p total_products = VALUES(total_products),
JOIN purchase_orders po ON p.pid = po.pid total_revenue = VALUES(total_revenue),
WHERE po.date >= DATE_SUB(CURRENT_DATE, INTERVAL 12 MONTH) avg_margin_percent = VALUES(avg_margin_percent),
AND p.vendor IS NOT NULL status = VALUES(status),
GROUP BY p.vendor, YEAR(po.date), MONTH(po.date) last_calculated_at = NOW()
) `, [batch.map(row => row.vendor)]);
SELECT
mo.vendor,
mo.year,
mo.month,
COALESCE(mp.total_po, 0) as total_orders,
COALESCE(mp.late_orders, 0) as late_orders,
COALESCE(mp.avg_lead_time_days, 0) as avg_lead_time_days,
COALESCE(mp.total_purchase_value, 0) as total_purchase_value,
mo.total_revenue,
CASE
WHEN mo.total_revenue > 0
THEN (mo.total_margin / mo.total_revenue) * 100
ELSE 0
END as avg_margin_percent
FROM monthly_orders mo
LEFT JOIN monthly_po mp ON mo.vendor = mp.vendor
AND mo.year = mp.year
AND mo.month = mp.month
UNION
SELECT
mp.vendor,
mp.year,
mp.month,
mp.total_po as total_orders,
mp.late_orders,
mp.avg_lead_time_days,
mp.total_purchase_value,
0 as total_revenue,
0 as avg_margin_percent
FROM monthly_po mp
LEFT JOIN monthly_orders mo ON mp.vendor = mo.vendor
AND mp.year = mo.year
AND mp.month = mo.month
WHERE mo.vendor IS NULL
ON DUPLICATE KEY UPDATE
total_orders = VALUES(total_orders),
late_orders = VALUES(late_orders),
avg_lead_time_days = VALUES(avg_lead_time_days),
total_purchase_value = VALUES(total_purchase_value),
total_revenue = VALUES(total_revenue),
avg_margin_percent = VALUES(avg_margin_percent)
`);
processedCount = Math.floor(totalProducts * 0.95); // Clean up temp tables
outputProgress({ await connection.query('DROP TEMPORARY TABLE IF EXISTS temp_purchase_stats');
status: 'running', await connection.query('DROP TEMPORARY TABLE IF EXISTS temp_product_stats');
operation: 'Time-based vendor metrics calculated',
current: processedCount, lastVendor = batch[batch.length - 1].vendor;
total: totalProducts, processedCount += batch.length;
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts), outputProgress({
rate: calculateRate(startTime, processedCount), status: 'running',
percentage: ((processedCount / totalProducts) * 100).toFixed(1), operation: 'Processing vendor metrics batch',
timing: { current: processedCount,
start_time: new Date(startTime).toISOString(), total: totalVendors,
end_time: new Date().toISOString(), elapsed: formatElapsedTime(startTime),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000) remaining: estimateRemaining(startTime, processedCount, totalVendors),
} rate: calculateRate(startTime, processedCount),
}); percentage: ((processedCount / totalVendors) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
}
// If we get here, everything completed successfully // If we get here, everything completed successfully
success = true; success = true;
@@ -349,8 +284,8 @@ async function calculateVendorMetrics(startTime, totalProducts, processedCount =
return { return {
processedProducts: processedCount, processedProducts: processedCount,
processedOrders, processedOrders: 0,
processedPurchaseOrders, processedPurchaseOrders: 0,
success success
}; };

View File

@@ -156,7 +156,7 @@ async function resetDatabase() {
SELECT GROUP_CONCAT(table_name) as tables SELECT GROUP_CONCAT(table_name) as tables
FROM information_schema.tables FROM information_schema.tables
WHERE table_schema = DATABASE() WHERE table_schema = DATABASE()
AND table_name NOT IN ('users', 'import_history', 'calculate_history') AND table_name NOT IN ('users', 'import_history')
`); `);
if (!tables[0].tables) { if (!tables[0].tables) {
@@ -175,7 +175,7 @@ async function resetDatabase() {
DROP TABLE IF EXISTS DROP TABLE IF EXISTS
${tables[0].tables ${tables[0].tables
.split(',') .split(',')
.filter(table => !['users', 'calculate_history'].includes(table)) .filter(table => table !== 'users')
.map(table => '`' + table + '`') .map(table => '`' + table + '`')
.join(', ')} .join(', ')}
`; `;
@@ -543,15 +543,5 @@ async function resetDatabase() {
} }
} }
// Export if required as a module // Run the reset
if (typeof module !== 'undefined' && module.exports) { resetDatabase();
module.exports = resetDatabase;
}
// Run if called directly
if (require.main === module) {
resetDatabase().catch(error => {
console.error('Error:', error);
process.exit(1);
});
}

View File

@@ -2,7 +2,6 @@ const express = require('express');
const router = express.Router(); const router = express.Router();
const { spawn } = require('child_process'); const { spawn } = require('child_process');
const path = require('path'); const path = require('path');
const db = require('../utils/db');
// Debug middleware MUST be first // Debug middleware MUST be first
router.use((req, res, next) => { router.use((req, res, next) => {
@@ -10,11 +9,9 @@ router.use((req, res, next) => {
next(); next();
}); });
// Store active processes and their progress // Store active import process and its progress
let activeImport = null; let activeImport = null;
let importProgress = null; let importProgress = null;
let activeFullUpdate = null;
let activeFullReset = null;
// SSE clients for progress updates // SSE clients for progress updates
const updateClients = new Set(); const updateClients = new Set();
@@ -22,16 +19,17 @@ const importClients = new Set();
const resetClients = new Set(); const resetClients = new Set();
const resetMetricsClients = new Set(); const resetMetricsClients = new Set();
const calculateMetricsClients = new Set(); const calculateMetricsClients = new Set();
const fullUpdateClients = new Set();
const fullResetClients = new Set();
// Helper to send progress to specific clients // Helper to send progress to specific clients
function sendProgressToClients(clients, data) { function sendProgressToClients(clients, progress) {
// If data is a string, send it directly const data = typeof progress === 'string' ? { progress } : progress;
// If it's an object, convert it to JSON
const message = typeof data === 'string' // Ensure we have a status field
? `data: ${data}\n\n` if (!data.status) {
: `data: ${JSON.stringify(data)}\n\n`; data.status = 'running';
}
const message = `data: ${JSON.stringify(data)}\n\n`;
clients.forEach(client => { clients.forEach(client => {
try { try {
@@ -47,128 +45,8 @@ function sendProgressToClients(clients, data) {
}); });
} }
// Helper to run a script and stream progress
function runScript(scriptPath, type, clients) {
return new Promise((resolve, reject) => {
// Kill any existing process of this type
let activeProcess;
switch (type) {
case 'update':
if (activeFullUpdate) {
try { activeFullUpdate.kill(); } catch (e) { }
}
activeProcess = activeFullUpdate;
break;
case 'reset':
if (activeFullReset) {
try { activeFullReset.kill(); } catch (e) { }
}
activeProcess = activeFullReset;
break;
}
const child = spawn('node', [scriptPath], {
stdio: ['inherit', 'pipe', 'pipe']
});
switch (type) {
case 'update':
activeFullUpdate = child;
break;
case 'reset':
activeFullReset = child;
break;
}
let output = '';
child.stdout.on('data', (data) => {
const text = data.toString();
output += text;
// Split by lines to handle multiple JSON outputs
const lines = text.split('\n');
lines.filter(line => line.trim()).forEach(line => {
try {
// Try to parse as JSON but don't let it affect the display
const jsonData = JSON.parse(line);
// Only end the process if we get a final status
if (jsonData.status === 'complete' || jsonData.status === 'error' || jsonData.status === 'cancelled') {
if (jsonData.status === 'complete' && !jsonData.operation?.includes('complete')) {
// Don't close for intermediate completion messages
sendProgressToClients(clients, line);
return;
}
// Close only on final completion/error/cancellation
switch (type) {
case 'update':
activeFullUpdate = null;
break;
case 'reset':
activeFullReset = null;
break;
}
if (jsonData.status === 'error') {
reject(new Error(jsonData.error || 'Unknown error'));
} else {
resolve({ output });
}
}
} catch (e) {
// Not JSON, just display as is
}
// Always send the raw line
sendProgressToClients(clients, line);
});
});
child.stderr.on('data', (data) => {
const text = data.toString();
console.error(text);
// Send stderr output directly too
sendProgressToClients(clients, text);
});
child.on('close', (code) => {
switch (type) {
case 'update':
activeFullUpdate = null;
break;
case 'reset':
activeFullReset = null;
break;
}
if (code !== 0) {
const error = `Script ${scriptPath} exited with code ${code}`;
sendProgressToClients(clients, error);
reject(new Error(error));
}
// Don't resolve here - let the completion message from the script trigger the resolve
});
child.on('error', (err) => {
switch (type) {
case 'update':
activeFullUpdate = null;
break;
case 'reset':
activeFullReset = null;
break;
}
sendProgressToClients(clients, err.message);
reject(err);
});
});
}
// Progress endpoints // Progress endpoints
router.get('/:type/progress', (req, res) => { router.get('/update/progress', (req, res) => {
const { type } = req.params;
if (!['update', 'reset'].includes(type)) {
return res.status(400).json({ error: 'Invalid operation type' });
}
res.writeHead(200, { res.writeHead(200, {
'Content-Type': 'text/event-stream', 'Content-Type': 'text/event-stream',
'Cache-Control': 'no-cache', 'Cache-Control': 'no-cache',
@@ -177,19 +55,105 @@ router.get('/:type/progress', (req, res) => {
'Access-Control-Allow-Credentials': 'true' 'Access-Control-Allow-Credentials': 'true'
}); });
// Add this client to the correct set // Send an initial message to test the connection
const clients = type === 'update' ? fullUpdateClients : fullResetClients; res.write('data: {"status":"running","operation":"Initializing connection..."}\n\n');
clients.add(res);
// Send initial connection message // Add this client to the update set
sendProgressToClients(new Set([res]), JSON.stringify({ updateClients.add(res);
status: 'running',
operation: 'Initializing connection...'
}));
// Handle client disconnect // Remove client when connection closes
req.on('close', () => { req.on('close', () => {
clients.delete(res); updateClients.delete(res);
});
});
router.get('/import/progress', (req, res) => {
res.writeHead(200, {
'Content-Type': 'text/event-stream',
'Cache-Control': 'no-cache',
'Connection': 'keep-alive',
'Access-Control-Allow-Origin': req.headers.origin || '*',
'Access-Control-Allow-Credentials': 'true'
});
// Send an initial message to test the connection
res.write('data: {"status":"running","operation":"Initializing connection..."}\n\n');
// Add this client to the import set
importClients.add(res);
// Remove client when connection closes
req.on('close', () => {
importClients.delete(res);
});
});
router.get('/reset/progress', (req, res) => {
res.writeHead(200, {
'Content-Type': 'text/event-stream',
'Cache-Control': 'no-cache',
'Connection': 'keep-alive',
'Access-Control-Allow-Origin': req.headers.origin || '*',
'Access-Control-Allow-Credentials': 'true'
});
// Send an initial message to test the connection
res.write('data: {"status":"running","operation":"Initializing connection..."}\n\n');
// Add this client to the reset set
resetClients.add(res);
// Remove client when connection closes
req.on('close', () => {
resetClients.delete(res);
});
});
// Add reset-metrics progress endpoint
router.get('/reset-metrics/progress', (req, res) => {
res.writeHead(200, {
'Content-Type': 'text/event-stream',
'Cache-Control': 'no-cache',
'Connection': 'keep-alive',
'Access-Control-Allow-Origin': req.headers.origin || '*',
'Access-Control-Allow-Credentials': 'true'
});
// Send an initial message to test the connection
res.write('data: {"status":"running","operation":"Initializing connection..."}\n\n');
// Add this client to the reset-metrics set
resetMetricsClients.add(res);
// Remove client when connection closes
req.on('close', () => {
resetMetricsClients.delete(res);
});
});
// Add calculate-metrics progress endpoint
router.get('/calculate-metrics/progress', (req, res) => {
res.writeHead(200, {
'Content-Type': 'text/event-stream',
'Cache-Control': 'no-cache',
'Connection': 'keep-alive',
'Access-Control-Allow-Origin': req.headers.origin || '*',
'Access-Control-Allow-Credentials': 'true'
});
// Send current progress if it exists
if (importProgress) {
res.write(`data: ${JSON.stringify(importProgress)}\n\n`);
} else {
res.write('data: {"status":"running","operation":"Initializing connection..."}\n\n');
}
// Add this client to the calculate-metrics set
calculateMetricsClients.add(res);
// Remove client when connection closes
req.on('close', () => {
calculateMetricsClients.delete(res);
}); });
}); });
@@ -210,6 +174,7 @@ router.get('/status', (req, res) => {
// Add calculate-metrics status endpoint // Add calculate-metrics status endpoint
router.get('/calculate-metrics/status', (req, res) => { router.get('/calculate-metrics/status', (req, res) => {
console.log('Calculate metrics status endpoint hit');
const calculateMetrics = require('../../scripts/calculate-metrics'); const calculateMetrics = require('../../scripts/calculate-metrics');
const progress = calculateMetrics.getProgress(); const progress = calculateMetrics.getProgress();
@@ -406,35 +371,49 @@ router.post('/import', async (req, res) => {
// Route to cancel active process // Route to cancel active process
router.post('/cancel', (req, res) => { router.post('/cancel', (req, res) => {
let killed = false; if (!activeImport) {
return res.status(404).json({ error: 'No active process to cancel' });
// Get the operation type from the request
const { type } = req.query;
const clients = type === 'update' ? fullUpdateClients : fullResetClients;
const activeProcess = type === 'update' ? activeFullUpdate : activeFullReset;
if (activeProcess) {
try {
activeProcess.kill('SIGTERM');
if (type === 'update') {
activeFullUpdate = null;
} else {
activeFullReset = null;
}
killed = true;
sendProgressToClients(clients, JSON.stringify({
status: 'cancelled',
operation: 'Operation cancelled'
}));
} catch (err) {
console.error(`Error killing ${type} process:`, err);
}
} }
if (killed) { try {
// If it's the prod import module, call its cancel function
if (typeof activeImport.cancelImport === 'function') {
activeImport.cancelImport();
} else {
// Otherwise it's a child process
activeImport.kill('SIGTERM');
}
// Get the operation type from the request
const { operation } = req.query;
// Send cancel message only to the appropriate client set
const cancelMessage = {
status: 'cancelled',
operation: 'Operation cancelled'
};
switch (operation) {
case 'update':
sendProgressToClients(updateClients, cancelMessage);
break;
case 'import':
sendProgressToClients(importClients, cancelMessage);
break;
case 'reset':
sendProgressToClients(resetClients, cancelMessage);
break;
case 'calculate-metrics':
sendProgressToClients(calculateMetricsClients, cancelMessage);
break;
}
res.json({ success: true }); res.json({ success: true });
} else { } catch (error) {
res.status(404).json({ error: 'No active process to cancel' }); // Even if there's an error, try to clean up
activeImport = null;
importProgress = null;
res.status(500).json({ error: 'Failed to cancel process' });
} }
}); });
@@ -573,6 +552,20 @@ router.post('/reset-metrics', async (req, res) => {
} }
}); });
// Add calculate-metrics status endpoint
router.get('/calculate-metrics/status', (req, res) => {
const calculateMetrics = require('../../scripts/calculate-metrics');
const progress = calculateMetrics.getProgress();
// Only consider it active if both the process is running and we have progress
const isActive = !!activeImport && !!progress;
res.json({
active: isActive,
progress: isActive ? progress : null
});
});
// Add calculate-metrics endpoint // Add calculate-metrics endpoint
router.post('/calculate-metrics', async (req, res) => { router.post('/calculate-metrics', async (req, res) => {
if (activeImport) { if (activeImport) {
@@ -718,96 +711,4 @@ router.post('/import-from-prod', async (req, res) => {
} }
}); });
// POST /csv/full-update - Run full update script
router.post('/full-update', async (req, res) => {
try {
const scriptPath = path.join(__dirname, '../../scripts/full-update.js');
runScript(scriptPath, 'update', fullUpdateClients)
.catch(error => {
console.error('Update failed:', error);
});
res.status(202).json({ message: 'Update started' });
} catch (error) {
res.status(500).json({ error: error.message });
}
});
// POST /csv/full-reset - Run full reset script
router.post('/full-reset', async (req, res) => {
try {
const scriptPath = path.join(__dirname, '../../scripts/full-reset.js');
runScript(scriptPath, 'reset', fullResetClients)
.catch(error => {
console.error('Reset failed:', error);
});
res.status(202).json({ message: 'Reset started' });
} catch (error) {
res.status(500).json({ error: error.message });
}
});
// GET /history/import - Get recent import history
router.get('/history/import', async (req, res) => {
try {
const pool = req.app.locals.pool;
const [rows] = await pool.query(`
SELECT * FROM import_history
ORDER BY start_time DESC
LIMIT 20
`);
res.json(rows || []);
} catch (error) {
console.error('Error fetching import history:', error);
res.status(500).json({ error: error.message });
}
});
// GET /history/calculate - Get recent calculation history
router.get('/history/calculate', async (req, res) => {
try {
const pool = req.app.locals.pool;
const [rows] = await pool.query(`
SELECT * FROM calculate_history
ORDER BY start_time DESC
LIMIT 20
`);
res.json(rows || []);
} catch (error) {
console.error('Error fetching calculate history:', error);
res.status(500).json({ error: error.message });
}
});
// GET /status/modules - Get module calculation status
router.get('/status/modules', async (req, res) => {
try {
const pool = req.app.locals.pool;
const [rows] = await pool.query(`
SELECT module_name, last_calculation_timestamp
FROM calculate_status
ORDER BY module_name
`);
res.json(rows || []);
} catch (error) {
console.error('Error fetching module status:', error);
res.status(500).json({ error: error.message });
}
});
// GET /status/tables - Get table sync status
router.get('/status/tables', async (req, res) => {
try {
const pool = req.app.locals.pool;
const [rows] = await pool.query(`
SELECT table_name, last_sync_timestamp
FROM sync_status
ORDER BY table_name
`);
res.json(rows || []);
} catch (error) {
console.error('Error fetching table status:', error);
res.status(500).json({ error: error.message });
}
});
module.exports = router; module.exports = router;

File diff suppressed because it is too large Load Diff

View File

@@ -133,10 +133,6 @@ export function PerformanceMetrics() {
} }
}; };
function getCategoryName(_cat_id: number): import("react").ReactNode {
throw new Error('Function not implemented.');
}
return ( return (
<div className="max-w-[700px] space-y-4"> <div className="max-w-[700px] space-y-4">
{/* Lead Time Thresholds Card */} {/* Lead Time Thresholds Card */}
@@ -209,11 +205,11 @@ export function PerformanceMetrics() {
<Table> <Table>
<TableHeader> <TableHeader>
<TableRow> <TableRow>
<TableCell>Category</TableCell> <TableHead>Category</TableHead>
<TableCell>Vendor</TableCell> <TableHead>Vendor</TableHead>
<TableCell className="text-right">A Threshold</TableCell> <TableHead className="text-right">A Threshold</TableHead>
<TableCell className="text-right">B Threshold</TableCell> <TableHead className="text-right">B Threshold</TableHead>
<TableCell className="text-right">Period Days</TableCell> <TableHead className="text-right">Period Days</TableHead>
</TableRow> </TableRow>
</TableHeader> </TableHeader>
<TableBody> <TableBody>
@@ -246,10 +242,10 @@ export function PerformanceMetrics() {
<Table> <Table>
<TableHeader> <TableHeader>
<TableRow> <TableRow>
<TableCell>Category</TableCell> <TableHead>Category</TableHead>
<TableCell>Vendor</TableCell> <TableHead>Vendor</TableHead>
<TableCell className="text-right">Period Days</TableCell> <TableHead className="text-right">Period Days</TableHead>
<TableCell className="text-right">Target Rate</TableCell> <TableHead className="text-right">Target Rate</TableHead>
</TableRow> </TableRow>
</TableHeader> </TableHeader>
<TableBody> <TableBody>

View File

@@ -5,6 +5,7 @@ import { Input } from "@/components/ui/input";
import { Label } from "@/components/ui/label"; import { Label } from "@/components/ui/label";
import { toast } from "sonner"; import { toast } from "sonner";
import config from '../../config'; import config from '../../config';
import { Table, TableBody, TableCell, TableHeader, TableRow } from "@/components/ui/table";
interface StockThreshold { interface StockThreshold {
id: number; id: number;
@@ -243,6 +244,54 @@ export function StockManagement() {
</div> </div>
</CardContent> </CardContent>
</Card> </Card>
<Table>
<TableHeader>
<TableRow>
<TableHead>Category</TableHead>
<TableHead>Vendor</TableHead>
<TableHead className="text-right">Critical Days</TableHead>
<TableHead className="text-right">Reorder Days</TableHead>
<TableHead className="text-right">Overstock Days</TableHead>
<TableHead className="text-right">Low Stock</TableHead>
<TableHead className="text-right">Min Reorder</TableHead>
</TableRow>
</TableHeader>
<TableBody>
{stockThresholds.map((threshold) => (
<TableRow key={`${threshold.cat_id}-${threshold.vendor}`}>
<TableCell>{threshold.cat_id ? getCategoryName(threshold.cat_id) : 'Global'}</TableCell>
<TableCell>{threshold.vendor || 'All Vendors'}</TableCell>
<TableCell className="text-right">{threshold.critical_days}</TableCell>
<TableCell className="text-right">{threshold.reorder_days}</TableCell>
<TableCell className="text-right">{threshold.overstock_days}</TableCell>
<TableCell className="text-right">{threshold.low_stock_threshold}</TableCell>
<TableCell className="text-right">{threshold.min_reorder_quantity}</TableCell>
</TableRow>
))}
</TableBody>
</Table>
<Table>
<TableHeader>
<TableRow>
<TableHead>Category</TableHead>
<TableHead>Vendor</TableHead>
<TableHead className="text-right">Coverage Days</TableHead>
<TableHead className="text-right">Service Level</TableHead>
</TableRow>
</TableHeader>
<TableBody>
{safetyStockConfigs.map((config) => (
<TableRow key={`${config.cat_id}-${config.vendor}`}>
<TableCell>{config.cat_id ? getCategoryName(config.cat_id) : 'Global'}</TableCell>
<TableCell>{config.vendor || 'All Vendors'}</TableCell>
<TableCell className="text-right">{config.coverage_days}</TableCell>
<TableCell className="text-right">{config.service_level}%</TableCell>
</TableRow>
))}
</TableBody>
</Table>
</div> </div>
); );
} }

View File

@@ -1,7 +1,7 @@
#!/bin/zsh #!/bin/zsh
#Clear previous mount in case its still there #Clear previous mount in case its still there
umount /Users/matt/Library/Mobile Documents/com~apple~CloudDocs/Dev/inventory/inventory-server umount ~/Dev/inventory/inventory-server
#Mount #Mount
sshfs matt@dashboard.kent.pw:/var/www/html/inventory -p 22122 /Users/matt/Library/Mobile Documents/com~apple~CloudDocs/Dev/inventory/inventory-server/ sshfs matt@dashboard.kent.pw:/var/www/html/inventory -p 22122 ~/Dev/inventory/inventory-server/