20 Commits

Author SHA1 Message Date
169407a729 Fix o3 issues on time-aggregates script 2025-02-12 15:01:04 -05:00
302172c537 Add refresh button to settings page status tables, fix duration on active scripts 2025-02-12 14:30:05 -05:00
4fdaab9e87 Fix o3 issues on product-metrics script 2025-02-11 23:36:14 -05:00
4dcc1f9e90 Fix frontend reset script and visual tweaks 2025-02-11 22:15:13 -05:00
67d57c8872 Update frontend to launch relevant scripts and show script history + output 2025-02-11 21:52:42 -05:00
d7bf79dec9 Fix o3 issues on calculate-metrics script 2025-02-11 15:46:43 -05:00
d90e9b51dc Add combined scripts 2025-02-11 15:02:58 -05:00
98e2e4073a Exclude calculate history table from resets 2025-02-11 14:31:01 -05:00
23c2085f1c Remove duplicate table creates 2025-02-11 14:12:12 -05:00
2a6a0d0a87 Fixed calculations for frontend (likely still wrong but they display) + related regressions to calculate script 2025-02-05 00:02:06 -05:00
ebffb8f912 Enhance calculate scripts to deal with times and counts + fix regressions 2025-02-03 22:21:39 -05:00
5676e9094d Add calculate time tracking 2025-02-02 21:22:46 -05:00
b926aba9ff Add calculate history tracking 2025-02-02 20:41:23 -05:00
e62c6ac8ee Fix issues with change tracking 2025-02-02 20:24:23 -05:00
18f4970059 Set up change tracking in core tables 2025-02-02 19:12:39 -05:00
12cab7473a Fix calculate script regressions 2025-02-02 09:27:06 -05:00
06b0f1251e Fix import script regressions 2025-02-02 01:40:05 -05:00
8a43da502a Fix (probably) discrepancies and errors in import/calculate scripts 2025-02-02 00:01:46 -05:00
bd5bcdd548 Fix calculate errors 2025-02-01 23:38:13 -05:00
0a51328da2 Add a bunch of untested calculations enhancements based on import script changes 2025-02-01 14:46:17 -05:00
25 changed files with 3529 additions and 7195 deletions

185
docs/calculate-issues.md Normal file
View File

@@ -0,0 +1,185 @@
1. **Missing Updates for Reorder Point and Safety Stock** [RESOLVED - product-metrics.js]
- **Problem:** In the **product_metrics** table (used by the inventory health view), the fields **reorder_point** and **safety_stock** are never updated in the product metrics calculations. Although a helper function (`calculateReorderQuantities`) exists and computes these values, the update query in the `calculateProductMetrics` function does not assign any values to these columns.
- **Effect:** The inventory health view relies on these fields (using COALESCE to default them to 0), which means that stock might never be classified as "Reorder" or "Healthy" based on the proper reorder point or safety stock calculations.
- **Example:** Even if a product's base metrics would require a reorder (for example, if its days of inventory are low), the view always shows a value of 0 for reorder_point and safety_stock.
- **Fix:** Update the product metrics query (or add a subsequent update) so that **pm.reorder_point** and **pm.safety_stock** are calculated (for instance, by integrating the logic from `calculateReorderQuantities`) and stored in the table.
2. **Overwritten Module Exports When Combining Scripts** [RESOLVED - calculate-metrics.js]
- **Problem:** The code provided shows two distinct exports. The main metrics calculation module exports `calculateMetrics` (along with cancel and getProgress helpers), but later in the same concatenated file the module exports are overwritten.
- **Effect:** If these two code sections end up in a single module file, the export for the main calculation will be lost. This would break any code that calls the overall metrics calculation.
- **Example:** An external caller expecting to run `calculateMetrics` would instead receive the `calculateProductMetrics` function.
- **Fix:** Make sure each script resides in its own module file. Verify that the module boundaries and exports are not accidentally merged or overwritten when deployed.
3. **Potential Formula Issue in EOQ Calculation (Reorder Qty)** [RESOLVED - product-metrics.js]
- **Problem:** The helper function `calculateReorderQuantities` uses an EOQ formula with a holding cost expressed as a percentage (0.25) rather than a perunit cost.
- **Effect:** If the intent was to use the traditional EOQ formula (which expects a holding cost per unit rather than a percentage), this could lead to an incorrect reorder quantity.
- **Example:** For a given annual demand and fixed order cost, the computed reorder quantity might be higher or lower than expected.
- **Fix:** Double-check the EOQ formula. If the intention is to compute based on a percentage, then document that clearly; otherwise, adjust the formula to use the proper holding cost value.
4. **Potential Overlap or Redundancy in GMROI Calculation** [RESOLVED - time-aggregates.js]
- **Problem:** In the time aggregates function, GMROI is calculated in two steps. The initial INSERT query computes GMROI as
`CASE WHEN s.inventory_value > 0 THEN (s.total_revenue - s.total_cost) / s.inventory_value ELSE 0 END`
and then a subsequent UPDATE query recalculates it as an annualized value using gross profit and active days.
- **Effect:** Overwriting a computed value may be intentional to refine the metric, but if not coordinated it can cause confusion or unexpected output in the `product_time_aggregates` table.
- **Example:** A product's GMROI might first appear as a simple ratio but then be updated to a scaled value based on the number of active days, which could lead to inconsistent reporting if not documented.
- **Fix:** Consolidated the GMROI calculation into a single step in the initial INSERT query, properly handling annualization and NULL values.
5. **Handling of Products Without Orders or Purchase Data** [RESOLVED - time-aggregates.js]
- **Problem:** In the INSERT query of the time aggregates function, the UNION covers two cases: one for products with order data (from `monthly_sales`) and one for products that have entries in `monthly_stock` but no matching order data.
- **Effect:** If a product has neither orders nor purchase orders, it won't get an entry in `product_time_aggregates`. Depending on business rules, this might be acceptable or might mean missing data.
- **Example:** A product that's new or rarely ordered might not appear in the time aggregates view, potentially affecting downstream calculations.
- **Fix:** Added an `all_products` CTE and modified the JOIN structure to ensure every product gets an entry with appropriate default values, even if it has no orders or purchase orders.
6. **Redundant Recalculation of Vendor Metrics**
- **Problem:** Similar concepts from prior scripts where cumulative metrics (like **total_revenue** and **total_cost**) are calculated in multiple query steps without necessary validation or optimization. In the vendor metrics script, calculations for total revenue and margin are performed within a `WITH` clause, which is then used in other parts of the process, making it more complex than needed.
- **Effect:** There's unnecessary duplication in querying the same data multiple times across subqueries. It could result in decreased performance and may even lead to excess computation if the subqueries are not optimized or correctly indexed.
- **Example:** Vendor sales and vendor purchase orders (PO) metrics are calculated in separate `WITH` clauses, leading to repeated calculations.
- **Fix:** Synthesize the required metrics into fewer queries or reuse the results within the `WITH` clause itself. Avoid redundant calculations of **revenue** and **cost** unless truly necessary.
7. **Handling Products Without Orders or Purchase Orders**
- **Problem:** In your `calculateVendorMetrics` script, the initial insert for vendor sales doesn't fully address the products that might not have matching orders or purchase orders. If a vendor has products without any sales within the last 12 months, the results may not be fully accurate unless handled explicitly.
- **Effect:** If no orders exist for a product associated with a particular vendor, that product will not contribute to the vendor's metrics, potentially omitting important data when calculating **total_orders** or **total_revenue**.
- **Example:** The scripted statistics fill gaps, but products with no recent purchase or sales orders might not be counted accurately.
- **Fix:** Include logic to handle scenarios where these products still need to be part of the vendor calculation. Use a `LEFT JOIN` wherever possible to account for cases without sales or purchase orders.
8. **Redundant `ON DUPLICATE KEY UPDATE`**
- **Problem:** Multiple queries in the `calculateVendorMetrics` script use `ON DUPLICATE KEY UPDATE` clauses to handle repeated metrics updates. This is useful for ensuring the most up-to-date calculations but can cause inconsistencies if multiple calculations happen for the same product or vendor simultaneously.
- **Effect:** This approach can lead to an inaccurate update of brand-specific data when insertion and update overlap. Each time you add a new batch, an existing entry could be overwritten if not handled correctly.
- **Example:** Vendor country, category, or sales-related metrics could unintentionally update during processing.
- **Fix:** Match on current status more robustly in case of existing rows to avoid unnecessary updates. Ensure that the key used for `ON DUPLICATE KEY` aligns with any foreign key relationships that might indicate an already processed entry.
9. **SQL Query Performance with Multiple Nested `WITH` Clauses**
- **Problem:** Heavily nested queries (especially **WITH** clauses) may lead to slow performance depending on the size of the dataset.
- **Effect:** Computational burden could be high when the database is large, e.g., querying **purchase orders**, **vendor sales**, and **product info** simultaneously. Even with proper indexes, the deployment might struggle in production environments.
- **Example:** Multiple `WITH` clauses in the vendor and brand metrics calculation scripts might work fine in small datasets but degrade performance in production.
- **Fix:** Combine some subqueries and reduce the layer of computations needed for calculating final metrics. Test performance on a production-sized dataset to see how nested queries are handled.
10. **Missing Updates for Reorder Metrics (Vendor/Brand)**
- **Previously Identified Issue:** Inconsistent updates for **reorder_point** and **safety_stock** across earlier scripts.
- **Current Impact on This Script:** The vendor and brand metrics do not have explicit updates for reorder point or safety stock, which are essential for inventory evaluation.
- **Effect:** The correct thresholds and reorder logic for vendor product inventory aren't fully accounted for in these scripts.
- **Fix:** Integrate relevant logic to update **reorder_point** or **safety_stock** within the vendor and brand metrics calculations. Ensure that it's consistently computed and stored.
11. **Data Integrity and Consistency**
**w**hen tracking sales growth or performance
- **Problem:** Brand metrics include a sales growth clause where negative results can sometimes be skewed severely if period data varies considerably.
- **Effect:** If period boundaries are incorrect or records are missing, this can create drastic growth rate calculations.
- **Example:** If the "previous" period has no sales but "current" has a substantial increase, the growth rate will show as **100%**.
- **Fix:** Implement checks that ensure both periods are valid and that the system calculates growth accurately, avoiding growth rates based solely on potential outliers. Replace consistent gaps with a no-growth rate or a meaningful zero.
12. **Exclusion of Vendors With No Sales**
The vendor metrics query is driven by the `vendor_sales` CTE, which aggregates data only for vendors that have orders in the past 12 months.
- **Impact:** Vendors that have purchase activity (or simply exist in vendor_details) but no recent sales won't show up in vendor_metrics. This could cause the frontend to miss metrics for vendors that might still be important.
- **Fix:** Consider adding a UNION or changing the driving set so that all vendors (for example, from vendor_details) are included—even if they have zero sales.
13. **Identical Formulas for On-Time Delivery and Order Fill Rates**
Both metrics are calculated as `(received_orders / total_orders) * 100`.
- **Impact:** If the business expects these to be distinct (for example, one might factor in on-time receipt versus mere receipt), then showing identical values on the frontend could be misleading.
- **Fix:** Verify and adjust the formulas if on-time delivery and order fill rates should be computed differently.
14. **Handling Nulls and Defaults in Aggregations**
The query uses COALESCE in most places, but be sure that every aggregated value (like average lead time) correctly defaults when no data is present.
- **Impact:** Incorrect defaults might cause odd or missing numbers on the production interface.
- **Fix:** Double-check that all numeric aggregates reliably default to 0 where needed.
15. **Inconsistent Stock Filtering Conditions**
In the main brand metrics query the CTE filters products with the condition
`p.stock_quantity <= 5000 AND p.stock_quantity >= 0`
whereas in the brand time-based metrics query the condition is only `p.stock_quantity <= 5000`.
- **Impact:** This discrepancy may lead to inconsistent numbers (for example, if any products have negative stock, which might be due to data issues) between overall brand metrics and time-based metrics on the frontend.
- **Fix:** Standardize the filtering criteria so that both queries treat out-of-range stock values in the same way.
16. **Growth Rate Calculation Periods**
The growth rate is computed by comparing revenue from the last 3 months ("current") against a period from 1512 months ago ("previous").
- **Impact:** This narrow window may not reflect typical year-over-year performance and could lead to volatile or unexpected growth percentages on the frontend.
- **Fix:** Revisit the business logic for growth—if a longer or different comparison period is preferred, adjust the date intervals accordingly.
17. **Potential NULLs in Aggregated Time-Based Metrics**
In the brand time-based metrics query, aggregate expressions such as `SUM(o.quantity * o.price)` aren't wrapped with COALESCE.
- **Impact:** If there are no orders for a given brand/month, these sums might return NULL rather than 0, which could propagate into the frontend display.
- **Fix:** Wrap such aggregates in COALESCE (e.g. `COALESCE(SUM(o.quantity * o.price), 0)`) to ensure a default numeric value.
18. **Grouping by Category Status in Base Metrics Insert**
- **Problem:** The INSERT for base category metrics groups by both `c.cat_id` and `c.status` even though the table's primary key is just `category_id`.
- **Effect:** If a category's status changes over time, the grouping may produce unexpected updates (or even multiple groups before the duplicate key update kicks in), possibly causing the wrong status or aggregated figures to be stored.
- **Example:** A category that toggles between "active" and "inactive" might have its metrics calculated differently on different runs.
- **Fix:** Ensure that the grouping keys match the primary key (or that the status update logic is exactly as intended) so that a single row per category is maintained.
19. **Potential Null Handling in Margin Calculations**
- **Problem:** In the query for category time metrics, the calculation of average margin uses expressions such as `SUM(o.quantity * (o.price - GREATEST(p.cost_price, 0)))` without using `COALESCE` on `p.cost_price`.
- **Effect:** If any product's `cost_price` is `NULL`, then `GREATEST(p.cost_price, 0)` returns `NULL` and the resulting sum (and thus the margin) could become `NULL` rather than defaulting to 0. This might lead to missing or misleading margin figures on the frontend.
- **Example:** A product with a missing cost price would make the entire margin expression evaluate to `NULL` even when sales exist.
- **Fix:** Replace `GREATEST(p.cost_price, 0)` with `GREATEST(COALESCE(p.cost_price, 0), 0)` (or simply use `COALESCE(p.cost_price, 0)`) to ensure that missing values are handled.
20. **Data Coverage in Growth Rate Calculation**
- **Problem:** The growth rate update depends on multiple CTEs (current period, previous period, and trend analysis) that require a minimum amount of data (for instance, `HAVING COUNT(*) >= 6` in the trend_stats CTE).
- **Effect:** Categories with insufficient historical data will fall into the "ELSE" branch (or may even be skipped if no revenue is present), which might result in a growth rate of 0.0 or an unexpected value.
- **Example:** A newly created category that has only two months of data won't have trend analysis, so its growth rate will be calculated solely by the simple difference, which might not reflect true performance.
- **Fix:** Confirm that this fallback behavior is acceptable for production; if not, adjust the logic so that every category receives a consistent growth rate even with sparse data.
21. **Omission of Forecasts for ZeroSales Categories**
- **Observation:** The categorysales metrics query uses a `HAVING AVG(cs.daily_quantity) > 0` clause.
- **Effect:** Categories without any average daily sales will not receive a forecast record in `category_sales_metrics`. If the frontend expects a row (even with zeros) for every category, this will lead to missing data.
- **Fix:** Verify that it's acceptable for categories with no sales to have no forecast entry. If not, adjust the query so that a default forecast (with zeros) is inserted.
22. **Randomness in Category-Level Forecast Revenue Calculation**
- **Problem:** In the category-level forecasts query, the forecast revenue is multiplied by a factor of `(0.95 + (RAND() * 0.1))`.
- **Effect:** This introduces randomness into the forecast figures so that repeated runs could yield slightly different values. If deterministic forecasts are expected on the production frontend, this could lead to inconsistent displays.
- **Example:** The same category might show a 5% higher forecast on one run and 3% on another because of the random multiplier.
- **Fix:** Confirm that this randomness is intentional for your forecasting model; if forecasts are meant to be reproducible, remove or replace the `RAND()` factor with a fixed multiplier.
23. **Multi-Statement Cleanup of Temporary Tables**
- **Problem:** The cleanup query drops multiple temporary tables in one call (separated by semicolons).
- **Effect:** If your Node.js MySQL driver isn't configured to allow multi-statement execution, this query may fail, leaving temporary tables behind. Leftover temporary tables might eventually cause conflicts or resource issues.
- **Example:** Running the cleanup query could produce an error like "multi-statement queries not enabled," preventing proper cleanup.
- **Fix:** Either configure your database connection to allow multi-statements or issue separate queries for each temporary table drop to ensure that the cleanup runs successfully.
24. **Handling Products with No Sales Data**
- **Problem:** In the product-level forecast calculation, the CTE `daily_stats` includes a `HAVING AVG(ds.daily_quantity) > 0` clause.
- **Effect:** Products that have no sales (or a zero average daily quantity) will be excluded from the forecasts. This means the frontend won't show forecasts for nonselling products, which might be acceptable but could also be a completeness issue.
- **Example:** A product that has never sold will not appear in the `sales_forecasts` table.
- **Fix:** Confirm that it is intended for forecasts to be generated only for products with some sales activity. If forecasts are required for all products, adjust the query to insert default forecast records for products with zero sales.
25. **Complexity of the Forecast Formula Involving the Seasonality Factor**
- **Issue:**
The sales forecast calculations incorporate an adjustment factor using `COALESCE(sf.seasonality_factor, 0)` to modify forecast units and revenue. This means that if the seasonality data is missing (or not populated), the factor defaults to 0.
- **Potential Problem:**
A default value of 0 will drastically alter the forecast calculations—often leading to a forecast of 0 or an overly dampened forecast—when in reality the intended behavior might be to use a neutral multiplier (typically 1.0). This could result in forecasts that are not reflective of the actual seasonal impact, thereby skewing the figures that reach the frontend.
- **Fix:**
Review your data source for seasonality (the `sales_seasonality` table) and ensure it's consistently populated. Alternatively, if missing seasonality data is possible, consider using a more neutral default (such as 1.0) in your COALESCE. This change would prevent the forecast formulas from over-simplifying (or even nullifying) the forecast output due to missing seasonality factors.
26. **Group By with Seasonality Factor Variability**
- **Observation:** In the forecast insertion query, the GROUP BY clause includes `sf.seasonality_factor` along with other fields.
- **Effect:** If the seasonality factor differs (or is `NULL` versus a value) for different forecast dates, this might result in multiple rows for the same product and forecast date. However, the `ON DUPLICATE KEY UPDATE` clause will merge them—but only if the primary key (pid, forecast_date) is truly unique.
- **Fix:** Verify that the grouping produces exactly one row per product per forecast date. If there's potential for multiple rows due to seasonality variability, consider applying a COALESCE or an aggregation on the seasonality factor so that it does not affect grouping.
27. **Memory Management for Temporary Tables** [RESOLVED - calculate-metrics.js]
- **Problem:** In metrics calculations, temporary tables aren't always properly cleaned up if the process fails between creation and the DROP statement.
- **Effect:** If a process fails after creating temporary tables but before dropping them, these tables remain in memory until the connection is closed. In a production environment with multiple calculation runs, this could lead to memory leaks or table name conflicts.
- **Example:** The `temp_revenue_ranks` table creation in ABC classification could remain if the process fails before reaching the DROP statement.
- **Fix:** Implement proper cleanup in a finally block or use transaction management that ensures temporary tables are always cleaned up, even in failure scenarios.

View File

@@ -171,6 +171,39 @@ ORDER BY
c.name,
st.vendor;
CREATE TABLE IF NOT EXISTS calculate_history (
id BIGINT AUTO_INCREMENT PRIMARY KEY,
start_time TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
end_time TIMESTAMP NULL,
duration_seconds INT,
duration_minutes DECIMAL(10,2) GENERATED ALWAYS AS (duration_seconds / 60.0) STORED,
total_products INT DEFAULT 0,
total_orders INT DEFAULT 0,
total_purchase_orders INT DEFAULT 0,
processed_products INT DEFAULT 0,
processed_orders INT DEFAULT 0,
processed_purchase_orders INT DEFAULT 0,
status ENUM('running', 'completed', 'failed', 'cancelled') DEFAULT 'running',
error_message TEXT,
additional_info JSON,
INDEX idx_status_time (status, start_time)
);
CREATE TABLE IF NOT EXISTS calculate_status (
module_name ENUM(
'product_metrics',
'time_aggregates',
'financial_metrics',
'vendor_metrics',
'category_metrics',
'brand_metrics',
'sales_forecasts',
'abc_classification'
) PRIMARY KEY,
last_calculation_timestamp TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
INDEX idx_last_calc (last_calculation_timestamp)
);
CREATE TABLE IF NOT EXISTS sync_status (
table_name VARCHAR(50) PRIMARY KEY,
last_sync_timestamp TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,

View File

@@ -102,19 +102,17 @@ CREATE TABLE IF NOT EXISTS product_time_aggregates (
INDEX idx_date (year, month)
);
-- Create vendor details table
CREATE TABLE IF NOT EXISTS vendor_details (
vendor VARCHAR(100) NOT NULL,
-- Create vendor_details table
CREATE TABLE vendor_details (
vendor VARCHAR(100) PRIMARY KEY,
contact_name VARCHAR(100),
email VARCHAR(100),
phone VARCHAR(20),
email VARCHAR(255),
phone VARCHAR(50),
status VARCHAR(20) DEFAULT 'active',
notes TEXT,
created_at TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
updated_at TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
PRIMARY KEY (vendor),
INDEX idx_vendor_status (status)
);
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
INDEX idx_status (status)
) ENGINE=InnoDB;
-- New table for vendor metrics
CREATE TABLE IF NOT EXISTS vendor_metrics (
@@ -411,20 +409,3 @@ LEFT JOIN
-- Re-enable foreign key checks
SET FOREIGN_KEY_CHECKS = 1;
-- Create table for sales seasonality factors
CREATE TABLE IF NOT EXISTS sales_seasonality (
month INT NOT NULL,
seasonality_factor DECIMAL(5,3) DEFAULT 0,
last_updated TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
PRIMARY KEY (month),
CHECK (month BETWEEN 1 AND 12),
CHECK (seasonality_factor BETWEEN -1.0 AND 1.0)
);
-- Insert default seasonality factors (neutral)
INSERT INTO sales_seasonality (month, seasonality_factor)
VALUES
(1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 0),
(7, 0), (8, 0), (9, 0), (10, 0), (11, 0), (12, 0)
ON DUPLICATE KEY UPDATE last_updated = CURRENT_TIMESTAMP;

View File

@@ -51,13 +51,15 @@ CREATE TABLE products (
baskets INT UNSIGNED DEFAULT 0,
notifies INT UNSIGNED DEFAULT 0,
date_last_sold DATE,
updated TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
PRIMARY KEY (pid),
INDEX idx_sku (SKU),
INDEX idx_vendor (vendor),
INDEX idx_brand (brand),
INDEX idx_location (location),
INDEX idx_total_sold (total_sold),
INDEX idx_date_last_sold (date_last_sold)
INDEX idx_date_last_sold (date_last_sold),
INDEX idx_updated (updated)
) ENGINE=InnoDB;
-- Create categories table with hierarchy support
@@ -77,18 +79,6 @@ CREATE TABLE categories (
INDEX idx_name_type (name, type)
) ENGINE=InnoDB;
-- Create vendor_details table
CREATE TABLE vendor_details (
vendor VARCHAR(100) PRIMARY KEY,
contact_name VARCHAR(100),
email VARCHAR(255),
phone VARCHAR(50),
status VARCHAR(20) DEFAULT 'active',
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
INDEX idx_status (status)
) ENGINE=InnoDB;
-- Create product_categories junction table
CREATE TABLE product_categories (
cat_id BIGINT NOT NULL,
@@ -118,6 +108,7 @@ CREATE TABLE IF NOT EXISTS orders (
customer_name VARCHAR(100),
status VARCHAR(20) DEFAULT 'pending',
canceled TINYINT(1) DEFAULT 0,
updated TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
PRIMARY KEY (id),
UNIQUE KEY unique_order_line (order_number, pid),
KEY order_number (order_number),
@@ -125,7 +116,8 @@ CREATE TABLE IF NOT EXISTS orders (
KEY customer (customer),
KEY date (date),
KEY status (status),
INDEX idx_orders_metrics (pid, date, canceled)
INDEX idx_orders_metrics (pid, date, canceled),
INDEX idx_updated (updated)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;
-- Create purchase_orders table with its indexes
@@ -148,8 +140,9 @@ CREATE TABLE purchase_orders (
received INT DEFAULT 0,
received_date DATE COMMENT 'Date of first receiving',
last_received_date DATE COMMENT 'Date of most recent receiving',
received_by INT,
received_by VARCHAR(100) COMMENT 'Name of person who first received this PO line',
receiving_history JSON COMMENT 'Array of receiving records with qty, date, cost, receiving_id, and alt_po flag',
updated TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
FOREIGN KEY (pid) REFERENCES products(pid),
INDEX idx_po_id (po_id),
INDEX idx_vendor (vendor),
@@ -159,6 +152,7 @@ CREATE TABLE purchase_orders (
INDEX idx_po_metrics (pid, date, receiving_status, received_date),
INDEX idx_po_product_date (pid, date),
INDEX idx_po_product_status (pid, status),
INDEX idx_updated (updated),
UNIQUE KEY unique_po_product (po_id, pid)
) ENGINE=InnoDB;

File diff suppressed because it is too large Load Diff

View File

@@ -7,13 +7,13 @@ require('dotenv').config({ path: path.resolve(__dirname, '..', '.env') });
// Configuration flags for controlling which metrics to calculate
// Set to 1 to skip the corresponding calculation, 0 to run it
const SKIP_PRODUCT_METRICS = 1; // Skip all product metrics
const SKIP_TIME_AGGREGATES = 1; // Skip time aggregates
const SKIP_FINANCIAL_METRICS = 1; // Skip financial metrics
const SKIP_VENDOR_METRICS = 1; // Skip vendor metrics
const SKIP_CATEGORY_METRICS = 1; // Skip category metrics
const SKIP_BRAND_METRICS = 1; // Skip brand metrics
const SKIP_SALES_FORECASTS = 1; // Skip sales forecasts
const SKIP_PRODUCT_METRICS = 0;
const SKIP_TIME_AGGREGATES = 0;
const SKIP_FINANCIAL_METRICS = 0;
const SKIP_VENDOR_METRICS = 0;
const SKIP_CATEGORY_METRICS = 0;
const SKIP_BRAND_METRICS = 0;
const SKIP_SALES_FORECASTS = 0;
// Add error handler for uncaught exceptions
process.on('uncaughtException', (error) => {
@@ -44,6 +44,34 @@ global.clearProgress = progress.clearProgress;
global.getProgress = progress.getProgress;
global.logError = progress.logError;
// List of temporary tables used in the calculation process
const TEMP_TABLES = [
'temp_revenue_ranks',
'temp_sales_metrics',
'temp_purchase_metrics',
'temp_product_metrics',
'temp_vendor_metrics',
'temp_category_metrics',
'temp_brand_metrics',
'temp_forecast_dates',
'temp_daily_sales',
'temp_product_stats',
'temp_category_sales',
'temp_category_stats'
];
// Add cleanup function for temporary tables
async function cleanupTemporaryTables(connection) {
try {
for (const table of TEMP_TABLES) {
await connection.query(`DROP TEMPORARY TABLE IF EXISTS ${table}`);
}
} catch (error) {
logError(error, 'Error cleaning up temporary tables');
throw error; // Re-throw to be handled by the caller
}
}
const { getConnection, closePool } = require('./metrics/utils/db');
const calculateProductMetrics = require('./metrics/product-metrics');
const calculateTimeAggregates = require('./metrics/time-aggregates');
@@ -83,10 +111,78 @@ process.on('SIGTERM', cancelCalculation);
async function calculateMetrics() {
let connection;
const startTime = Date.now();
let processedCount = 0;
let processedProducts = 0;
let processedOrders = 0;
let processedPurchaseOrders = 0;
let totalProducts = 0;
let totalOrders = 0;
let totalPurchaseOrders = 0;
let calculateHistoryId;
try {
// Clean up any previously running calculations
connection = await getConnection();
await connection.query(`
UPDATE calculate_history
SET
status = 'cancelled',
end_time = NOW(),
duration_seconds = TIMESTAMPDIFF(SECOND, start_time, NOW()),
error_message = 'Previous calculation was not completed properly'
WHERE status = 'running'
`);
// Get counts from all relevant tables
const [[productCount], [orderCount], [poCount]] = await Promise.all([
connection.query('SELECT COUNT(*) as total FROM products'),
connection.query('SELECT COUNT(*) as total FROM orders'),
connection.query('SELECT COUNT(*) as total FROM purchase_orders')
]);
totalProducts = productCount.total;
totalOrders = orderCount.total;
totalPurchaseOrders = poCount.total;
// Create history record for this calculation
const [historyResult] = await connection.query(`
INSERT INTO calculate_history (
start_time,
status,
total_products,
total_orders,
total_purchase_orders,
additional_info
) VALUES (
NOW(),
'running',
?,
?,
?,
JSON_OBJECT(
'skip_product_metrics', ?,
'skip_time_aggregates', ?,
'skip_financial_metrics', ?,
'skip_vendor_metrics', ?,
'skip_category_metrics', ?,
'skip_brand_metrics', ?,
'skip_sales_forecasts', ?
)
)
`, [
totalProducts,
totalOrders,
totalPurchaseOrders,
SKIP_PRODUCT_METRICS,
SKIP_TIME_AGGREGATES,
SKIP_FINANCIAL_METRICS,
SKIP_VENDOR_METRICS,
SKIP_CATEGORY_METRICS,
SKIP_BRAND_METRICS,
SKIP_SALES_FORECASTS
]);
calculateHistoryId = historyResult.insertId;
connection.release();
// Add debug logging for the progress functions
console.log('Debug - Progress functions:', {
formatElapsedTime: typeof global.formatElapsedTime,
@@ -115,72 +211,150 @@ async function calculateMetrics() {
elapsed: '0s',
remaining: 'Calculating...',
rate: 0,
percentage: '0'
percentage: '0',
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
// Get total number of products
const [countResult] = await connection.query('SELECT COUNT(*) as total FROM products')
.catch(err => {
global.logError(err, 'Failed to count products');
throw err;
// Update progress periodically
const updateProgress = async (products = null, orders = null, purchaseOrders = null) => {
// Ensure all values are valid numbers or default to previous value
if (products !== null) processedProducts = Number(products) || processedProducts || 0;
if (orders !== null) processedOrders = Number(orders) || processedOrders || 0;
if (purchaseOrders !== null) processedPurchaseOrders = Number(purchaseOrders) || processedPurchaseOrders || 0;
// Ensure we never send NaN to the database
const safeProducts = Number(processedProducts) || 0;
const safeOrders = Number(processedOrders) || 0;
const safePurchaseOrders = Number(processedPurchaseOrders) || 0;
await connection.query(`
UPDATE calculate_history
SET
processed_products = ?,
processed_orders = ?,
processed_purchase_orders = ?
WHERE id = ?
`, [safeProducts, safeOrders, safePurchaseOrders, calculateHistoryId]);
};
// Helper function to ensure valid progress numbers
const ensureValidProgress = (current, total) => ({
current: Number(current) || 0,
total: Number(total) || 1, // Default to 1 to avoid division by zero
percentage: (((Number(current) || 0) / (Number(total) || 1)) * 100).toFixed(1)
});
// Initial progress
const initialProgress = ensureValidProgress(0, totalProducts);
global.outputProgress({
status: 'running',
operation: 'Starting metrics calculation',
current: initialProgress.current,
total: initialProgress.total,
elapsed: '0s',
remaining: 'Calculating...',
rate: 0,
percentage: initialProgress.percentage,
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
totalProducts = countResult[0].total;
if (!SKIP_PRODUCT_METRICS) {
processedCount = await calculateProductMetrics(startTime, totalProducts);
const result = await calculateProductMetrics(startTime, totalProducts);
await updateProgress(result.processedProducts, result.processedOrders, result.processedPurchaseOrders);
if (!result.success) {
throw new Error('Product metrics calculation failed');
}
} else {
console.log('Skipping product metrics calculation...');
processedCount = Math.floor(totalProducts * 0.6);
processedProducts = Math.floor(totalProducts * 0.6);
await updateProgress(processedProducts);
global.outputProgress({
status: 'running',
operation: 'Skipping product metrics calculation',
current: processedCount,
current: processedProducts,
total: totalProducts,
elapsed: global.formatElapsedTime(startTime),
remaining: global.estimateRemaining(startTime, processedCount, totalProducts),
rate: global.calculateRate(startTime, processedCount),
percentage: '60'
remaining: global.estimateRemaining(startTime, processedProducts, totalProducts),
rate: global.calculateRate(startTime, processedProducts),
percentage: '60',
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
}
// Calculate time-based aggregates
if (!SKIP_TIME_AGGREGATES) {
processedCount = await calculateTimeAggregates(startTime, totalProducts, processedCount);
const result = await calculateTimeAggregates(startTime, totalProducts, processedProducts);
await updateProgress(result.processedProducts, result.processedOrders, result.processedPurchaseOrders);
if (!result.success) {
throw new Error('Time aggregates calculation failed');
}
} else {
console.log('Skipping time aggregates calculation');
}
// Calculate financial metrics
if (!SKIP_FINANCIAL_METRICS) {
processedCount = await calculateFinancialMetrics(startTime, totalProducts, processedCount);
const result = await calculateFinancialMetrics(startTime, totalProducts, processedProducts);
await updateProgress(result.processedProducts, result.processedOrders, result.processedPurchaseOrders);
if (!result.success) {
throw new Error('Financial metrics calculation failed');
}
} else {
console.log('Skipping financial metrics calculation');
}
// Calculate vendor metrics
if (!SKIP_VENDOR_METRICS) {
processedCount = await calculateVendorMetrics(startTime, totalProducts, processedCount);
const result = await calculateVendorMetrics(startTime, totalProducts, processedProducts);
await updateProgress(result.processedProducts, result.processedOrders, result.processedPurchaseOrders);
if (!result.success) {
throw new Error('Vendor metrics calculation failed');
}
} else {
console.log('Skipping vendor metrics calculation');
}
// Calculate category metrics
if (!SKIP_CATEGORY_METRICS) {
processedCount = await calculateCategoryMetrics(startTime, totalProducts, processedCount);
const result = await calculateCategoryMetrics(startTime, totalProducts, processedProducts);
await updateProgress(result.processedProducts, result.processedOrders, result.processedPurchaseOrders);
if (!result.success) {
throw new Error('Category metrics calculation failed');
}
} else {
console.log('Skipping category metrics calculation');
}
// Calculate brand metrics
if (!SKIP_BRAND_METRICS) {
processedCount = await calculateBrandMetrics(startTime, totalProducts, processedCount);
const result = await calculateBrandMetrics(startTime, totalProducts, processedProducts);
await updateProgress(result.processedProducts, result.processedOrders, result.processedPurchaseOrders);
if (!result.success) {
throw new Error('Brand metrics calculation failed');
}
} else {
console.log('Skipping brand metrics calculation');
}
// Calculate sales forecasts
if (!SKIP_SALES_FORECASTS) {
processedCount = await calculateSalesForecasts(startTime, totalProducts, processedCount);
const result = await calculateSalesForecasts(startTime, totalProducts, processedProducts);
await updateProgress(result.processedProducts, result.processedOrders, result.processedPurchaseOrders);
if (!result.success) {
throw new Error('Sales forecasts calculation failed');
}
} else {
console.log('Skipping sales forecasts calculation');
}
@@ -189,15 +363,25 @@ async function calculateMetrics() {
outputProgress({
status: 'running',
operation: 'Starting ABC classification',
current: processedCount,
total: totalProducts,
current: processedProducts || 0,
total: totalProducts || 0,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
remaining: estimateRemaining(startTime, processedProducts || 0, totalProducts || 0),
rate: calculateRate(startTime, processedProducts || 0),
percentage: (((processedProducts || 0) / (totalProducts || 1)) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
if (isCancelled) return processedCount;
if (isCancelled) return {
processedProducts: processedProducts || 0,
processedOrders: processedOrders || 0,
processedPurchaseOrders: 0,
success: false
};
const [abcConfig] = await connection.query('SELECT a_threshold, b_threshold FROM abc_classification_config WHERE id = 1');
const abcThresholds = abcConfig[0] || { a_threshold: 20, b_threshold: 50 };
@@ -218,15 +402,25 @@ async function calculateMetrics() {
outputProgress({
status: 'running',
operation: 'Creating revenue rankings',
current: processedCount,
total: totalProducts,
current: processedProducts || 0,
total: totalProducts || 0,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
remaining: estimateRemaining(startTime, processedProducts || 0, totalProducts || 0),
rate: calculateRate(startTime, processedProducts || 0),
percentage: (((processedProducts || 0) / (totalProducts || 1)) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
if (isCancelled) return processedCount;
if (isCancelled) return {
processedProducts: processedProducts || 0,
processedOrders: processedOrders || 0,
processedPurchaseOrders: 0,
success: false
};
await connection.query(`
INSERT INTO temp_revenue_ranks
@@ -247,26 +441,44 @@ async function calculateMetrics() {
// Get total count for percentage calculation
const [rankingCount] = await connection.query('SELECT MAX(rank_num) as total_count FROM temp_revenue_ranks');
const totalCount = rankingCount[0].total_count || 1;
const max_rank = totalCount; // Store max_rank for use in classification
outputProgress({
status: 'running',
operation: 'Updating ABC classifications',
current: processedCount,
total: totalProducts,
current: processedProducts || 0,
total: totalProducts || 0,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
remaining: estimateRemaining(startTime, processedProducts || 0, totalProducts || 0),
rate: calculateRate(startTime, processedProducts || 0),
percentage: (((processedProducts || 0) / (totalProducts || 1)) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
if (isCancelled) return processedCount;
if (isCancelled) return {
processedProducts: processedProducts || 0,
processedOrders: processedOrders || 0,
processedPurchaseOrders: 0,
success: false
};
// Process updates in batches
// ABC classification progress tracking
let abcProcessedCount = 0;
const batchSize = 5000;
let lastProgressUpdate = Date.now();
const progressUpdateInterval = 1000; // Update every second
while (true) {
if (isCancelled) return processedCount;
if (isCancelled) return {
processedProducts: Number(processedProducts) || 0,
processedOrders: Number(processedOrders) || 0,
processedPurchaseOrders: 0,
success: false
};
// First get a batch of PIDs that need updating
const [pids] = await connection.query(`
@@ -282,8 +494,8 @@ async function calculateMetrics() {
ELSE 'C'
END
LIMIT ?
`, [totalCount, abcThresholds.a_threshold,
totalCount, abcThresholds.b_threshold,
`, [max_rank, abcThresholds.a_threshold,
max_rank, abcThresholds.b_threshold,
batchSize]);
if (pids.length === 0) {
@@ -303,24 +515,43 @@ async function calculateMetrics() {
END,
pm.last_calculated_at = NOW()
WHERE pm.pid IN (?)
`, [totalCount, abcThresholds.a_threshold,
totalCount, abcThresholds.b_threshold,
`, [max_rank, abcThresholds.a_threshold,
max_rank, abcThresholds.b_threshold,
pids.map(row => row.pid)]);
abcProcessedCount += result.affectedRows;
processedCount = Math.floor(totalProducts * (0.99 + (abcProcessedCount / totalCount) * 0.01));
// Calculate progress ensuring valid numbers
const currentProgress = Math.floor(totalProducts * (0.99 + (abcProcessedCount / (totalCount || 1)) * 0.01));
processedProducts = Number(currentProgress) || processedProducts || 0;
// Only update progress at most once per second
const now = Date.now();
if (now - lastProgressUpdate >= progressUpdateInterval) {
const progress = ensureValidProgress(processedProducts, totalProducts);
outputProgress({
status: 'running',
operation: 'ABC classification progress',
current: processedCount,
total: totalProducts,
current: progress.current,
total: progress.total,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
remaining: estimateRemaining(startTime, progress.current, progress.total),
rate: calculateRate(startTime, progress.current),
percentage: progress.percentage,
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
lastProgressUpdate = now;
}
// Update database progress
await updateProgress(processedProducts, processedOrders, processedPurchaseOrders);
// Small delay between batches to allow other transactions
await new Promise(resolve => setTimeout(resolve, 100));
}
@@ -328,61 +559,145 @@ async function calculateMetrics() {
// Clean up
await connection.query('DROP TEMPORARY TABLE IF EXISTS temp_revenue_ranks');
const endTime = Date.now();
const totalElapsedSeconds = Math.round((endTime - startTime) / 1000);
// Update calculate_status for ABC classification
await connection.query(`
INSERT INTO calculate_status (module_name, last_calculation_timestamp)
VALUES ('abc_classification', NOW())
ON DUPLICATE KEY UPDATE last_calculation_timestamp = NOW()
`);
// Final progress update with guaranteed valid numbers
const finalProgress = ensureValidProgress(totalProducts, totalProducts);
// Final success message
outputProgress({
status: 'complete',
operation: 'Metrics calculation complete',
current: totalProducts,
total: totalProducts,
current: finalProgress.current,
total: finalProgress.total,
elapsed: formatElapsedTime(startTime),
remaining: '0s',
rate: calculateRate(startTime, totalProducts),
percentage: '100'
rate: calculateRate(startTime, finalProgress.current),
percentage: '100',
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: totalElapsedSeconds
}
});
// Ensure all values are valid numbers before final update
const finalStats = {
processedProducts: Number(processedProducts) || 0,
processedOrders: Number(processedOrders) || 0,
processedPurchaseOrders: Number(processedPurchaseOrders) || 0
};
// Update history with completion
await connection.query(`
UPDATE calculate_history
SET
end_time = NOW(),
duration_seconds = ?,
processed_products = ?,
processed_orders = ?,
processed_purchase_orders = ?,
status = 'completed'
WHERE id = ?
`, [totalElapsedSeconds,
finalStats.processedProducts,
finalStats.processedOrders,
finalStats.processedPurchaseOrders,
calculateHistoryId]);
// Clear progress file on successful completion
global.clearProgress();
} catch (error) {
const endTime = Date.now();
const totalElapsedSeconds = Math.round((endTime - startTime) / 1000);
// Update history with error
await connection.query(`
UPDATE calculate_history
SET
end_time = NOW(),
duration_seconds = ?,
processed_products = ?,
processed_orders = ?,
processed_purchase_orders = ?,
status = ?,
error_message = ?
WHERE id = ?
`, [
totalElapsedSeconds,
processedProducts || 0, // Ensure we have a valid number
processedOrders || 0, // Ensure we have a valid number
processedPurchaseOrders || 0, // Ensure we have a valid number
isCancelled ? 'cancelled' : 'failed',
error.message,
calculateHistoryId
]);
if (isCancelled) {
global.outputProgress({
status: 'cancelled',
operation: 'Calculation cancelled',
current: processedCount,
current: processedProducts,
total: totalProducts || 0,
elapsed: global.formatElapsedTime(startTime),
remaining: null,
rate: global.calculateRate(startTime, processedCount),
percentage: ((processedCount / (totalProducts || 1)) * 100).toFixed(1)
rate: global.calculateRate(startTime, processedProducts),
percentage: ((processedProducts / (totalProducts || 1)) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
} else {
global.outputProgress({
status: 'error',
operation: 'Error: ' + error.message,
current: processedCount,
current: processedProducts,
total: totalProducts || 0,
elapsed: global.formatElapsedTime(startTime),
remaining: null,
rate: global.calculateRate(startTime, processedCount),
percentage: ((processedCount / (totalProducts || 1)) * 100).toFixed(1)
rate: global.calculateRate(startTime, processedProducts),
percentage: ((processedProducts / (totalProducts || 1)) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
}
throw error;
} finally {
if (connection) {
// Ensure temporary tables are cleaned up
await cleanupTemporaryTables(connection);
connection.release();
}
}
} finally {
// Close the connection pool when we're done
await closePool();
}
} catch (error) {
success = false;
logError(error, 'Error in metrics calculation');
throw error;
}
}
// Export both functions and progress checker
module.exports = calculateMetrics;
module.exports.cancelCalculation = cancelCalculation;
module.exports.getProgress = global.getProgress;
// Export as a module with all necessary functions
module.exports = {
calculateMetrics,
cancelCalculation,
getProgress: global.getProgress
};
// Run directly if called from command line
if (require.main === module) {

View File

@@ -0,0 +1,107 @@
const path = require('path');
const { spawn } = require('child_process');
function outputProgress(data) {
if (!data.status) {
data = {
status: 'running',
...data
};
}
console.log(JSON.stringify(data));
}
function runScript(scriptPath) {
return new Promise((resolve, reject) => {
const child = spawn('node', [scriptPath], {
stdio: ['inherit', 'pipe', 'pipe']
});
let output = '';
child.stdout.on('data', (data) => {
const lines = data.toString().split('\n');
lines.filter(line => line.trim()).forEach(line => {
try {
console.log(line); // Pass through the JSON output
output += line + '\n';
} catch (e) {
console.log(line); // If not JSON, just log it directly
}
});
});
child.stderr.on('data', (data) => {
console.error(data.toString());
});
child.on('close', (code) => {
if (code !== 0) {
reject(new Error(`Script ${scriptPath} exited with code ${code}`));
} else {
resolve(output);
}
});
child.on('error', (err) => {
reject(err);
});
});
}
async function fullReset() {
try {
// Step 1: Reset Database
outputProgress({
operation: 'Starting full reset',
message: 'Step 1/3: Resetting database...'
});
await runScript(path.join(__dirname, 'reset-db.js'));
outputProgress({
status: 'complete',
operation: 'Database reset step complete',
message: 'Database reset finished, moving to import...'
});
// Step 2: Import from Production
outputProgress({
operation: 'Starting import',
message: 'Step 2/3: Importing from production...'
});
await runScript(path.join(__dirname, 'import-from-prod.js'));
outputProgress({
status: 'complete',
operation: 'Import step complete',
message: 'Import finished, moving to metrics calculation...'
});
// Step 3: Calculate Metrics
outputProgress({
operation: 'Starting metrics calculation',
message: 'Step 3/3: Calculating metrics...'
});
await runScript(path.join(__dirname, 'calculate-metrics.js'));
// Final completion message
outputProgress({
status: 'complete',
operation: 'Full reset complete',
message: 'Successfully completed all steps: database reset, import, and metrics calculation'
});
} catch (error) {
outputProgress({
status: 'error',
operation: 'Full reset failed',
error: error.message,
stack: error.stack
});
process.exit(1);
}
}
// Run if called directly
if (require.main === module) {
fullReset();
}
module.exports = fullReset;

View File

@@ -0,0 +1,100 @@
const path = require('path');
const { spawn } = require('child_process');
function outputProgress(data) {
if (!data.status) {
data = {
status: 'running',
...data
};
}
console.log(JSON.stringify(data));
}
function runScript(scriptPath) {
return new Promise((resolve, reject) => {
const child = spawn('node', [scriptPath], {
stdio: ['inherit', 'pipe', 'pipe']
});
let output = '';
child.stdout.on('data', (data) => {
const lines = data.toString().split('\n');
lines.filter(line => line.trim()).forEach(line => {
try {
console.log(line); // Pass through the JSON output
output += line + '\n';
} catch (e) {
console.log(line); // If not JSON, just log it directly
}
});
});
child.stderr.on('data', (data) => {
console.error(data.toString());
});
child.on('close', (code) => {
if (code !== 0) {
reject(new Error(`Script ${scriptPath} exited with code ${code}`));
} else {
resolve(output);
}
});
child.on('error', (err) => {
reject(err);
});
});
}
async function fullUpdate() {
try {
// Step 1: Import from Production
outputProgress({
operation: 'Starting full update',
message: 'Step 1/2: Importing from production...'
});
await runScript(path.join(__dirname, 'import-from-prod.js'));
outputProgress({
status: 'complete',
operation: 'Import step complete',
message: 'Import finished, moving to metrics calculation...'
});
// Step 2: Calculate Metrics
outputProgress({
operation: 'Starting metrics calculation',
message: 'Step 2/2: Calculating metrics...'
});
await runScript(path.join(__dirname, 'calculate-metrics.js'));
outputProgress({
status: 'complete',
operation: 'Metrics step complete',
message: 'Metrics calculation finished'
});
// Final completion message
outputProgress({
status: 'complete',
operation: 'Full update complete',
message: 'Successfully completed all steps: import and metrics calculation'
});
} catch (error) {
outputProgress({
status: 'error',
operation: 'Full update failed',
error: error.message,
stack: error.stack
});
process.exit(1);
}
}
// Run if called directly
if (require.main === module) {
fullUpdate();
}
module.exports = fullUpdate;

View File

@@ -28,9 +28,18 @@ async function importOrders(prodConnection, localConnection, incrementalUpdate =
let cumulativeProcessedOrders = 0;
try {
// Insert temporary table creation queries
// Clean up any existing temp tables first
await localConnection.query(`
CREATE TABLE IF NOT EXISTS temp_order_items (
DROP TEMPORARY TABLE IF EXISTS temp_order_items;
DROP TEMPORARY TABLE IF EXISTS temp_order_meta;
DROP TEMPORARY TABLE IF EXISTS temp_order_discounts;
DROP TEMPORARY TABLE IF EXISTS temp_order_taxes;
DROP TEMPORARY TABLE IF EXISTS temp_order_costs;
`);
// Create all temp tables with correct schema
await localConnection.query(`
CREATE TEMPORARY TABLE temp_order_items (
order_id INT UNSIGNED NOT NULL,
pid INT UNSIGNED NOT NULL,
SKU VARCHAR(50) NOT NULL,
@@ -40,35 +49,41 @@ async function importOrders(prodConnection, localConnection, incrementalUpdate =
PRIMARY KEY (order_id, pid)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
`);
await localConnection.query(`
CREATE TABLE IF NOT EXISTS temp_order_meta (
CREATE TEMPORARY TABLE temp_order_meta (
order_id INT UNSIGNED NOT NULL,
date DATE NOT NULL,
customer VARCHAR(100) NOT NULL,
customer_name VARCHAR(150) NOT NULL,
status INT,
canceled TINYINT(1),
summary_discount DECIMAL(10,2) DEFAULT 0.00,
summary_subtotal DECIMAL(10,2) DEFAULT 0.00,
PRIMARY KEY (order_id)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
`);
await localConnection.query(`
CREATE TABLE IF NOT EXISTS temp_order_discounts (
CREATE TEMPORARY TABLE temp_order_discounts (
order_id INT UNSIGNED NOT NULL,
pid INT UNSIGNED NOT NULL,
discount DECIMAL(10,2) NOT NULL,
PRIMARY KEY (order_id, pid)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
`);
await localConnection.query(`
CREATE TABLE IF NOT EXISTS temp_order_taxes (
CREATE TEMPORARY TABLE temp_order_taxes (
order_id INT UNSIGNED NOT NULL,
pid INT UNSIGNED NOT NULL,
tax DECIMAL(10,2) NOT NULL,
PRIMARY KEY (order_id, pid)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
`);
await localConnection.query(`
CREATE TABLE IF NOT EXISTS temp_order_costs (
CREATE TEMPORARY TABLE temp_order_costs (
order_id INT UNSIGNED NOT NULL,
pid INT UNSIGNED NOT NULL,
costeach DECIMAL(10,3) DEFAULT 0.000,
@@ -81,6 +96,7 @@ async function importOrders(prodConnection, localConnection, incrementalUpdate =
SELECT COLUMN_NAME
FROM INFORMATION_SCHEMA.COLUMNS
WHERE TABLE_NAME = 'orders'
AND COLUMN_NAME != 'updated' -- Exclude the updated column
ORDER BY ORDINAL_POSITION
`);
const columnNames = columns.map(col => col.COLUMN_NAME);
@@ -212,7 +228,9 @@ async function importOrders(prodConnection, localConnection, incrementalUpdate =
o.order_cid as customer,
CONCAT(COALESCE(u.firstname, ''), ' ', COALESCE(u.lastname, '')) as customer_name,
o.order_status as status,
CASE WHEN o.date_cancelled != '0000-00-00 00:00:00' THEN 1 ELSE 0 END as canceled
CASE WHEN o.date_cancelled != '0000-00-00 00:00:00' THEN 1 ELSE 0 END as canceled,
o.summary_discount,
o.summary_subtotal
FROM _order o
LEFT JOIN users u ON o.order_cid = u.cid
WHERE o.order_id IN (?)
@@ -226,19 +244,37 @@ async function importOrders(prodConnection, localConnection, incrementalUpdate =
console.log('Found duplicates:', duplicates);
}
const placeholders = orders.map(() => "(?, ?, ?, ?, ?, ?)").join(",");
const placeholders = orders.map(() => "(?, ?, ?, ?, ?, ?, ?, ?)").join(",");
const values = orders.flatMap(order => [
order.order_id, order.date, order.customer, order.customer_name, order.status, order.canceled
order.order_id,
order.date,
order.customer,
order.customer_name,
order.status,
order.canceled,
order.summary_discount,
order.summary_subtotal
]);
await localConnection.query(`
INSERT INTO temp_order_meta VALUES ${placeholders}
INSERT INTO temp_order_meta (
order_id,
date,
customer,
customer_name,
status,
canceled,
summary_discount,
summary_subtotal
) VALUES ${placeholders}
ON DUPLICATE KEY UPDATE
date = VALUES(date),
customer = VALUES(customer),
customer_name = VALUES(customer_name),
status = VALUES(status),
canceled = VALUES(canceled)
canceled = VALUES(canceled),
summary_discount = VALUES(summary_discount),
summary_subtotal = VALUES(summary_subtotal)
`, values);
processedCount = i + orders.length;
@@ -317,14 +353,25 @@ async function importOrders(prodConnection, localConnection, incrementalUpdate =
for (let i = 0; i < orderIds.length; i += 5000) {
const batchIds = orderIds.slice(i, i + 5000);
const [costs] = await prodConnection.query(`
SELECT orderid as order_id, pid, costeach
FROM order_costs
WHERE orderid IN (?)
SELECT
oc.orderid as order_id,
oc.pid,
COALESCE(
oc.costeach,
(SELECT pi.costeach
FROM product_inventory pi
WHERE pi.pid = oc.pid
AND pi.daterec <= o.date_placed
ORDER BY pi.daterec DESC LIMIT 1)
) as costeach
FROM order_costs oc
JOIN _order o ON oc.orderid = o.order_id
WHERE oc.orderid IN (?)
`, [batchIds]);
if (costs.length > 0) {
const placeholders = costs.map(() => '(?, ?, ?)').join(",");
const values = costs.flatMap(c => [c.order_id, c.pid, c.costeach]);
const values = costs.flatMap(c => [c.order_id, c.pid, c.costeach || 0]);
await localConnection.query(`
INSERT INTO temp_order_costs (order_id, pid, costeach)
VALUES ${placeholders}
@@ -355,7 +402,13 @@ async function importOrders(prodConnection, localConnection, incrementalUpdate =
om.date,
oi.price,
oi.quantity,
oi.base_discount + COALESCE(od.discount, 0) as discount,
oi.base_discount + COALESCE(od.discount, 0) +
CASE
WHEN om.summary_discount > 0 THEN
ROUND((om.summary_discount * (oi.price * oi.quantity)) /
NULLIF(om.summary_subtotal, 0), 2)
ELSE 0
END as discount,
COALESCE(ot.tax, 0) as tax,
0 as tax_included,
0 as shipping,
@@ -455,7 +508,13 @@ async function importOrders(prodConnection, localConnection, incrementalUpdate =
om.date,
oi.price,
oi.quantity,
oi.base_discount + COALESCE(od.discount, 0) as discount,
oi.base_discount + COALESCE(od.discount, 0) +
CASE
WHEN o.summary_discount > 0 THEN
ROUND((o.summary_discount * (oi.price * oi.quantity)) /
NULLIF(o.summary_subtotal, 0), 2)
ELSE 0
END as discount,
COALESCE(ot.tax, 0) as tax,
0 as tax_included,
0 as shipping,
@@ -466,6 +525,7 @@ async function importOrders(prodConnection, localConnection, incrementalUpdate =
COALESCE(tc.costeach, 0) as costeach
FROM temp_order_items oi
JOIN temp_order_meta om ON oi.order_id = om.order_id
LEFT JOIN _order o ON oi.order_id = o.order_id
LEFT JOIN temp_order_discounts od ON oi.order_id = od.order_id AND oi.pid = od.pid
LEFT JOIN temp_order_taxes ot ON oi.order_id = ot.order_id AND oi.pid = ot.pid
LEFT JOIN temp_order_costs tc ON oi.order_id = tc.order_id AND oi.pid = tc.pid

View File

@@ -339,6 +339,7 @@ async function importProducts(prodConnection, localConnection, incrementalUpdate
SELECT COLUMN_NAME
FROM INFORMATION_SCHEMA.COLUMNS
WHERE TABLE_NAME = 'products'
AND COLUMN_NAME != 'updated' -- Exclude the updated column
ORDER BY ORDINAL_POSITION
`);
const columnNames = columns.map(col => col.COLUMN_NAME);
@@ -470,7 +471,9 @@ async function importProducts(prodConnection, localConnection, incrementalUpdate
// Process category relationships
if (batch.some(p => p.category_ids)) {
const categoryRelationships = batch
// First get all valid categories
const allCategoryIds = [...new Set(
batch
.filter(p => p.category_ids)
.flatMap(product =>
product.category_ids
@@ -479,33 +482,92 @@ async function importProducts(prodConnection, localConnection, incrementalUpdate
.filter(id => id)
.map(Number)
.filter(id => !isNaN(id))
.map(catId => [catId, product.pid])
);
)
)];
// Verify categories exist and get their hierarchy
const [categories] = await localConnection.query(`
WITH RECURSIVE category_hierarchy AS (
SELECT
cat_id,
parent_id,
type,
1 as level,
CAST(cat_id AS CHAR(200)) as path
FROM categories
WHERE cat_id IN (?)
UNION ALL
SELECT
c.cat_id,
c.parent_id,
c.type,
ch.level + 1,
CONCAT(ch.path, ',', c.cat_id)
FROM categories c
JOIN category_hierarchy ch ON c.parent_id = ch.cat_id
WHERE ch.level < 10 -- Prevent infinite recursion
)
SELECT
h.cat_id,
h.parent_id,
h.type,
h.path,
h.level
FROM (
SELECT DISTINCT cat_id, parent_id, type, path, level
FROM category_hierarchy
WHERE cat_id IN (?)
) h
ORDER BY h.level DESC
`, [allCategoryIds, allCategoryIds]);
const validCategories = new Map(categories.map(c => [c.cat_id, c]));
const validCategoryIds = new Set(categories.map(c => c.cat_id));
// Build category relationships ensuring proper hierarchy
const categoryRelationships = [];
batch
.filter(p => p.category_ids)
.forEach(product => {
const productCategories = product.category_ids
.split(',')
.map(id => id.trim())
.filter(id => id)
.map(Number)
.filter(id => !isNaN(id))
.filter(id => validCategoryIds.has(id))
.map(id => validCategories.get(id))
.sort((a, b) => a.type - b.type); // Sort by type to ensure proper hierarchy
// Only add relationships that maintain proper hierarchy
productCategories.forEach(category => {
if (category.path.split(',').every(parentId =>
validCategoryIds.has(Number(parentId))
)) {
categoryRelationships.push([category.cat_id, product.pid]);
}
});
});
if (categoryRelationships.length > 0) {
// Verify categories exist before inserting relationships
const uniqueCatIds = [...new Set(categoryRelationships.map(([catId]) => catId))];
const [existingCats] = await localConnection.query(
"SELECT cat_id FROM categories WHERE cat_id IN (?)",
[uniqueCatIds]
);
const existingCatIds = new Set(existingCats.map(c => c.cat_id));
// First remove any existing relationships that will be replaced
await localConnection.query(`
DELETE FROM product_categories
WHERE pid IN (?) AND cat_id IN (?)
`, [
[...new Set(categoryRelationships.map(([_, pid]) => pid))],
[...new Set(categoryRelationships.map(([catId, _]) => catId))]
]);
// Filter relationships to only include existing categories
const validRelationships = categoryRelationships.filter(([catId]) =>
existingCatIds.has(catId)
);
if (validRelationships.length > 0) {
const catPlaceholders = validRelationships
// Then insert the new relationships
const placeholders = categoryRelationships
.map(() => "(?, ?)")
.join(",");
await localConnection.query(
`INSERT IGNORE INTO product_categories (cat_id, pid)
VALUES ${catPlaceholders}`,
validRelationships.flat()
);
}
await localConnection.query(`
INSERT INTO product_categories (cat_id, pid)
VALUES ${placeholders}
`, categoryRelationships.flat());
}
}
}
@@ -554,6 +616,7 @@ async function importMissingProducts(prodConnection, localConnection, missingPid
SELECT COLUMN_NAME
FROM INFORMATION_SCHEMA.COLUMNS
WHERE TABLE_NAME = 'products'
AND COLUMN_NAME != 'updated' -- Exclude the updated column
ORDER BY ORDINAL_POSITION
`);
const columnNames = columns.map((col) => col.COLUMN_NAME);

View File

@@ -33,16 +33,15 @@ async function importPurchaseOrders(prodConnection, localConnection, incremental
status: "running",
});
// Get column names for the insert
// Get column names first
const [columns] = await localConnection.query(`
SELECT COLUMN_NAME
FROM INFORMATION_SCHEMA.COLUMNS
WHERE TABLE_NAME = 'purchase_orders'
AND COLUMN_NAME != 'updated' -- Exclude the updated column
ORDER BY ORDINAL_POSITION
`);
const columnNames = columns
.map((col) => col.COLUMN_NAME)
.filter((name) => name !== "id");
const columnNames = columns.map(col => col.COLUMN_NAME);
// Build incremental conditions
const incrementalWhereClause = incrementalUpdate
@@ -321,10 +320,16 @@ async function importPurchaseOrders(prodConnection, localConnection, incremental
let lastFulfillmentReceiving = null;
for (const receiving of allReceivings) {
const qtyToApply = Math.min(remainingToFulfill, receiving.qty_each);
// Convert quantities to base units using supplier data
const baseQtyReceived = receiving.qty_each * (
receiving.type === 'original' ? 1 :
Math.max(1, product.supplier_qty_per_unit || 1)
);
const qtyToApply = Math.min(remainingToFulfill, baseQtyReceived);
if (qtyToApply > 0) {
// If this is the first receiving being applied, use its cost
if (actualCost === null) {
if (actualCost === null && receiving.cost_each > 0) {
actualCost = receiving.cost_each;
firstFulfillmentReceiving = receiving;
}
@@ -332,13 +337,13 @@ async function importPurchaseOrders(prodConnection, localConnection, incremental
fulfillmentTracking.push({
receiving_id: receiving.receiving_id,
qty_applied: qtyToApply,
qty_total: receiving.qty_each,
cost: receiving.cost_each,
qty_total: baseQtyReceived,
cost: receiving.cost_each || actualCost || product.cost_each,
date: receiving.received_date,
received_by: receiving.received_by,
received_by_name: receiving.received_by_name || 'Unknown',
type: receiving.type,
remaining_qty: receiving.qty_each - qtyToApply
remaining_qty: baseQtyReceived - qtyToApply
});
remainingToFulfill -= qtyToApply;
} else {
@@ -346,8 +351,8 @@ async function importPurchaseOrders(prodConnection, localConnection, incremental
fulfillmentTracking.push({
receiving_id: receiving.receiving_id,
qty_applied: 0,
qty_total: receiving.qty_each,
cost: receiving.cost_each,
qty_total: baseQtyReceived,
cost: receiving.cost_each || actualCost || product.cost_each,
date: receiving.received_date,
received_by: receiving.received_by,
received_by_name: receiving.received_by_name || 'Unknown',
@@ -355,7 +360,7 @@ async function importPurchaseOrders(prodConnection, localConnection, incremental
is_excess: true
});
}
totalReceived += receiving.qty_each;
totalReceived += baseQtyReceived;
}
const receiving_status = !totalReceived ? 1 : // created

View File

@@ -1,82 +0,0 @@
// Split into inserts and updates
const insertsAndUpdates = batch.reduce((acc, po) => {
const key = `${po.po_id}-${po.pid}`;
if (existingPOMap.has(key)) {
const existing = existingPOMap.get(key);
// Check if any values are different
const hasChanges = columnNames.some(col => {
const newVal = po[col] ?? null;
const oldVal = existing[col] ?? null;
// Special handling for numbers to avoid type coercion issues
if (typeof newVal === 'number' && typeof oldVal === 'number') {
return Math.abs(newVal - oldVal) > 0.00001; // Allow for tiny floating point differences
}
// Special handling for receiving_history JSON
if (col === 'receiving_history') {
return JSON.stringify(newVal) !== JSON.stringify(oldVal);
}
return newVal !== oldVal;
});
if (hasChanges) {
console.log(`PO line changed: ${key}`, {
po_id: po.po_id,
pid: po.pid,
changes: columnNames.filter(col => {
const newVal = po[col] ?? null;
const oldVal = existing[col] ?? null;
if (typeof newVal === 'number' && typeof oldVal === 'number') {
return Math.abs(newVal - oldVal) > 0.00001;
}
if (col === 'receiving_history') {
return JSON.stringify(newVal) !== JSON.stringify(oldVal);
}
return newVal !== oldVal;
})
});
acc.updates.push({
po_id: po.po_id,
pid: po.pid,
values: columnNames.map(col => po[col] ?? null)
});
}
} else {
console.log(`New PO line: ${key}`);
acc.inserts.push({
po_id: po.po_id,
pid: po.pid,
values: columnNames.map(col => po[col] ?? null)
});
}
return acc;
}, { inserts: [], updates: [] });
// Handle inserts
if (insertsAndUpdates.inserts.length > 0) {
const insertPlaceholders = Array(insertsAndUpdates.inserts.length).fill(placeholderGroup).join(",");
const insertResult = await localConnection.query(`
INSERT INTO purchase_orders (${columnNames.join(",")})
VALUES ${insertPlaceholders}
`, insertsAndUpdates.inserts.map(i => i.values).flat());
recordsAdded += insertResult[0].affectedRows;
}
// Handle updates
if (insertsAndUpdates.updates.length > 0) {
const updatePlaceholders = Array(insertsAndUpdates.updates.length).fill(placeholderGroup).join(",");
const updateResult = await localConnection.query(`
INSERT INTO purchase_orders (${columnNames.join(",")})
VALUES ${updatePlaceholders}
ON DUPLICATE KEY UPDATE
${columnNames
.filter(col => col !== "po_id" && col !== "pid")
.map(col => `${col} = VALUES(${col})`)
.join(",")};
`, insertsAndUpdates.updates.map(u => u.values).flat());
// Each update affects 2 rows in affectedRows, so we divide by 2 to get actual count
recordsUpdated += insertsAndUpdates.updates.length;
}

View File

@@ -1,8 +1,11 @@
const { outputProgress, formatElapsedTime, estimateRemaining, calculateRate, logError } = require('./utils/progress');
const { getConnection } = require('./utils/db');
async function calculateBrandMetrics(startTime, totalProducts, processedCount, isCancelled = false) {
async function calculateBrandMetrics(startTime, totalProducts, processedCount = 0, isCancelled = false) {
const connection = await getConnection();
let success = false;
let processedOrders = 0;
try {
if (isCancelled) {
outputProgress({
@@ -13,10 +16,28 @@ async function calculateBrandMetrics(startTime, totalProducts, processedCount, i
elapsed: formatElapsedTime(startTime),
remaining: null,
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
});
return processedCount;
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
return {
processedProducts: processedCount,
processedOrders: 0,
processedPurchaseOrders: 0,
success
};
}
// Get order count that will be processed
const [orderCount] = await connection.query(`
SELECT COUNT(*) as count
FROM orders o
WHERE o.canceled = false
`);
processedOrders = orderCount[0].count;
outputProgress({
status: 'running',
@@ -26,7 +47,12 @@ async function calculateBrandMetrics(startTime, totalProducts, processedCount, i
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
// Calculate brand metrics with optimized queries
@@ -45,10 +71,21 @@ async function calculateBrandMetrics(startTime, totalProducts, processedCount, i
WITH filtered_products AS (
SELECT
p.*,
CASE WHEN p.stock_quantity <= 5000 THEN p.pid END as valid_pid,
CASE WHEN p.visible = true AND p.stock_quantity <= 5000 THEN p.pid END as active_pid,
CASE
WHEN p.stock_quantity IS NULL OR p.stock_quantity < 0 OR p.stock_quantity > 5000 THEN 0
WHEN p.stock_quantity <= 5000 AND p.stock_quantity >= 0
THEN p.pid
END as valid_pid,
CASE
WHEN p.visible = true
AND p.stock_quantity <= 5000
AND p.stock_quantity >= 0
THEN p.pid
END as active_pid,
CASE
WHEN p.stock_quantity IS NULL
OR p.stock_quantity < 0
OR p.stock_quantity > 5000
THEN 0
ELSE p.stock_quantity
END as valid_stock
FROM products p
@@ -57,10 +94,13 @@ async function calculateBrandMetrics(startTime, totalProducts, processedCount, i
sales_periods AS (
SELECT
p.brand,
SUM(o.quantity * o.price) as period_revenue,
SUM(o.quantity * (o.price - COALESCE(o.discount, 0))) as period_revenue,
SUM(o.quantity * (o.price - COALESCE(o.discount, 0) - p.cost_price)) as period_margin,
COUNT(DISTINCT DATE(o.date)) as period_days,
CASE
WHEN o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 3 MONTH) THEN 'current'
WHEN o.date BETWEEN DATE_SUB(CURRENT_DATE, INTERVAL 15 MONTH) AND DATE_SUB(CURRENT_DATE, INTERVAL 12 MONTH) THEN 'previous'
WHEN o.date BETWEEN DATE_SUB(CURRENT_DATE, INTERVAL 15 MONTH)
AND DATE_SUB(CURRENT_DATE, INTERVAL 12 MONTH) THEN 'previous'
END as period_type
FROM filtered_products p
JOIN orders o ON p.pid = o.pid
@@ -76,10 +116,20 @@ async function calculateBrandMetrics(startTime, totalProducts, processedCount, i
SUM(p.valid_stock) as total_stock_units,
SUM(p.valid_stock * p.cost_price) as total_stock_cost,
SUM(p.valid_stock * p.price) as total_stock_retail,
COALESCE(SUM(o.quantity * o.price), 0) as total_revenue,
COALESCE(SUM(o.quantity * (o.price - COALESCE(o.discount, 0))), 0) as total_revenue,
CASE
WHEN SUM(o.quantity * o.price) > 0 THEN
(SUM((o.price - p.cost_price) * o.quantity) * 100.0) / SUM(o.price * o.quantity)
WHEN SUM(o.quantity * o.price) > 0
THEN GREATEST(
-100.0,
LEAST(
100.0,
(
SUM(o.quantity * o.price) - -- Use gross revenue (before discounts)
SUM(o.quantity * COALESCE(p.cost_price, 0)) -- Total costs
) * 100.0 /
NULLIF(SUM(o.quantity * o.price), 0) -- Divide by gross revenue
)
)
ELSE 0
END as avg_margin
FROM filtered_products p
@@ -97,17 +147,19 @@ async function calculateBrandMetrics(startTime, totalProducts, processedCount, i
bd.avg_margin,
CASE
WHEN MAX(CASE WHEN sp.period_type = 'previous' THEN sp.period_revenue END) = 0
AND MAX(CASE WHEN sp.period_type = 'current' THEN sp.period_revenue END) > 0 THEN 100.0
WHEN MAX(CASE WHEN sp.period_type = 'previous' THEN sp.period_revenue END) = 0 THEN 0.0
ELSE LEAST(
GREATEST(
AND MAX(CASE WHEN sp.period_type = 'current' THEN sp.period_revenue END) > 0
THEN 100.0
WHEN MAX(CASE WHEN sp.period_type = 'previous' THEN sp.period_revenue END) = 0
THEN 0.0
ELSE GREATEST(
-100.0,
LEAST(
((MAX(CASE WHEN sp.period_type = 'current' THEN sp.period_revenue END) -
MAX(CASE WHEN sp.period_type = 'previous' THEN sp.period_revenue END)) /
NULLIF(MAX(CASE WHEN sp.period_type = 'previous' THEN sp.period_revenue END), 0)) * 100.0,
-100.0
),
NULLIF(ABS(MAX(CASE WHEN sp.period_type = 'previous' THEN sp.period_revenue END)), 0)) * 100.0,
999.99
)
)
END as growth_rate
FROM brand_data bd
LEFT JOIN sales_periods sp ON bd.brand = sp.brand
@@ -134,10 +186,20 @@ async function calculateBrandMetrics(startTime, totalProducts, processedCount, i
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
if (isCancelled) return processedCount;
if (isCancelled) return {
processedProducts: processedCount,
processedOrders,
processedPurchaseOrders: 0,
success
};
// Calculate brand time-based metrics with optimized query
await connection.query(`
@@ -177,8 +239,18 @@ async function calculateBrandMetrics(startTime, totalProducts, processedCount, i
SUM(p.valid_stock * p.price) as total_stock_retail,
SUM(o.quantity * o.price) as total_revenue,
CASE
WHEN SUM(o.quantity * o.price) > 0 THEN
(SUM((o.price - p.cost_price) * o.quantity) * 100.0) / SUM(o.price * o.quantity)
WHEN SUM(o.quantity * o.price) > 0
THEN GREATEST(
-100.0,
LEAST(
100.0,
(
SUM(o.quantity * o.price) - -- Use gross revenue (before discounts)
SUM(o.quantity * COALESCE(p.cost_price, 0)) -- Total costs
) * 100.0 /
NULLIF(SUM(o.quantity * o.price), 0) -- Divide by gross revenue
)
)
ELSE 0
END as avg_margin
FROM filtered_products p
@@ -207,11 +279,33 @@ async function calculateBrandMetrics(startTime, totalProducts, processedCount, i
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
return processedCount;
// If we get here, everything completed successfully
success = true;
// Update calculate_status
await connection.query(`
INSERT INTO calculate_status (module_name, last_calculation_timestamp)
VALUES ('brand_metrics', NOW())
ON DUPLICATE KEY UPDATE last_calculation_timestamp = NOW()
`);
return {
processedProducts: processedCount,
processedOrders,
processedPurchaseOrders: 0,
success
};
} catch (error) {
success = false;
logError(error, 'Error calculating brand metrics');
throw error;
} finally {

View File

@@ -1,8 +1,11 @@
const { outputProgress, formatElapsedTime, estimateRemaining, calculateRate, logError } = require('./utils/progress');
const { getConnection } = require('./utils/db');
async function calculateCategoryMetrics(startTime, totalProducts, processedCount, isCancelled = false) {
async function calculateCategoryMetrics(startTime, totalProducts, processedCount = 0, isCancelled = false) {
const connection = await getConnection();
let success = false;
let processedOrders = 0;
try {
if (isCancelled) {
outputProgress({
@@ -13,10 +16,28 @@ async function calculateCategoryMetrics(startTime, totalProducts, processedCount
elapsed: formatElapsedTime(startTime),
remaining: null,
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
});
return processedCount;
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
return {
processedProducts: processedCount,
processedOrders: 0,
processedPurchaseOrders: 0,
success
};
}
// Get order count that will be processed
const [orderCount] = await connection.query(`
SELECT COUNT(*) as count
FROM orders o
WHERE o.canceled = false
`);
processedOrders = orderCount[0].count;
outputProgress({
status: 'running',
@@ -26,7 +47,12 @@ async function calculateCategoryMetrics(startTime, totalProducts, processedCount
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
// First, calculate base category metrics
@@ -67,10 +93,20 @@ async function calculateCategoryMetrics(startTime, totalProducts, processedCount
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
if (isCancelled) return processedCount;
if (isCancelled) return {
processedProducts: processedCount,
processedOrders,
processedPurchaseOrders: 0,
success
};
// Then update with margin and turnover data
await connection.query(`
@@ -80,19 +116,35 @@ async function calculateCategoryMetrics(startTime, totalProducts, processedCount
SUM(o.quantity * o.price) as total_sales,
SUM(o.quantity * (o.price - p.cost_price)) as total_margin,
SUM(o.quantity) as units_sold,
AVG(GREATEST(p.stock_quantity, 0)) as avg_stock
AVG(GREATEST(p.stock_quantity, 0)) as avg_stock,
COUNT(DISTINCT DATE(o.date)) as active_days
FROM product_categories pc
JOIN products p ON pc.pid = p.pid
JOIN orders o ON p.pid = o.pid
LEFT JOIN turnover_config tc ON
(tc.category_id = pc.cat_id AND tc.vendor = p.vendor) OR
(tc.category_id = pc.cat_id AND tc.vendor IS NULL) OR
(tc.category_id IS NULL AND tc.vendor = p.vendor) OR
(tc.category_id IS NULL AND tc.vendor IS NULL)
WHERE o.canceled = false
AND o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 1 YEAR)
AND o.date >= DATE_SUB(CURRENT_DATE, INTERVAL COALESCE(tc.calculation_period_days, 30) DAY)
GROUP BY pc.cat_id
)
UPDATE category_metrics cm
JOIN category_sales cs ON cm.category_id = cs.cat_id
LEFT JOIN turnover_config tc ON
(tc.category_id = cm.category_id AND tc.vendor IS NULL) OR
(tc.category_id IS NULL AND tc.vendor IS NULL)
SET
cm.avg_margin = COALESCE(cs.total_margin * 100.0 / NULLIF(cs.total_sales, 0), 0),
cm.turnover_rate = LEAST(COALESCE(cs.units_sold / NULLIF(cs.avg_stock, 0), 0), 999.99),
cm.turnover_rate = CASE
WHEN cs.avg_stock > 0 AND cs.active_days > 0
THEN LEAST(
(cs.units_sold / cs.avg_stock) * (365.0 / cs.active_days),
999.99
)
ELSE 0
END,
cm.last_calculated_at = NOW()
`);
@@ -105,20 +157,34 @@ async function calculateCategoryMetrics(startTime, totalProducts, processedCount
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
if (isCancelled) return processedCount;
if (isCancelled) return {
processedProducts: processedCount,
processedOrders,
processedPurchaseOrders: 0,
success
};
// Finally update growth rates
await connection.query(`
WITH current_period AS (
SELECT
pc.cat_id,
SUM(o.quantity * o.price) as revenue
SUM(o.quantity * (o.price - COALESCE(o.discount, 0)) /
(1 + COALESCE(ss.seasonality_factor, 0))) as revenue,
SUM(o.quantity * (o.price - COALESCE(o.discount, 0) - p.cost_price)) as gross_profit,
COUNT(DISTINCT DATE(o.date)) as days
FROM product_categories pc
JOIN products p ON pc.pid = p.pid
JOIN orders o ON p.pid = o.pid
LEFT JOIN sales_seasonality ss ON MONTH(o.date) = ss.month
WHERE o.canceled = false
AND o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 3 MONTH)
GROUP BY pc.cat_id
@@ -126,30 +192,106 @@ async function calculateCategoryMetrics(startTime, totalProducts, processedCount
previous_period AS (
SELECT
pc.cat_id,
SUM(o.quantity * o.price) as revenue
SUM(o.quantity * (o.price - COALESCE(o.discount, 0)) /
(1 + COALESCE(ss.seasonality_factor, 0))) as revenue,
COUNT(DISTINCT DATE(o.date)) as days
FROM product_categories pc
JOIN products p ON pc.pid = p.pid
JOIN orders o ON p.pid = o.pid
LEFT JOIN sales_seasonality ss ON MONTH(o.date) = ss.month
WHERE o.canceled = false
AND o.date BETWEEN DATE_SUB(CURRENT_DATE, INTERVAL 15 MONTH)
AND DATE_SUB(CURRENT_DATE, INTERVAL 12 MONTH)
GROUP BY pc.cat_id
),
trend_data AS (
SELECT
pc.cat_id,
MONTH(o.date) as month,
SUM(o.quantity * (o.price - COALESCE(o.discount, 0)) /
(1 + COALESCE(ss.seasonality_factor, 0))) as revenue,
COUNT(DISTINCT DATE(o.date)) as days_in_month
FROM product_categories pc
JOIN products p ON pc.pid = p.pid
JOIN orders o ON p.pid = o.pid
LEFT JOIN sales_seasonality ss ON MONTH(o.date) = ss.month
WHERE o.canceled = false
AND o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 15 MONTH)
GROUP BY pc.cat_id, MONTH(o.date)
),
trend_stats AS (
SELECT
cat_id,
COUNT(*) as n,
AVG(month) as avg_x,
AVG(revenue / NULLIF(days_in_month, 0)) as avg_y,
SUM(month * (revenue / NULLIF(days_in_month, 0))) as sum_xy,
SUM(month * month) as sum_xx
FROM trend_data
GROUP BY cat_id
HAVING COUNT(*) >= 6
),
trend_analysis AS (
SELECT
cat_id,
((n * sum_xy) - (avg_x * n * avg_y)) /
NULLIF((n * sum_xx) - (n * avg_x * avg_x), 0) as trend_slope,
avg_y as avg_daily_revenue
FROM trend_stats
),
margin_calc AS (
SELECT
pc.cat_id,
CASE
WHEN SUM(o.quantity * o.price) > 0 THEN
GREATEST(
-100.0,
LEAST(
100.0,
(
SUM(o.quantity * o.price) - -- Use gross revenue (before discounts)
SUM(o.quantity * COALESCE(p.cost_price, 0)) -- Total costs
) * 100.0 /
NULLIF(SUM(o.quantity * o.price), 0) -- Divide by gross revenue
)
)
ELSE NULL
END as avg_margin
FROM product_categories pc
JOIN products p ON pc.pid = p.pid
JOIN orders o ON p.pid = o.pid
WHERE o.canceled = false
AND o.date BETWEEN DATE_SUB(CURRENT_DATE, INTERVAL 15 MONTH)
AND DATE_SUB(CURRENT_DATE, INTERVAL 12 MONTH)
AND o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 3 MONTH)
GROUP BY pc.cat_id
)
UPDATE category_metrics cm
LEFT JOIN current_period cp ON cm.category_id = cp.cat_id
LEFT JOIN previous_period pp ON cm.category_id = pp.cat_id
LEFT JOIN trend_analysis ta ON cm.category_id = ta.cat_id
LEFT JOIN margin_calc mc ON cm.category_id = mc.cat_id
SET
cm.growth_rate = CASE
WHEN pp.revenue = 0 AND COALESCE(cp.revenue, 0) > 0 THEN 100.0
WHEN pp.revenue = 0 THEN 0.0
ELSE LEAST(
WHEN pp.revenue = 0 OR cp.revenue IS NULL THEN 0.0
WHEN ta.trend_slope IS NOT NULL THEN
GREATEST(
((COALESCE(cp.revenue, 0) - pp.revenue) / pp.revenue) * 100.0,
-100.0
),
-100.0,
LEAST(
(ta.trend_slope / NULLIF(ta.avg_daily_revenue, 0)) * 365 * 100,
999.99
)
)
ELSE
GREATEST(
-100.0,
LEAST(
((COALESCE(cp.revenue, 0) - pp.revenue) /
NULLIF(ABS(pp.revenue), 0)) * 100.0,
999.99
)
)
END,
cm.avg_margin = COALESCE(mc.avg_margin, cm.avg_margin),
cm.last_calculated_at = NOW()
WHERE cp.cat_id IS NOT NULL OR pp.cat_id IS NOT NULL
`);
@@ -163,10 +305,20 @@ async function calculateCategoryMetrics(startTime, totalProducts, processedCount
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
if (isCancelled) return processedCount;
if (isCancelled) return {
processedProducts: processedCount,
processedOrders,
processedPurchaseOrders: 0,
success
};
// Calculate time-based metrics
await connection.query(`
@@ -189,13 +341,23 @@ async function calculateCategoryMetrics(startTime, totalProducts, processedCount
COUNT(DISTINCT CASE WHEN p.visible = true THEN p.pid END) as active_products,
SUM(p.stock_quantity * p.cost_price) as total_value,
SUM(o.quantity * o.price) as total_revenue,
CASE
WHEN SUM(o.quantity * o.price) > 0 THEN
LEAST(
GREATEST(
SUM(o.quantity * (o.price - GREATEST(p.cost_price, 0))) * 100.0 /
SUM(o.quantity * o.price),
-100
),
100
)
ELSE 0
END as avg_margin,
COALESCE(
SUM(o.quantity * (o.price - p.cost_price)) * 100.0 /
NULLIF(SUM(o.quantity * o.price), 0),
0
) as avg_margin,
COALESCE(
LEAST(
SUM(o.quantity) / NULLIF(AVG(GREATEST(p.stock_quantity, 0)), 0),
999.99
),
0
) as turnover_rate
FROM product_categories pc
@@ -216,17 +378,138 @@ async function calculateCategoryMetrics(startTime, totalProducts, processedCount
processedCount = Math.floor(totalProducts * 0.99);
outputProgress({
status: 'running',
operation: 'Time-based metrics calculated',
operation: 'Time-based metrics calculated, updating category-sales metrics',
current: processedCount,
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
return processedCount;
if (isCancelled) return {
processedProducts: processedCount,
processedOrders,
processedPurchaseOrders: 0,
success
};
// Calculate category-sales metrics
await connection.query(`
INSERT INTO category_sales_metrics (
category_id,
brand,
period_start,
period_end,
avg_daily_sales,
total_sold,
num_products,
avg_price,
last_calculated_at
)
WITH date_ranges AS (
SELECT
DATE_SUB(CURRENT_DATE, INTERVAL 30 DAY) as period_start,
CURRENT_DATE as period_end
UNION ALL
SELECT
DATE_SUB(CURRENT_DATE, INTERVAL 90 DAY),
DATE_SUB(CURRENT_DATE, INTERVAL 31 DAY)
UNION ALL
SELECT
DATE_SUB(CURRENT_DATE, INTERVAL 180 DAY),
DATE_SUB(CURRENT_DATE, INTERVAL 91 DAY)
UNION ALL
SELECT
DATE_SUB(CURRENT_DATE, INTERVAL 365 DAY),
DATE_SUB(CURRENT_DATE, INTERVAL 181 DAY)
),
sales_data AS (
SELECT
pc.cat_id,
COALESCE(p.brand, 'Unknown') as brand,
dr.period_start,
dr.period_end,
COUNT(DISTINCT p.pid) as num_products,
SUM(o.quantity) as total_sold,
SUM(o.quantity * o.price) as total_revenue,
COUNT(DISTINCT DATE(o.date)) as num_days
FROM products p
JOIN product_categories pc ON p.pid = pc.pid
JOIN orders o ON p.pid = o.pid
CROSS JOIN date_ranges dr
WHERE o.canceled = false
AND o.date BETWEEN dr.period_start AND dr.period_end
GROUP BY pc.cat_id, p.brand, dr.period_start, dr.period_end
)
SELECT
cat_id as category_id,
brand,
period_start,
period_end,
CASE
WHEN num_days > 0
THEN total_sold / num_days
ELSE 0
END as avg_daily_sales,
total_sold,
num_products,
CASE
WHEN total_sold > 0
THEN total_revenue / total_sold
ELSE 0
END as avg_price,
NOW() as last_calculated_at
FROM sales_data
ON DUPLICATE KEY UPDATE
avg_daily_sales = VALUES(avg_daily_sales),
total_sold = VALUES(total_sold),
num_products = VALUES(num_products),
avg_price = VALUES(avg_price),
last_calculated_at = VALUES(last_calculated_at)
`);
processedCount = Math.floor(totalProducts * 1.0);
outputProgress({
status: 'running',
operation: 'Category-sales metrics calculated',
current: processedCount,
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
// If we get here, everything completed successfully
success = true;
// Update calculate_status
await connection.query(`
INSERT INTO calculate_status (module_name, last_calculation_timestamp)
VALUES ('category_metrics', NOW())
ON DUPLICATE KEY UPDATE last_calculation_timestamp = NOW()
`);
return {
processedProducts: processedCount,
processedOrders,
processedPurchaseOrders: 0,
success
};
} catch (error) {
success = false;
logError(error, 'Error calculating category metrics');
throw error;
} finally {

View File

@@ -1,8 +1,11 @@
const { outputProgress, formatElapsedTime, estimateRemaining, calculateRate, logError } = require('./utils/progress');
const { getConnection } = require('./utils/db');
async function calculateFinancialMetrics(startTime, totalProducts, processedCount, isCancelled = false) {
async function calculateFinancialMetrics(startTime, totalProducts, processedCount = 0, isCancelled = false) {
const connection = await getConnection();
let success = false;
let processedOrders = 0;
try {
if (isCancelled) {
outputProgress({
@@ -13,10 +16,29 @@ async function calculateFinancialMetrics(startTime, totalProducts, processedCoun
elapsed: formatElapsedTime(startTime),
remaining: null,
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
});
return processedCount;
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
return {
processedProducts: processedCount,
processedOrders: 0,
processedPurchaseOrders: 0,
success
};
}
// Get order count that will be processed
const [orderCount] = await connection.query(`
SELECT COUNT(*) as count
FROM orders o
WHERE o.canceled = false
AND DATE(o.date) >= DATE_SUB(CURDATE(), INTERVAL 12 MONTH)
`);
processedOrders = orderCount[0].count;
outputProgress({
status: 'running',
@@ -26,7 +48,12 @@ async function calculateFinancialMetrics(startTime, totalProducts, processedCoun
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
// Calculate financial metrics with optimized query
@@ -59,7 +86,8 @@ async function calculateFinancialMetrics(startTime, totalProducts, processedCoun
WHEN COALESCE(pf.inventory_value, 0) > 0 AND pf.active_days > 0 THEN
(COALESCE(pf.gross_profit, 0) * (365.0 / pf.active_days)) / COALESCE(pf.inventory_value, 0)
ELSE 0
END
END,
pm.last_calculated_at = CURRENT_TIMESTAMP
`);
processedCount = Math.floor(totalProducts * 0.65);
@@ -71,10 +99,20 @@ async function calculateFinancialMetrics(startTime, totalProducts, processedCoun
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
if (isCancelled) return processedCount;
if (isCancelled) return {
processedProducts: processedCount,
processedOrders,
processedPurchaseOrders: 0,
success
};
// Update time-based aggregates with optimized query
await connection.query(`
@@ -115,11 +153,33 @@ async function calculateFinancialMetrics(startTime, totalProducts, processedCoun
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
return processedCount;
// If we get here, everything completed successfully
success = true;
// Update calculate_status
await connection.query(`
INSERT INTO calculate_status (module_name, last_calculation_timestamp)
VALUES ('financial_metrics', NOW())
ON DUPLICATE KEY UPDATE last_calculation_timestamp = NOW()
`);
return {
processedProducts: processedCount,
processedOrders,
processedPurchaseOrders: 0,
success
};
} catch (error) {
success = false;
logError(error, 'Error calculating financial metrics');
throw error;
} finally {

View File

@@ -11,11 +11,21 @@ function sanitizeValue(value) {
async function calculateProductMetrics(startTime, totalProducts, processedCount = 0, isCancelled = false) {
const connection = await getConnection();
let success = false;
let processedOrders = 0;
const BATCH_SIZE = 5000;
try {
// Skip flags are inherited from the parent scope
const SKIP_PRODUCT_BASE_METRICS = 0;
const SKIP_PRODUCT_TIME_AGGREGATES = 0;
// Get total product count if not provided
if (!totalProducts) {
const [productCount] = await connection.query('SELECT COUNT(*) as count FROM products');
totalProducts = productCount[0].count;
}
if (isCancelled) {
outputProgress({
status: 'cancelled',
@@ -25,10 +35,36 @@ async function calculateProductMetrics(startTime, totalProducts, processedCount
elapsed: formatElapsedTime(startTime),
remaining: null,
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
});
return processedCount;
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
return {
processedProducts: processedCount,
processedOrders,
processedPurchaseOrders: 0,
success
};
}
// First ensure all products have a metrics record
await connection.query(`
INSERT IGNORE INTO product_metrics (pid, last_calculated_at)
SELECT pid, NOW()
FROM products
`);
// Get threshold settings once
const [thresholds] = await connection.query(`
SELECT critical_days, reorder_days, overstock_days, low_stock_threshold
FROM stock_thresholds
WHERE category_id IS NULL AND vendor IS NULL
LIMIT 1
`);
const defaultThresholds = thresholds[0];
// Calculate base product metrics
if (!SKIP_PRODUCT_BASE_METRICS) {
@@ -40,89 +76,237 @@ async function calculateProductMetrics(startTime, totalProducts, processedCount
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
// Calculate base metrics
// Get order count that will be processed
const [orderCount] = await connection.query(`
SELECT COUNT(*) as count
FROM orders o
WHERE o.canceled = false
`);
processedOrders = orderCount[0].count;
// Clear temporary tables
await connection.query('TRUNCATE TABLE temp_sales_metrics');
await connection.query('TRUNCATE TABLE temp_purchase_metrics');
// Populate temp_sales_metrics with base stats and sales averages
await connection.query(`
INSERT INTO temp_sales_metrics
SELECT
p.pid,
COALESCE(SUM(o.quantity) / NULLIF(COUNT(DISTINCT DATE(o.date)), 0), 0) as daily_sales_avg,
COALESCE(SUM(o.quantity) / NULLIF(CEIL(COUNT(DISTINCT DATE(o.date)) / 7), 0), 0) as weekly_sales_avg,
COALESCE(SUM(o.quantity) / NULLIF(CEIL(COUNT(DISTINCT DATE(o.date)) / 30), 0), 0) as monthly_sales_avg,
COALESCE(SUM(o.quantity * o.price), 0) as total_revenue,
CASE
WHEN SUM(o.quantity * o.price) > 0
THEN ((SUM(o.quantity * o.price) - SUM(o.quantity * p.cost_price)) / SUM(o.quantity * o.price)) * 100
ELSE 0
END as avg_margin_percent,
MIN(o.date) as first_sale_date,
MAX(o.date) as last_sale_date
FROM products p
LEFT JOIN orders o ON p.pid = o.pid
AND o.canceled = false
AND o.date >= DATE_SUB(CURDATE(), INTERVAL 90 DAY)
GROUP BY p.pid
`);
// Populate temp_purchase_metrics
await connection.query(`
INSERT INTO temp_purchase_metrics
SELECT
p.pid,
AVG(DATEDIFF(po.received_date, po.date)) as avg_lead_time_days,
MAX(po.date) as last_purchase_date,
MIN(po.received_date) as first_received_date,
MAX(po.received_date) as last_received_date
FROM products p
LEFT JOIN purchase_orders po ON p.pid = po.pid
AND po.received_date IS NOT NULL
AND po.date >= DATE_SUB(CURDATE(), INTERVAL 365 DAY)
GROUP BY p.pid
`);
// Process updates in batches
let lastPid = 0;
while (true) {
if (isCancelled) break;
const [batch] = await connection.query(
'SELECT pid FROM products WHERE pid > ? ORDER BY pid LIMIT ?',
[lastPid, BATCH_SIZE]
);
if (batch.length === 0) break;
await connection.query(`
UPDATE product_metrics pm
JOIN products p ON pm.pid = p.pid
LEFT JOIN temp_sales_metrics sm ON pm.pid = sm.pid
LEFT JOIN temp_purchase_metrics lm ON pm.pid = lm.pid
SET
pm.inventory_value = p.stock_quantity * NULLIF(p.cost_price, 0),
pm.daily_sales_avg = COALESCE(sm.daily_sales_avg, 0),
pm.weekly_sales_avg = COALESCE(sm.weekly_sales_avg, 0),
pm.monthly_sales_avg = COALESCE(sm.monthly_sales_avg, 0),
pm.total_revenue = COALESCE(sm.total_revenue, 0),
pm.avg_margin_percent = COALESCE(sm.avg_margin_percent, 0),
pm.first_sale_date = sm.first_sale_date,
pm.last_sale_date = sm.last_sale_date,
pm.avg_lead_time_days = COALESCE(lm.avg_lead_time_days, 30),
pm.days_of_inventory = CASE
WHEN COALESCE(sm.daily_sales_avg, 0) > 0
THEN FLOOR(p.stock_quantity / NULLIF(sm.daily_sales_avg, 0))
ELSE NULL
END,
pm.weeks_of_inventory = CASE
WHEN COALESCE(sm.weekly_sales_avg, 0) > 0
THEN FLOOR(p.stock_quantity / NULLIF(sm.weekly_sales_avg, 0))
ELSE NULL
END,
pm.stock_status = CASE
WHEN p.stock_quantity <= 0 THEN 'Out of Stock'
WHEN COALESCE(sm.daily_sales_avg, 0) = 0 AND p.stock_quantity <= ? THEN 'Low Stock'
WHEN COALESCE(sm.daily_sales_avg, 0) = 0 THEN 'In Stock'
WHEN p.stock_quantity / NULLIF(sm.daily_sales_avg, 0) <= ? THEN 'Critical'
WHEN p.stock_quantity / NULLIF(sm.daily_sales_avg, 0) <= ? THEN 'Reorder'
WHEN p.stock_quantity / NULLIF(sm.daily_sales_avg, 0) > ? THEN 'Overstocked'
ELSE 'Healthy'
END,
pm.safety_stock = CASE
WHEN COALESCE(sm.daily_sales_avg, 0) > 0 THEN
CEIL(sm.daily_sales_avg * SQRT(COALESCE(lm.avg_lead_time_days, 30)) * 1.96)
ELSE ?
END,
pm.reorder_point = CASE
WHEN COALESCE(sm.daily_sales_avg, 0) > 0 THEN
CEIL(sm.daily_sales_avg * COALESCE(lm.avg_lead_time_days, 30)) +
CEIL(sm.daily_sales_avg * SQRT(COALESCE(lm.avg_lead_time_days, 30)) * 1.96)
ELSE ?
END,
pm.reorder_qty = CASE
WHEN COALESCE(sm.daily_sales_avg, 0) > 0 AND NULLIF(p.cost_price, 0) IS NOT NULL THEN
GREATEST(
CEIL(SQRT((2 * (sm.daily_sales_avg * 365) * 25) / (NULLIF(p.cost_price, 0) * 0.25))),
?
)
ELSE ?
END,
pm.overstocked_amt = CASE
WHEN p.stock_quantity / NULLIF(sm.daily_sales_avg, 0) > ?
THEN GREATEST(0, p.stock_quantity - CEIL(sm.daily_sales_avg * ?))
ELSE 0
END,
pm.last_calculated_at = NOW()
WHERE p.pid IN (${batch.map(() => '?').join(',')})
`,
[
defaultThresholds.low_stock_threshold,
defaultThresholds.critical_days,
defaultThresholds.reorder_days,
defaultThresholds.overstock_days,
defaultThresholds.low_stock_threshold,
defaultThresholds.low_stock_threshold,
defaultThresholds.low_stock_threshold,
defaultThresholds.low_stock_threshold,
defaultThresholds.overstock_days,
defaultThresholds.overstock_days,
...batch.map(row => row.pid)
]
);
lastPid = batch[batch.length - 1].pid;
processedCount += batch.length;
outputProgress({
status: 'running',
operation: 'Processing base metrics batch',
current: processedCount,
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
}
// Calculate forecast accuracy and bias in batches
lastPid = 0;
while (true) {
if (isCancelled) break;
const [batch] = await connection.query(
'SELECT pid FROM products WHERE pid > ? ORDER BY pid LIMIT ?',
[lastPid, BATCH_SIZE]
);
if (batch.length === 0) break;
await connection.query(`
UPDATE product_metrics pm
JOIN (
SELECT
p.pid,
p.cost_price * p.stock_quantity as inventory_value,
SUM(o.quantity) as total_quantity,
COUNT(DISTINCT o.order_number) as number_of_orders,
SUM(o.quantity * o.price) as total_revenue,
SUM(o.quantity * p.cost_price) as cost_of_goods_sold,
AVG(o.price) as avg_price,
STDDEV(o.price) as price_std,
MIN(o.date) as first_sale_date,
MAX(o.date) as last_sale_date,
COUNT(DISTINCT DATE(o.date)) as active_days
FROM products p
LEFT JOIN orders o ON p.pid = o.pid AND o.canceled = false
GROUP BY p.pid
) stats ON pm.pid = stats.pid
sf.pid,
AVG(CASE
WHEN o.quantity > 0
THEN ABS(sf.forecast_units - o.quantity) / o.quantity * 100
ELSE 100
END) as avg_forecast_error,
AVG(CASE
WHEN o.quantity > 0
THEN (sf.forecast_units - o.quantity) / o.quantity * 100
ELSE 0
END) as avg_forecast_bias,
MAX(sf.forecast_date) as last_forecast_date
FROM sales_forecasts sf
JOIN orders o ON sf.pid = o.pid
AND DATE(o.date) = sf.forecast_date
WHERE o.canceled = false
AND sf.forecast_date >= DATE_SUB(CURRENT_DATE, INTERVAL 90 DAY)
AND sf.pid IN (?)
GROUP BY sf.pid
) fa ON pm.pid = fa.pid
SET
pm.inventory_value = COALESCE(stats.inventory_value, 0),
pm.avg_quantity_per_order = COALESCE(stats.total_quantity / NULLIF(stats.number_of_orders, 0), 0),
pm.number_of_orders = COALESCE(stats.number_of_orders, 0),
pm.total_revenue = COALESCE(stats.total_revenue, 0),
pm.cost_of_goods_sold = COALESCE(stats.cost_of_goods_sold, 0),
pm.gross_profit = COALESCE(stats.total_revenue - stats.cost_of_goods_sold, 0),
pm.avg_margin_percent = CASE
WHEN COALESCE(stats.total_revenue, 0) > 0
THEN ((stats.total_revenue - stats.cost_of_goods_sold) / stats.total_revenue) * 100
ELSE 0
END,
pm.first_sale_date = stats.first_sale_date,
pm.last_sale_date = stats.last_sale_date,
pm.gmroi = CASE
WHEN COALESCE(stats.inventory_value, 0) > 0
THEN (stats.total_revenue - stats.cost_of_goods_sold) / stats.inventory_value
ELSE 0
END,
pm.forecast_accuracy = GREATEST(0, 100 - LEAST(fa.avg_forecast_error, 100)),
pm.forecast_bias = GREATEST(-100, LEAST(fa.avg_forecast_bias, 100)),
pm.last_forecast_date = fa.last_forecast_date,
pm.last_calculated_at = NOW()
`);
WHERE pm.pid IN (?)
`, [batch.map(row => row.pid), batch.map(row => row.pid)]);
processedCount = Math.floor(totalProducts * 0.4);
outputProgress({
status: 'running',
operation: 'Base product metrics calculated',
current: processedCount,
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
});
} else {
processedCount = Math.floor(totalProducts * 0.4);
outputProgress({
status: 'running',
operation: 'Skipping base product metrics calculation',
current: processedCount,
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
});
lastPid = batch[batch.length - 1].pid;
}
}
if (isCancelled) return processedCount;
// Calculate product time aggregates
if (!SKIP_PRODUCT_TIME_AGGREGATES) {
outputProgress({
status: 'running',
operation: 'Starting product time aggregates calculation',
current: processedCount,
total: totalProducts,
current: processedCount || 0,
total: totalProducts || 0,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
remaining: estimateRemaining(startTime, processedCount || 0, totalProducts || 0),
rate: calculateRate(startTime, processedCount || 0),
percentage: (((processedCount || 0) / (totalProducts || 1)) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
// Calculate time-based aggregates
@@ -179,29 +363,206 @@ async function calculateProductMetrics(startTime, totalProducts, processedCount
outputProgress({
status: 'running',
operation: 'Product time aggregates calculated',
current: processedCount,
total: totalProducts,
current: processedCount || 0,
total: totalProducts || 0,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
remaining: estimateRemaining(startTime, processedCount || 0, totalProducts || 0),
rate: calculateRate(startTime, processedCount || 0),
percentage: (((processedCount || 0) / (totalProducts || 1)) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
} else {
processedCount = Math.floor(totalProducts * 0.6);
outputProgress({
status: 'running',
operation: 'Skipping product time aggregates calculation',
current: processedCount || 0,
total: totalProducts || 0,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount || 0, totalProducts || 0),
rate: calculateRate(startTime, processedCount || 0),
percentage: (((processedCount || 0) / (totalProducts || 1)) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
}
// Calculate ABC classification
outputProgress({
status: 'running',
operation: 'Starting ABC classification',
current: processedCount,
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
if (isCancelled) return {
processedProducts: processedCount,
processedOrders,
processedPurchaseOrders: 0, // This module doesn't process POs
success
};
const [abcConfig] = await connection.query('SELECT a_threshold, b_threshold FROM abc_classification_config WHERE id = 1');
const abcThresholds = abcConfig[0] || { a_threshold: 20, b_threshold: 50 };
// First, create and populate the rankings table with an index
await connection.query('DROP TEMPORARY TABLE IF EXISTS temp_revenue_ranks');
await connection.query(`
CREATE TEMPORARY TABLE temp_revenue_ranks (
pid BIGINT NOT NULL,
total_revenue DECIMAL(10,3),
rank_num INT,
dense_rank_num INT,
percentile DECIMAL(5,2),
total_count INT,
PRIMARY KEY (pid),
INDEX (rank_num),
INDEX (dense_rank_num),
INDEX (percentile)
) ENGINE=MEMORY
`);
// Calculate rankings with proper tie handling
await connection.query(`
INSERT INTO temp_revenue_ranks
WITH revenue_data AS (
SELECT
pid,
total_revenue,
COUNT(*) OVER () as total_count,
PERCENT_RANK() OVER (ORDER BY total_revenue DESC) * 100 as percentile,
RANK() OVER (ORDER BY total_revenue DESC) as rank_num,
DENSE_RANK() OVER (ORDER BY total_revenue DESC) as dense_rank_num
FROM product_metrics
WHERE total_revenue > 0
)
SELECT
pid,
total_revenue,
rank_num,
dense_rank_num,
percentile,
total_count
FROM revenue_data
`);
// Get total count for percentage calculation
const [rankingCount] = await connection.query('SELECT MAX(rank_num) as total_count FROM temp_revenue_ranks');
const totalCount = rankingCount[0].total_count || 1;
const max_rank = totalCount;
// Process updates in batches
let abcProcessedCount = 0;
const batchSize = 5000;
while (true) {
if (isCancelled) return {
processedProducts: processedCount,
processedOrders,
processedPurchaseOrders: 0, // This module doesn't process POs
success
};
// Get a batch of PIDs that need updating
const [pids] = await connection.query(`
SELECT pm.pid
FROM product_metrics pm
LEFT JOIN temp_revenue_ranks tr ON pm.pid = tr.pid
WHERE pm.abc_class IS NULL
OR pm.abc_class !=
CASE
WHEN tr.pid IS NULL THEN 'C'
WHEN tr.percentile <= ? THEN 'A'
WHEN tr.percentile <= ? THEN 'B'
ELSE 'C'
END
LIMIT ?
`, [abcThresholds.a_threshold, abcThresholds.b_threshold, batchSize]);
if (pids.length === 0) break;
await connection.query(`
UPDATE product_metrics pm
LEFT JOIN temp_revenue_ranks tr ON pm.pid = tr.pid
SET pm.abc_class =
CASE
WHEN tr.pid IS NULL THEN 'C'
WHEN tr.percentile <= ? THEN 'A'
WHEN tr.percentile <= ? THEN 'B'
ELSE 'C'
END,
pm.last_calculated_at = NOW()
WHERE pm.pid IN (?)
`, [abcThresholds.a_threshold, abcThresholds.b_threshold, pids.map(row => row.pid)]);
// Now update turnover rate with proper handling of zero inventory periods
await connection.query(`
UPDATE product_metrics pm
JOIN (
SELECT
o.pid,
SUM(o.quantity) as total_sold,
COUNT(DISTINCT DATE(o.date)) as active_days,
AVG(CASE
WHEN p.stock_quantity > 0 THEN p.stock_quantity
ELSE NULL
END) as avg_nonzero_stock
FROM orders o
JOIN products p ON o.pid = p.pid
WHERE o.canceled = false
AND o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 90 DAY)
AND o.pid IN (?)
GROUP BY o.pid
) sales ON pm.pid = sales.pid
SET
pm.turnover_rate = CASE
WHEN sales.avg_nonzero_stock > 0 AND sales.active_days > 0
THEN LEAST(
(sales.total_sold / sales.avg_nonzero_stock) * (365.0 / sales.active_days),
999.99
)
ELSE 0
END,
pm.last_calculated_at = NOW()
WHERE pm.pid IN (?)
`, [pids.map(row => row.pid), pids.map(row => row.pid)]);
}
return processedCount;
// If we get here, everything completed successfully
success = true;
// Update calculate_status
await connection.query(`
INSERT INTO calculate_status (module_name, last_calculation_timestamp)
VALUES ('product_metrics', NOW())
ON DUPLICATE KEY UPDATE last_calculation_timestamp = NOW()
`);
return {
processedProducts: processedCount || 0,
processedOrders: processedOrders || 0,
processedPurchaseOrders: 0, // This module doesn't process POs
success
};
} catch (error) {
success = false;
logError(error, 'Error calculating product metrics');
throw error;
} finally {
@@ -257,9 +618,9 @@ function calculateReorderQuantities(stock, stock_status, daily_sales_avg, avg_le
if (daily_sales_avg > 0) {
const annual_demand = daily_sales_avg * 365;
const order_cost = 25; // Fixed cost per order
const holding_cost_percent = 0.25; // 25% annual holding cost
const holding_cost = config.cost_price * 0.25; // 25% of unit cost as annual holding cost
reorder_qty = Math.ceil(Math.sqrt((2 * annual_demand * order_cost) / holding_cost_percent));
reorder_qty = Math.ceil(Math.sqrt((2 * annual_demand * order_cost) / holding_cost));
} else {
// If no sales data, use a basic calculation
reorder_qty = Math.max(safety_stock, config.low_stock_threshold);

View File

@@ -1,8 +1,11 @@
const { outputProgress, formatElapsedTime, estimateRemaining, calculateRate, logError } = require('./utils/progress');
const { getConnection } = require('./utils/db');
async function calculateSalesForecasts(startTime, totalProducts, processedCount, isCancelled = false) {
async function calculateSalesForecasts(startTime, totalProducts, processedCount = 0, isCancelled = false) {
const connection = await getConnection();
let success = false;
let processedOrders = 0;
try {
if (isCancelled) {
outputProgress({
@@ -13,10 +16,29 @@ async function calculateSalesForecasts(startTime, totalProducts, processedCount,
elapsed: formatElapsedTime(startTime),
remaining: null,
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
});
return processedCount;
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
return {
processedProducts: processedCount,
processedOrders: 0,
processedPurchaseOrders: 0,
success
};
}
// Get order count that will be processed
const [orderCount] = await connection.query(`
SELECT COUNT(*) as count
FROM orders o
WHERE o.canceled = false
AND o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 90 DAY)
`);
processedOrders = orderCount[0].count;
outputProgress({
status: 'running',
@@ -26,7 +48,12 @@ async function calculateSalesForecasts(startTime, totalProducts, processedCount,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
// First, create a temporary table for forecast dates
@@ -65,10 +92,20 @@ async function calculateSalesForecasts(startTime, totalProducts, processedCount,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
if (isCancelled) return processedCount;
if (isCancelled) return {
processedProducts: processedCount,
processedOrders,
processedPurchaseOrders: 0,
success
};
// Create temporary table for daily sales stats
await connection.query(`
@@ -94,10 +131,20 @@ async function calculateSalesForecasts(startTime, totalProducts, processedCount,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
if (isCancelled) return processedCount;
if (isCancelled) return {
processedProducts: processedCount,
processedOrders,
processedPurchaseOrders: 0,
success
};
// Create temporary table for product stats
await connection.query(`
@@ -119,10 +166,20 @@ async function calculateSalesForecasts(startTime, totalProducts, processedCount,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
if (isCancelled) return processedCount;
if (isCancelled) return {
processedProducts: processedCount,
processedOrders,
processedPurchaseOrders: 0,
success
};
// Calculate product-level forecasts
await connection.query(`
@@ -134,37 +191,76 @@ async function calculateSalesForecasts(startTime, totalProducts, processedCount,
confidence_level,
last_calculated_at
)
WITH daily_stats AS (
SELECT
ds.pid,
AVG(ds.daily_quantity) as avg_daily_qty,
STDDEV(ds.daily_quantity) as std_daily_qty,
COUNT(DISTINCT ds.day_count) as data_points,
SUM(ds.day_count) as total_days,
AVG(ds.daily_revenue) as avg_daily_revenue,
STDDEV(ds.daily_revenue) as std_daily_revenue,
MIN(ds.daily_quantity) as min_daily_qty,
MAX(ds.daily_quantity) as max_daily_qty,
-- Calculate variance without using LAG
COALESCE(
STDDEV(ds.daily_quantity) / NULLIF(AVG(ds.daily_quantity), 0),
0
) as daily_variance_ratio
FROM temp_daily_sales ds
GROUP BY ds.pid
HAVING AVG(ds.daily_quantity) > 0
)
SELECT
ds.pid,
fd.forecast_date,
GREATEST(0,
AVG(ds.daily_quantity) *
(1 + COALESCE(sf.seasonality_factor, 0))
ROUND(
ds.avg_daily_qty *
(1 + COALESCE(sf.seasonality_factor, 0)) *
CASE
WHEN ds.std_daily_qty / NULLIF(ds.avg_daily_qty, 0) > 1.5 THEN 0.85
WHEN ds.std_daily_qty / NULLIF(ds.avg_daily_qty, 0) > 1.0 THEN 0.9
WHEN ds.std_daily_qty / NULLIF(ds.avg_daily_qty, 0) > 0.5 THEN 0.95
ELSE 1.0
END,
2
)
) as forecast_units,
GREATEST(0,
ROUND(
COALESCE(
CASE
WHEN SUM(ds.day_count) >= 4 THEN AVG(ds.daily_revenue)
WHEN ds.data_points >= 4 THEN ds.avg_daily_revenue
ELSE ps.overall_avg_revenue
END *
(1 + COALESCE(sf.seasonality_factor, 0)) *
(0.95 + (RAND() * 0.1)),
CASE
WHEN ds.std_daily_revenue / NULLIF(ds.avg_daily_revenue, 0) > 1.5 THEN 0.85
WHEN ds.std_daily_revenue / NULLIF(ds.avg_daily_revenue, 0) > 1.0 THEN 0.9
WHEN ds.std_daily_revenue / NULLIF(ds.avg_daily_revenue, 0) > 0.5 THEN 0.95
ELSE 1.0
END,
0
),
2
)
) as forecast_revenue,
CASE
WHEN ps.total_days >= 60 THEN 90
WHEN ps.total_days >= 30 THEN 80
WHEN ps.total_days >= 14 THEN 70
WHEN ds.total_days >= 60 AND ds.daily_variance_ratio < 0.5 THEN 90
WHEN ds.total_days >= 60 THEN 85
WHEN ds.total_days >= 30 AND ds.daily_variance_ratio < 0.5 THEN 80
WHEN ds.total_days >= 30 THEN 75
WHEN ds.total_days >= 14 AND ds.daily_variance_ratio < 0.5 THEN 70
WHEN ds.total_days >= 14 THEN 65
ELSE 60
END as confidence_level,
NOW() as last_calculated_at
FROM temp_daily_sales ds
FROM daily_stats ds
JOIN temp_product_stats ps ON ds.pid = ps.pid
CROSS JOIN temp_forecast_dates fd
LEFT JOIN sales_seasonality sf ON fd.month = sf.month
GROUP BY ds.pid, fd.forecast_date, ps.overall_avg_revenue, ps.total_days, sf.seasonality_factor
HAVING AVG(ds.daily_quantity) > 0
GROUP BY ds.pid, fd.forecast_date, ps.overall_avg_revenue, sf.seasonality_factor
ON DUPLICATE KEY UPDATE
forecast_units = VALUES(forecast_units),
forecast_revenue = VALUES(forecast_revenue),
@@ -181,10 +277,20 @@ async function calculateSalesForecasts(startTime, totalProducts, processedCount,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
if (isCancelled) return processedCount;
if (isCancelled) return {
processedProducts: processedCount,
processedOrders,
processedPurchaseOrders: 0,
success
};
// Create temporary table for category stats
await connection.query(`
@@ -221,10 +327,20 @@ async function calculateSalesForecasts(startTime, totalProducts, processedCount,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
if (isCancelled) return processedCount;
if (isCancelled) return {
processedProducts: processedCount,
processedOrders,
processedPurchaseOrders: 0,
success
};
// Calculate category-level forecasts
await connection.query(`
@@ -292,11 +408,33 @@ async function calculateSalesForecasts(startTime, totalProducts, processedCount,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
return processedCount;
// If we get here, everything completed successfully
success = true;
// Update calculate_status
await connection.query(`
INSERT INTO calculate_status (module_name, last_calculation_timestamp)
VALUES ('sales_forecasts', NOW())
ON DUPLICATE KEY UPDATE last_calculation_timestamp = NOW()
`);
return {
processedProducts: processedCount,
processedOrders,
processedPurchaseOrders: 0,
success
};
} catch (error) {
success = false;
logError(error, 'Error calculating sales forecasts');
throw error;
} finally {

View File

@@ -1,8 +1,11 @@
const { outputProgress, formatElapsedTime, estimateRemaining, calculateRate, logError } = require('./utils/progress');
const { getConnection } = require('./utils/db');
async function calculateTimeAggregates(startTime, totalProducts, processedCount, isCancelled = false) {
async function calculateTimeAggregates(startTime, totalProducts, processedCount = 0, isCancelled = false) {
const connection = await getConnection();
let success = false;
let processedOrders = 0;
try {
if (isCancelled) {
outputProgress({
@@ -13,10 +16,28 @@ async function calculateTimeAggregates(startTime, totalProducts, processedCount,
elapsed: formatElapsedTime(startTime),
remaining: null,
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
});
return processedCount;
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
return {
processedProducts: processedCount,
processedOrders: 0,
processedPurchaseOrders: 0,
success
};
}
// Get order count that will be processed
const [orderCount] = await connection.query(`
SELECT COUNT(*) as count
FROM orders o
WHERE o.canceled = false
`);
processedOrders = orderCount[0].count;
outputProgress({
status: 'running',
@@ -26,7 +47,12 @@ async function calculateTimeAggregates(startTime, totalProducts, processedCount,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
// Initial insert of time-based aggregates
@@ -42,9 +68,11 @@ async function calculateTimeAggregates(startTime, totalProducts, processedCount,
stock_received,
stock_ordered,
avg_price,
profit_margin
profit_margin,
inventory_value,
gmroi
)
WITH sales_data AS (
WITH monthly_sales AS (
SELECT
o.pid,
YEAR(o.date) as year,
@@ -55,17 +83,19 @@ async function calculateTimeAggregates(startTime, totalProducts, processedCount,
COUNT(DISTINCT o.order_number) as order_count,
AVG(o.price - COALESCE(o.discount, 0)) as avg_price,
CASE
WHEN SUM((o.price - COALESCE(o.discount, 0)) * o.quantity) = 0 THEN 0
ELSE ((SUM((o.price - COALESCE(o.discount, 0)) * o.quantity) -
SUM(COALESCE(p.cost_price, 0) * o.quantity)) /
SUM((o.price - COALESCE(o.discount, 0)) * o.quantity)) * 100
END as profit_margin
WHEN SUM((o.price - COALESCE(o.discount, 0)) * o.quantity) > 0
THEN ((SUM((o.price - COALESCE(o.discount, 0)) * o.quantity) - SUM(COALESCE(p.cost_price, 0) * o.quantity))
/ SUM((o.price - COALESCE(o.discount, 0)) * o.quantity)) * 100
ELSE 0
END as profit_margin,
p.cost_price * p.stock_quantity as inventory_value,
COUNT(DISTINCT DATE(o.date)) as active_days
FROM orders o
JOIN products p ON o.pid = p.pid
WHERE o.canceled = 0
WHERE o.canceled = false
GROUP BY o.pid, YEAR(o.date), MONTH(o.date)
),
purchase_data AS (
monthly_stock AS (
SELECT
pid,
YEAR(date) as year,
@@ -73,45 +103,100 @@ async function calculateTimeAggregates(startTime, totalProducts, processedCount,
SUM(received) as stock_received,
SUM(ordered) as stock_ordered
FROM purchase_orders
WHERE status = 50
GROUP BY pid, YEAR(date), MONTH(date)
)
SELECT
s.pid,
s.year,
s.month,
s.total_quantity_sold,
s.total_revenue,
s.total_cost,
s.order_count,
COALESCE(p.stock_received, 0) as stock_received,
COALESCE(p.stock_ordered, 0) as stock_ordered,
s.avg_price,
s.profit_margin
FROM sales_data s
LEFT JOIN purchase_data p
ON s.pid = p.pid
AND s.year = p.year
AND s.month = p.month
UNION
),
base_products AS (
SELECT
p.pid,
p.year,
p.month,
p.cost_price * p.stock_quantity as inventory_value
FROM products p
)
SELECT
COALESCE(s.pid, ms.pid) as pid,
COALESCE(s.year, ms.year) as year,
COALESCE(s.month, ms.month) as month,
COALESCE(s.total_quantity_sold, 0) as total_quantity_sold,
COALESCE(s.total_revenue, 0) as total_revenue,
COALESCE(s.total_cost, 0) as total_cost,
COALESCE(s.order_count, 0) as order_count,
COALESCE(ms.stock_received, 0) as stock_received,
COALESCE(ms.stock_ordered, 0) as stock_ordered,
COALESCE(s.avg_price, 0) as avg_price,
COALESCE(s.profit_margin, 0) as profit_margin,
COALESCE(s.inventory_value, bp.inventory_value, 0) as inventory_value,
CASE
WHEN COALESCE(s.inventory_value, bp.inventory_value, 0) > 0
AND COALESCE(s.active_days, 0) > 0
THEN (COALESCE(s.total_revenue - s.total_cost, 0) * (365.0 / s.active_days))
/ COALESCE(s.inventory_value, bp.inventory_value)
ELSE 0
END as gmroi
FROM (
SELECT * FROM monthly_sales s
UNION ALL
SELECT
ms.pid,
ms.year,
ms.month,
0 as total_quantity_sold,
0 as total_revenue,
0 as total_cost,
0 as order_count,
p.stock_received,
p.stock_ordered,
NULL as avg_price,
0 as profit_margin,
NULL as inventory_value,
0 as active_days
FROM monthly_stock ms
WHERE NOT EXISTS (
SELECT 1 FROM monthly_sales s2
WHERE s2.pid = ms.pid
AND s2.year = ms.year
AND s2.month = ms.month
)
) s
LEFT JOIN monthly_stock ms
ON s.pid = ms.pid
AND s.year = ms.year
AND s.month = ms.month
JOIN base_products bp ON COALESCE(s.pid, ms.pid) = bp.pid
UNION
SELECT
ms.pid,
ms.year,
ms.month,
0 as total_quantity_sold,
0 as total_revenue,
0 as total_cost,
0 as order_count,
ms.stock_received,
ms.stock_ordered,
0 as avg_price,
0 as profit_margin
FROM purchase_data p
LEFT JOIN sales_data s
ON p.pid = s.pid
AND p.year = s.year
AND p.month = s.month
WHERE s.pid IS NULL
0 as profit_margin,
bp.inventory_value,
0 as gmroi
FROM monthly_stock ms
JOIN base_products bp ON ms.pid = bp.pid
WHERE NOT EXISTS (
SELECT 1 FROM (
SELECT * FROM monthly_sales
UNION ALL
SELECT
ms2.pid,
ms2.year,
ms2.month,
0, 0, 0, 0, NULL, 0, NULL, 0
FROM monthly_stock ms2
WHERE NOT EXISTS (
SELECT 1 FROM monthly_sales s2
WHERE s2.pid = ms2.pid
AND s2.year = ms2.year
AND s2.month = ms2.month
)
) s
WHERE s.pid = ms.pid
AND s.year = ms.year
AND s.month = ms.month
)
ON DUPLICATE KEY UPDATE
total_quantity_sold = VALUES(total_quantity_sold),
total_revenue = VALUES(total_revenue),
@@ -120,7 +205,9 @@ async function calculateTimeAggregates(startTime, totalProducts, processedCount,
stock_received = VALUES(stock_received),
stock_ordered = VALUES(stock_ordered),
avg_price = VALUES(avg_price),
profit_margin = VALUES(profit_margin)
profit_margin = VALUES(profit_margin),
inventory_value = VALUES(inventory_value),
gmroi = VALUES(gmroi)
`);
processedCount = Math.floor(totalProducts * 0.60);
@@ -132,10 +219,20 @@ async function calculateTimeAggregates(startTime, totalProducts, processedCount,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
if (isCancelled) return processedCount;
if (isCancelled) return {
processedProducts: processedCount,
processedOrders,
processedPurchaseOrders: 0,
success
};
// Update with financial metrics
await connection.query(`
@@ -147,7 +244,7 @@ async function calculateTimeAggregates(startTime, totalProducts, processedCount,
MONTH(o.date) as month,
p.cost_price * p.stock_quantity as inventory_value,
SUM(o.quantity * (o.price - p.cost_price)) as gross_profit,
COUNT(DISTINCT DATE(o.date)) as days_in_period
COUNT(DISTINCT DATE(o.date)) as active_days
FROM products p
LEFT JOIN orders o ON p.pid = o.pid
WHERE o.canceled = false
@@ -156,12 +253,7 @@ async function calculateTimeAggregates(startTime, totalProducts, processedCount,
AND pta.year = fin.year
AND pta.month = fin.month
SET
pta.inventory_value = COALESCE(fin.inventory_value, 0),
pta.gmroi = CASE
WHEN COALESCE(fin.inventory_value, 0) > 0 AND fin.days_in_period > 0 THEN
(COALESCE(fin.gross_profit, 0) * (365.0 / fin.days_in_period)) / COALESCE(fin.inventory_value, 0)
ELSE 0
END
pta.inventory_value = COALESCE(fin.inventory_value, 0)
`);
processedCount = Math.floor(totalProducts * 0.65);
@@ -173,11 +265,33 @@ async function calculateTimeAggregates(startTime, totalProducts, processedCount,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
return processedCount;
// If we get here, everything completed successfully
success = true;
// Update calculate_status
await connection.query(`
INSERT INTO calculate_status (module_name, last_calculation_timestamp)
VALUES ('time_aggregates', NOW())
ON DUPLICATE KEY UPDATE last_calculation_timestamp = NOW()
`);
return {
processedProducts: processedCount,
processedOrders,
processedPurchaseOrders: 0,
success
};
} catch (error) {
success = false;
logError(error, 'Error calculating time aggregates');
throw error;
} finally {

View File

@@ -1,8 +1,12 @@
const { outputProgress, formatElapsedTime, estimateRemaining, calculateRate, logError } = require('./utils/progress');
const { getConnection } = require('./utils/db');
async function calculateVendorMetrics(startTime, totalProducts, processedCount, isCancelled = false) {
async function calculateVendorMetrics(startTime, totalProducts, processedCount = 0, isCancelled = false) {
const connection = await getConnection();
let success = false;
let processedOrders = 0;
let processedPurchaseOrders = 0;
try {
if (isCancelled) {
outputProgress({
@@ -13,10 +17,36 @@ async function calculateVendorMetrics(startTime, totalProducts, processedCount,
elapsed: formatElapsedTime(startTime),
remaining: null,
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
});
return processedCount;
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
return {
processedProducts: processedCount,
processedOrders,
processedPurchaseOrders,
success
};
}
// Get counts of records that will be processed
const [[orderCount], [poCount]] = await Promise.all([
connection.query(`
SELECT COUNT(*) as count
FROM orders o
WHERE o.canceled = false
`),
connection.query(`
SELECT COUNT(*) as count
FROM purchase_orders po
WHERE po.status != 0
`)
]);
processedOrders = orderCount.count;
processedPurchaseOrders = poCount.count;
outputProgress({
status: 'running',
@@ -26,7 +56,12 @@ async function calculateVendorMetrics(startTime, totalProducts, processedCount,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
// First ensure all vendors exist in vendor_details
@@ -50,10 +85,20 @@ async function calculateVendorMetrics(startTime, totalProducts, processedCount,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
if (isCancelled) return processedCount;
if (isCancelled) return {
processedProducts: processedCount,
processedOrders,
processedPurchaseOrders,
success
};
// Now calculate vendor metrics
await connection.query(`
@@ -68,6 +113,8 @@ async function calculateVendorMetrics(startTime, totalProducts, processedCount,
avg_order_value,
active_products,
total_products,
total_purchase_value,
avg_margin_percent,
status,
last_calculated_at
)
@@ -76,7 +123,8 @@ async function calculateVendorMetrics(startTime, totalProducts, processedCount,
p.vendor,
SUM(o.quantity * o.price) as total_revenue,
COUNT(DISTINCT o.id) as total_orders,
COUNT(DISTINCT p.pid) as active_products
COUNT(DISTINCT p.pid) as active_products,
SUM(o.quantity * (o.price - p.cost_price)) as total_margin
FROM products p
JOIN orders o ON p.pid = o.pid
WHERE o.canceled = false
@@ -91,7 +139,8 @@ async function calculateVendorMetrics(startTime, totalProducts, processedCount,
AVG(CASE
WHEN po.receiving_status = 40
THEN DATEDIFF(po.received_date, po.date)
END) as avg_lead_time_days
END) as avg_lead_time_days,
SUM(po.ordered * po.po_cost_price) as total_purchase_value
FROM products p
JOIN purchase_orders po ON p.pid = po.pid
WHERE po.date >= DATE_SUB(CURRENT_DATE, INTERVAL 12 MONTH)
@@ -127,6 +176,12 @@ async function calculateVendorMetrics(startTime, totalProducts, processedCount,
END as avg_order_value,
COALESCE(vs.active_products, 0) as active_products,
COALESCE(vpr.total_products, 0) as total_products,
COALESCE(vp.total_purchase_value, 0) as total_purchase_value,
CASE
WHEN vs.total_revenue > 0
THEN (vs.total_margin / vs.total_revenue) * 100
ELSE 0
END as avg_margin_percent,
'active' as status,
NOW() as last_calculated_at
FROM vendor_sales vs
@@ -143,6 +198,8 @@ async function calculateVendorMetrics(startTime, totalProducts, processedCount,
avg_order_value = VALUES(avg_order_value),
active_products = VALUES(active_products),
total_products = VALUES(total_products),
total_purchase_value = VALUES(total_purchase_value),
avg_margin_percent = VALUES(avg_margin_percent),
status = VALUES(status),
last_calculated_at = VALUES(last_calculated_at)
`);
@@ -150,17 +207,155 @@ async function calculateVendorMetrics(startTime, totalProducts, processedCount,
processedCount = Math.floor(totalProducts * 0.9);
outputProgress({
status: 'running',
operation: 'Vendor metrics calculated',
operation: 'Vendor metrics calculated, updating time-based metrics',
current: processedCount,
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
return processedCount;
if (isCancelled) return {
processedProducts: processedCount,
processedOrders,
processedPurchaseOrders,
success
};
// Calculate time-based metrics
await connection.query(`
INSERT INTO vendor_time_metrics (
vendor,
year,
month,
total_orders,
late_orders,
avg_lead_time_days,
total_purchase_value,
total_revenue,
avg_margin_percent
)
WITH monthly_orders AS (
SELECT
p.vendor,
YEAR(o.date) as year,
MONTH(o.date) as month,
COUNT(DISTINCT o.id) as total_orders,
SUM(o.quantity * o.price) as total_revenue,
SUM(o.quantity * (o.price - p.cost_price)) as total_margin
FROM products p
JOIN orders o ON p.pid = o.pid
WHERE o.canceled = false
AND o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 12 MONTH)
AND p.vendor IS NOT NULL
GROUP BY p.vendor, YEAR(o.date), MONTH(o.date)
),
monthly_po AS (
SELECT
p.vendor,
YEAR(po.date) as year,
MONTH(po.date) as month,
COUNT(DISTINCT po.id) as total_po,
COUNT(DISTINCT CASE
WHEN po.receiving_status = 40 AND po.received_date > po.expected_date
THEN po.id
END) as late_orders,
AVG(CASE
WHEN po.receiving_status = 40
THEN DATEDIFF(po.received_date, po.date)
END) as avg_lead_time_days,
SUM(po.ordered * po.po_cost_price) as total_purchase_value
FROM products p
JOIN purchase_orders po ON p.pid = po.pid
WHERE po.date >= DATE_SUB(CURRENT_DATE, INTERVAL 12 MONTH)
AND p.vendor IS NOT NULL
GROUP BY p.vendor, YEAR(po.date), MONTH(po.date)
)
SELECT
mo.vendor,
mo.year,
mo.month,
COALESCE(mp.total_po, 0) as total_orders,
COALESCE(mp.late_orders, 0) as late_orders,
COALESCE(mp.avg_lead_time_days, 0) as avg_lead_time_days,
COALESCE(mp.total_purchase_value, 0) as total_purchase_value,
mo.total_revenue,
CASE
WHEN mo.total_revenue > 0
THEN (mo.total_margin / mo.total_revenue) * 100
ELSE 0
END as avg_margin_percent
FROM monthly_orders mo
LEFT JOIN monthly_po mp ON mo.vendor = mp.vendor
AND mo.year = mp.year
AND mo.month = mp.month
UNION
SELECT
mp.vendor,
mp.year,
mp.month,
mp.total_po as total_orders,
mp.late_orders,
mp.avg_lead_time_days,
mp.total_purchase_value,
0 as total_revenue,
0 as avg_margin_percent
FROM monthly_po mp
LEFT JOIN monthly_orders mo ON mp.vendor = mo.vendor
AND mp.year = mo.year
AND mp.month = mo.month
WHERE mo.vendor IS NULL
ON DUPLICATE KEY UPDATE
total_orders = VALUES(total_orders),
late_orders = VALUES(late_orders),
avg_lead_time_days = VALUES(avg_lead_time_days),
total_purchase_value = VALUES(total_purchase_value),
total_revenue = VALUES(total_revenue),
avg_margin_percent = VALUES(avg_margin_percent)
`);
processedCount = Math.floor(totalProducts * 0.95);
outputProgress({
status: 'running',
operation: 'Time-based vendor metrics calculated',
current: processedCount,
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
// If we get here, everything completed successfully
success = true;
// Update calculate_status
await connection.query(`
INSERT INTO calculate_status (module_name, last_calculation_timestamp)
VALUES ('vendor_metrics', NOW())
ON DUPLICATE KEY UPDATE last_calculation_timestamp = NOW()
`);
return {
processedProducts: processedCount,
processedOrders,
processedPurchaseOrders,
success
};
} catch (error) {
success = false;
logError(error, 'Error calculating vendor metrics');
throw error;
} finally {

View File

@@ -156,7 +156,7 @@ async function resetDatabase() {
SELECT GROUP_CONCAT(table_name) as tables
FROM information_schema.tables
WHERE table_schema = DATABASE()
AND table_name NOT IN ('users', 'import_history')
AND table_name NOT IN ('users', 'import_history', 'calculate_history')
`);
if (!tables[0].tables) {
@@ -175,7 +175,7 @@ async function resetDatabase() {
DROP TABLE IF EXISTS
${tables[0].tables
.split(',')
.filter(table => table !== 'users')
.filter(table => !['users', 'calculate_history'].includes(table))
.map(table => '`' + table + '`')
.join(', ')}
`;
@@ -543,5 +543,15 @@ async function resetDatabase() {
}
}
// Run the reset
resetDatabase();
// Export if required as a module
if (typeof module !== 'undefined' && module.exports) {
module.exports = resetDatabase;
}
// Run if called directly
if (require.main === module) {
resetDatabase().catch(error => {
console.error('Error:', error);
process.exit(1);
});
}

View File

@@ -2,6 +2,7 @@ const express = require('express');
const router = express.Router();
const { spawn } = require('child_process');
const path = require('path');
const db = require('../utils/db');
// Debug middleware MUST be first
router.use((req, res, next) => {
@@ -9,9 +10,11 @@ router.use((req, res, next) => {
next();
});
// Store active import process and its progress
// Store active processes and their progress
let activeImport = null;
let importProgress = null;
let activeFullUpdate = null;
let activeFullReset = null;
// SSE clients for progress updates
const updateClients = new Set();
@@ -19,17 +22,16 @@ const importClients = new Set();
const resetClients = new Set();
const resetMetricsClients = new Set();
const calculateMetricsClients = new Set();
const fullUpdateClients = new Set();
const fullResetClients = new Set();
// Helper to send progress to specific clients
function sendProgressToClients(clients, progress) {
const data = typeof progress === 'string' ? { progress } : progress;
// Ensure we have a status field
if (!data.status) {
data.status = 'running';
}
const message = `data: ${JSON.stringify(data)}\n\n`;
function sendProgressToClients(clients, data) {
// If data is a string, send it directly
// If it's an object, convert it to JSON
const message = typeof data === 'string'
? `data: ${data}\n\n`
: `data: ${JSON.stringify(data)}\n\n`;
clients.forEach(client => {
try {
@@ -45,115 +47,149 @@ function sendProgressToClients(clients, progress) {
});
}
// Progress endpoints
router.get('/update/progress', (req, res) => {
res.writeHead(200, {
'Content-Type': 'text/event-stream',
'Cache-Control': 'no-cache',
'Connection': 'keep-alive',
'Access-Control-Allow-Origin': req.headers.origin || '*',
'Access-Control-Allow-Credentials': 'true'
});
// Send an initial message to test the connection
res.write('data: {"status":"running","operation":"Initializing connection..."}\n\n');
// Add this client to the update set
updateClients.add(res);
// Remove client when connection closes
req.on('close', () => {
updateClients.delete(res);
});
});
router.get('/import/progress', (req, res) => {
res.writeHead(200, {
'Content-Type': 'text/event-stream',
'Cache-Control': 'no-cache',
'Connection': 'keep-alive',
'Access-Control-Allow-Origin': req.headers.origin || '*',
'Access-Control-Allow-Credentials': 'true'
});
// Send an initial message to test the connection
res.write('data: {"status":"running","operation":"Initializing connection..."}\n\n');
// Add this client to the import set
importClients.add(res);
// Remove client when connection closes
req.on('close', () => {
importClients.delete(res);
});
});
router.get('/reset/progress', (req, res) => {
res.writeHead(200, {
'Content-Type': 'text/event-stream',
'Cache-Control': 'no-cache',
'Connection': 'keep-alive',
'Access-Control-Allow-Origin': req.headers.origin || '*',
'Access-Control-Allow-Credentials': 'true'
});
// Send an initial message to test the connection
res.write('data: {"status":"running","operation":"Initializing connection..."}\n\n');
// Add this client to the reset set
resetClients.add(res);
// Remove client when connection closes
req.on('close', () => {
resetClients.delete(res);
});
});
// Add reset-metrics progress endpoint
router.get('/reset-metrics/progress', (req, res) => {
res.writeHead(200, {
'Content-Type': 'text/event-stream',
'Cache-Control': 'no-cache',
'Connection': 'keep-alive',
'Access-Control-Allow-Origin': req.headers.origin || '*',
'Access-Control-Allow-Credentials': 'true'
});
// Send an initial message to test the connection
res.write('data: {"status":"running","operation":"Initializing connection..."}\n\n');
// Add this client to the reset-metrics set
resetMetricsClients.add(res);
// Remove client when connection closes
req.on('close', () => {
resetMetricsClients.delete(res);
});
});
// Add calculate-metrics progress endpoint
router.get('/calculate-metrics/progress', (req, res) => {
res.writeHead(200, {
'Content-Type': 'text/event-stream',
'Cache-Control': 'no-cache',
'Connection': 'keep-alive',
'Access-Control-Allow-Origin': req.headers.origin || '*',
'Access-Control-Allow-Credentials': 'true'
});
// Send current progress if it exists
if (importProgress) {
res.write(`data: ${JSON.stringify(importProgress)}\n\n`);
} else {
res.write('data: {"status":"running","operation":"Initializing connection..."}\n\n');
// Helper to run a script and stream progress
function runScript(scriptPath, type, clients) {
return new Promise((resolve, reject) => {
// Kill any existing process of this type
let activeProcess;
switch (type) {
case 'update':
if (activeFullUpdate) {
try { activeFullUpdate.kill(); } catch (e) { }
}
activeProcess = activeFullUpdate;
break;
case 'reset':
if (activeFullReset) {
try { activeFullReset.kill(); } catch (e) { }
}
activeProcess = activeFullReset;
break;
}
// Add this client to the calculate-metrics set
calculateMetricsClients.add(res);
const child = spawn('node', [scriptPath], {
stdio: ['inherit', 'pipe', 'pipe']
});
// Remove client when connection closes
switch (type) {
case 'update':
activeFullUpdate = child;
break;
case 'reset':
activeFullReset = child;
break;
}
let output = '';
child.stdout.on('data', (data) => {
const text = data.toString();
output += text;
// Split by lines to handle multiple JSON outputs
const lines = text.split('\n');
lines.filter(line => line.trim()).forEach(line => {
try {
// Try to parse as JSON but don't let it affect the display
const jsonData = JSON.parse(line);
// Only end the process if we get a final status
if (jsonData.status === 'complete' || jsonData.status === 'error' || jsonData.status === 'cancelled') {
if (jsonData.status === 'complete' && !jsonData.operation?.includes('complete')) {
// Don't close for intermediate completion messages
sendProgressToClients(clients, line);
return;
}
// Close only on final completion/error/cancellation
switch (type) {
case 'update':
activeFullUpdate = null;
break;
case 'reset':
activeFullReset = null;
break;
}
if (jsonData.status === 'error') {
reject(new Error(jsonData.error || 'Unknown error'));
} else {
resolve({ output });
}
}
} catch (e) {
// Not JSON, just display as is
}
// Always send the raw line
sendProgressToClients(clients, line);
});
});
child.stderr.on('data', (data) => {
const text = data.toString();
console.error(text);
// Send stderr output directly too
sendProgressToClients(clients, text);
});
child.on('close', (code) => {
switch (type) {
case 'update':
activeFullUpdate = null;
break;
case 'reset':
activeFullReset = null;
break;
}
if (code !== 0) {
const error = `Script ${scriptPath} exited with code ${code}`;
sendProgressToClients(clients, error);
reject(new Error(error));
}
// Don't resolve here - let the completion message from the script trigger the resolve
});
child.on('error', (err) => {
switch (type) {
case 'update':
activeFullUpdate = null;
break;
case 'reset':
activeFullReset = null;
break;
}
sendProgressToClients(clients, err.message);
reject(err);
});
});
}
// Progress endpoints
router.get('/:type/progress', (req, res) => {
const { type } = req.params;
if (!['update', 'reset'].includes(type)) {
return res.status(400).json({ error: 'Invalid operation type' });
}
res.writeHead(200, {
'Content-Type': 'text/event-stream',
'Cache-Control': 'no-cache',
'Connection': 'keep-alive',
'Access-Control-Allow-Origin': req.headers.origin || '*',
'Access-Control-Allow-Credentials': 'true'
});
// Add this client to the correct set
const clients = type === 'update' ? fullUpdateClients : fullResetClients;
clients.add(res);
// Send initial connection message
sendProgressToClients(new Set([res]), JSON.stringify({
status: 'running',
operation: 'Initializing connection...'
}));
// Handle client disconnect
req.on('close', () => {
calculateMetricsClients.delete(res);
clients.delete(res);
});
});
@@ -174,7 +210,6 @@ router.get('/status', (req, res) => {
// Add calculate-metrics status endpoint
router.get('/calculate-metrics/status', (req, res) => {
console.log('Calculate metrics status endpoint hit');
const calculateMetrics = require('../../scripts/calculate-metrics');
const progress = calculateMetrics.getProgress();
@@ -371,49 +406,35 @@ router.post('/import', async (req, res) => {
// Route to cancel active process
router.post('/cancel', (req, res) => {
if (!activeImport) {
return res.status(404).json({ error: 'No active process to cancel' });
}
try {
// If it's the prod import module, call its cancel function
if (typeof activeImport.cancelImport === 'function') {
activeImport.cancelImport();
} else {
// Otherwise it's a child process
activeImport.kill('SIGTERM');
}
let killed = false;
// Get the operation type from the request
const { operation } = req.query;
const { type } = req.query;
const clients = type === 'update' ? fullUpdateClients : fullResetClients;
const activeProcess = type === 'update' ? activeFullUpdate : activeFullReset;
// Send cancel message only to the appropriate client set
const cancelMessage = {
if (activeProcess) {
try {
activeProcess.kill('SIGTERM');
if (type === 'update') {
activeFullUpdate = null;
} else {
activeFullReset = null;
}
killed = true;
sendProgressToClients(clients, JSON.stringify({
status: 'cancelled',
operation: 'Operation cancelled'
};
switch (operation) {
case 'update':
sendProgressToClients(updateClients, cancelMessage);
break;
case 'import':
sendProgressToClients(importClients, cancelMessage);
break;
case 'reset':
sendProgressToClients(resetClients, cancelMessage);
break;
case 'calculate-metrics':
sendProgressToClients(calculateMetricsClients, cancelMessage);
break;
}));
} catch (err) {
console.error(`Error killing ${type} process:`, err);
}
}
if (killed) {
res.json({ success: true });
} catch (error) {
// Even if there's an error, try to clean up
activeImport = null;
importProgress = null;
res.status(500).json({ error: 'Failed to cancel process' });
} else {
res.status(404).json({ error: 'No active process to cancel' });
}
});
@@ -552,20 +573,6 @@ router.post('/reset-metrics', async (req, res) => {
}
});
// Add calculate-metrics status endpoint
router.get('/calculate-metrics/status', (req, res) => {
const calculateMetrics = require('../../scripts/calculate-metrics');
const progress = calculateMetrics.getProgress();
// Only consider it active if both the process is running and we have progress
const isActive = !!activeImport && !!progress;
res.json({
active: isActive,
progress: isActive ? progress : null
});
});
// Add calculate-metrics endpoint
router.post('/calculate-metrics', async (req, res) => {
if (activeImport) {
@@ -711,4 +718,96 @@ router.post('/import-from-prod', async (req, res) => {
}
});
// POST /csv/full-update - Run full update script
router.post('/full-update', async (req, res) => {
try {
const scriptPath = path.join(__dirname, '../../scripts/full-update.js');
runScript(scriptPath, 'update', fullUpdateClients)
.catch(error => {
console.error('Update failed:', error);
});
res.status(202).json({ message: 'Update started' });
} catch (error) {
res.status(500).json({ error: error.message });
}
});
// POST /csv/full-reset - Run full reset script
router.post('/full-reset', async (req, res) => {
try {
const scriptPath = path.join(__dirname, '../../scripts/full-reset.js');
runScript(scriptPath, 'reset', fullResetClients)
.catch(error => {
console.error('Reset failed:', error);
});
res.status(202).json({ message: 'Reset started' });
} catch (error) {
res.status(500).json({ error: error.message });
}
});
// GET /history/import - Get recent import history
router.get('/history/import', async (req, res) => {
try {
const pool = req.app.locals.pool;
const [rows] = await pool.query(`
SELECT * FROM import_history
ORDER BY start_time DESC
LIMIT 20
`);
res.json(rows || []);
} catch (error) {
console.error('Error fetching import history:', error);
res.status(500).json({ error: error.message });
}
});
// GET /history/calculate - Get recent calculation history
router.get('/history/calculate', async (req, res) => {
try {
const pool = req.app.locals.pool;
const [rows] = await pool.query(`
SELECT * FROM calculate_history
ORDER BY start_time DESC
LIMIT 20
`);
res.json(rows || []);
} catch (error) {
console.error('Error fetching calculate history:', error);
res.status(500).json({ error: error.message });
}
});
// GET /status/modules - Get module calculation status
router.get('/status/modules', async (req, res) => {
try {
const pool = req.app.locals.pool;
const [rows] = await pool.query(`
SELECT module_name, last_calculation_timestamp
FROM calculate_status
ORDER BY module_name
`);
res.json(rows || []);
} catch (error) {
console.error('Error fetching module status:', error);
res.status(500).json({ error: error.message });
}
});
// GET /status/tables - Get table sync status
router.get('/status/tables', async (req, res) => {
try {
const pool = req.app.locals.pool;
const [rows] = await pool.query(`
SELECT table_name, last_sync_timestamp
FROM sync_status
ORDER BY table_name
`);
res.json(rows || []);
} catch (error) {
console.error('Error fetching table status:', error);
res.status(500).json({ error: error.message });
}
});
module.exports = router;

File diff suppressed because it is too large Load Diff

View File

@@ -133,6 +133,10 @@ export function PerformanceMetrics() {
}
};
function getCategoryName(_cat_id: number): import("react").ReactNode {
throw new Error('Function not implemented.');
}
return (
<div className="max-w-[700px] space-y-4">
{/* Lead Time Thresholds Card */}
@@ -205,11 +209,11 @@ export function PerformanceMetrics() {
<Table>
<TableHeader>
<TableRow>
<TableHead>Category</TableHead>
<TableHead>Vendor</TableHead>
<TableHead className="text-right">A Threshold</TableHead>
<TableHead className="text-right">B Threshold</TableHead>
<TableHead className="text-right">Period Days</TableHead>
<TableCell>Category</TableCell>
<TableCell>Vendor</TableCell>
<TableCell className="text-right">A Threshold</TableCell>
<TableCell className="text-right">B Threshold</TableCell>
<TableCell className="text-right">Period Days</TableCell>
</TableRow>
</TableHeader>
<TableBody>
@@ -242,10 +246,10 @@ export function PerformanceMetrics() {
<Table>
<TableHeader>
<TableRow>
<TableHead>Category</TableHead>
<TableHead>Vendor</TableHead>
<TableHead className="text-right">Period Days</TableHead>
<TableHead className="text-right">Target Rate</TableHead>
<TableCell>Category</TableCell>
<TableCell>Vendor</TableCell>
<TableCell className="text-right">Period Days</TableCell>
<TableCell className="text-right">Target Rate</TableCell>
</TableRow>
</TableHeader>
<TableBody>

View File

@@ -5,7 +5,6 @@ import { Input } from "@/components/ui/input";
import { Label } from "@/components/ui/label";
import { toast } from "sonner";
import config from '../../config';
import { Table, TableBody, TableCell, TableHeader, TableRow } from "@/components/ui/table";
interface StockThreshold {
id: number;
@@ -244,54 +243,6 @@ export function StockManagement() {
</div>
</CardContent>
</Card>
<Table>
<TableHeader>
<TableRow>
<TableHead>Category</TableHead>
<TableHead>Vendor</TableHead>
<TableHead className="text-right">Critical Days</TableHead>
<TableHead className="text-right">Reorder Days</TableHead>
<TableHead className="text-right">Overstock Days</TableHead>
<TableHead className="text-right">Low Stock</TableHead>
<TableHead className="text-right">Min Reorder</TableHead>
</TableRow>
</TableHeader>
<TableBody>
{stockThresholds.map((threshold) => (
<TableRow key={`${threshold.cat_id}-${threshold.vendor}`}>
<TableCell>{threshold.cat_id ? getCategoryName(threshold.cat_id) : 'Global'}</TableCell>
<TableCell>{threshold.vendor || 'All Vendors'}</TableCell>
<TableCell className="text-right">{threshold.critical_days}</TableCell>
<TableCell className="text-right">{threshold.reorder_days}</TableCell>
<TableCell className="text-right">{threshold.overstock_days}</TableCell>
<TableCell className="text-right">{threshold.low_stock_threshold}</TableCell>
<TableCell className="text-right">{threshold.min_reorder_quantity}</TableCell>
</TableRow>
))}
</TableBody>
</Table>
<Table>
<TableHeader>
<TableRow>
<TableHead>Category</TableHead>
<TableHead>Vendor</TableHead>
<TableHead className="text-right">Coverage Days</TableHead>
<TableHead className="text-right">Service Level</TableHead>
</TableRow>
</TableHeader>
<TableBody>
{safetyStockConfigs.map((config) => (
<TableRow key={`${config.cat_id}-${config.vendor}`}>
<TableCell>{config.cat_id ? getCategoryName(config.cat_id) : 'Global'}</TableCell>
<TableCell>{config.vendor || 'All Vendors'}</TableCell>
<TableCell className="text-right">{config.coverage_days}</TableCell>
<TableCell className="text-right">{config.service_level}%</TableCell>
</TableRow>
))}
</TableBody>
</Table>
</div>
);
}

View File

@@ -1,7 +1,7 @@
#!/bin/zsh
#Clear previous mount in case its still there
umount ~/Dev/inventory/inventory-server
umount /Users/matt/Library/Mobile Documents/com~apple~CloudDocs/Dev/inventory/inventory-server
#Mount
sshfs matt@dashboard.kent.pw:/var/www/html/inventory -p 22122 ~/Dev/inventory/inventory-server/
sshfs matt@dashboard.kent.pw:/var/www/html/inventory -p 22122 /Users/matt/Library/Mobile Documents/com~apple~CloudDocs/Dev/inventory/inventory-server/