const { outputProgress, logError } = require('./utils/progress'); const { getConnection } = require('./utils/db'); // Helper function to handle NaN and undefined values function sanitizeValue(value) { if (value === undefined || value === null || Number.isNaN(value)) { return null; } return value; } async function calculateProductMetrics(startTime, totalProducts, processedCount = 0) { const connection = await getConnection(); try { // Process in batches of 250 const batchSize = 250; for (let offset = 0; offset < totalProducts; offset += batchSize) { const [products] = await connection.query('SELECT pid, vendor FROM products LIMIT ? OFFSET ?', [batchSize, offset]) .catch(err => { logError(err, `Failed to fetch products batch at offset ${offset}`); throw err; }); processedCount += products.length; // Update progress after each batch outputProgress({ status: 'running', operation: 'Processing products', current: processedCount, total: totalProducts, elapsed: formatElapsedTime(startTime), remaining: estimateRemaining(startTime, processedCount, totalProducts), rate: calculateRate(startTime, processedCount), percentage: ((processedCount / totalProducts) * 100).toFixed(1) }); // Process the batch const metricsUpdates = []; for (const product of products) { try { // Get configuration values for this product const [configs] = await connection.query(` WITH product_info AS ( SELECT p.pid, p.vendor, pc.cat_id as category_id FROM products p LEFT JOIN product_categories pc ON p.pid = pc.pid WHERE p.pid = ? ), threshold_options AS ( SELECT st.*, CASE WHEN st.category_id = pi.category_id AND st.vendor = pi.vendor THEN 1 WHEN st.category_id = pi.category_id AND st.vendor IS NULL THEN 2 WHEN st.category_id IS NULL AND st.vendor = pi.vendor THEN 3 WHEN st.category_id IS NULL AND st.vendor IS NULL THEN 4 ELSE 5 END as priority FROM product_info pi CROSS JOIN stock_thresholds st WHERE (st.category_id = pi.category_id OR st.category_id IS NULL) AND (st.vendor = pi.vendor OR st.vendor IS NULL) ), velocity_options AS ( SELECT sv.*, CASE WHEN sv.category_id = pi.category_id AND sv.vendor = pi.vendor THEN 1 WHEN sv.category_id = pi.category_id AND sv.vendor IS NULL THEN 2 WHEN sv.category_id IS NULL AND sv.vendor = pi.vendor THEN 3 WHEN sv.category_id IS NULL AND sv.vendor IS NULL THEN 4 ELSE 5 END as priority FROM product_info pi CROSS JOIN sales_velocity_config sv WHERE (sv.category_id = pi.category_id OR sv.category_id IS NULL) AND (sv.vendor = pi.vendor OR sv.vendor IS NULL) ), safety_options AS ( SELECT ss.*, CASE WHEN ss.category_id = pi.category_id AND ss.vendor = pi.vendor THEN 1 WHEN ss.category_id = pi.category_id AND ss.vendor IS NULL THEN 2 WHEN ss.category_id IS NULL AND ss.vendor = pi.vendor THEN 3 WHEN ss.category_id IS NULL AND ss.vendor IS NULL THEN 4 ELSE 5 END as priority FROM product_info pi CROSS JOIN safety_stock_config ss WHERE (ss.category_id = pi.category_id OR ss.category_id IS NULL) AND (ss.vendor = pi.vendor OR ss.vendor IS NULL) ) SELECT COALESCE( (SELECT critical_days FROM threshold_options ORDER BY priority LIMIT 1), 7 ) as critical_days, COALESCE( (SELECT reorder_days FROM threshold_options ORDER BY priority LIMIT 1), 14 ) as reorder_days, COALESCE( (SELECT overstock_days FROM threshold_options ORDER BY priority LIMIT 1), 90 ) as overstock_days, COALESCE( (SELECT low_stock_threshold FROM threshold_options ORDER BY priority LIMIT 1), 5 ) as low_stock_threshold, COALESCE( (SELECT daily_window_days FROM velocity_options ORDER BY priority LIMIT 1), 30 ) as daily_window_days, COALESCE( (SELECT weekly_window_days FROM velocity_options ORDER BY priority LIMIT 1), 7 ) as weekly_window_days, COALESCE( (SELECT monthly_window_days FROM velocity_options ORDER BY priority LIMIT 1), 90 ) as monthly_window_days, COALESCE( (SELECT coverage_days FROM safety_options ORDER BY priority LIMIT 1), 14 ) as safety_stock_days, COALESCE( (SELECT service_level FROM safety_options ORDER BY priority LIMIT 1), 95.0 ) as service_level `, [product.pid]); const config = configs[0]; // Calculate sales metrics const [salesMetrics] = await connection.query(` WITH sales_summary AS ( SELECT SUM(o.quantity) as total_quantity_sold, SUM((o.price - COALESCE(o.discount, 0)) * o.quantity) as total_revenue, SUM(COALESCE(p.cost_price, 0) * o.quantity) as total_cost, MAX(o.date) as last_sale_date, MIN(o.date) as first_sale_date, COUNT(DISTINCT o.order_number) as number_of_orders, AVG(o.quantity) as avg_quantity_per_order, SUM(CASE WHEN o.date >= DATE_SUB(CURDATE(), INTERVAL ? DAY) THEN o.quantity ELSE 0 END) as last_30_days_qty, CASE WHEN SUM(CASE WHEN o.date >= DATE_SUB(CURDATE(), INTERVAL ? DAY) THEN o.quantity ELSE 0 END) IS NULL THEN 0 ELSE SUM(CASE WHEN o.date >= DATE_SUB(CURDATE(), INTERVAL ? DAY) THEN o.quantity ELSE 0 END) END as rolling_weekly_avg, SUM(CASE WHEN o.date >= DATE_SUB(CURDATE(), INTERVAL ? DAY) THEN o.quantity ELSE 0 END) as last_month_qty FROM orders o JOIN products p ON o.pid = p.pid WHERE o.canceled = 0 AND o.pid = ? GROUP BY o.pid ) SELECT total_quantity_sold, total_revenue, total_cost, last_sale_date, first_sale_date, number_of_orders, avg_quantity_per_order, last_30_days_qty / ? as rolling_daily_avg, rolling_weekly_avg / ? as rolling_weekly_avg, last_month_qty / ? as rolling_monthly_avg FROM sales_summary `, [ config.daily_window_days, config.weekly_window_days, config.weekly_window_days, config.monthly_window_days, product.pid, config.daily_window_days, config.weekly_window_days, config.monthly_window_days ]); // Calculate purchase metrics const [purchaseMetrics] = await connection.query(` WITH recent_orders AS ( SELECT date, received_date, received, cost_price, DATEDIFF(received_date, date) as lead_time_days, ROW_NUMBER() OVER (ORDER BY date DESC) as order_rank FROM purchase_orders WHERE receiving_status >= 30 -- Partial or fully received AND pid = ? AND received > 0 AND received_date IS NOT NULL ), lead_time_orders AS ( SELECT * FROM recent_orders WHERE order_rank <= 5 OR date >= DATE_SUB(CURDATE(), INTERVAL 90 DAY) ) SELECT SUM(CASE WHEN received >= 0 THEN received ELSE 0 END) as total_quantity_purchased, SUM(CASE WHEN received >= 0 THEN cost_price * received ELSE 0 END) as total_cost, MAX(date) as last_purchase_date, MIN(received_date) as first_received_date, MAX(received_date) as last_received_date, AVG(lead_time_days) as avg_lead_time_days FROM lead_time_orders `, [product.pid]); // Get stock info const [stockInfo] = await connection.query(` SELECT p.stock_quantity, p.cost_price, p.created_at, p.replenishable, p.moq, p.notions_inv_count, p.date_last_sold, p.total_sold, DATEDIFF(CURDATE(), MIN(po.received_date)) as days_since_first_stock, DATEDIFF(CURDATE(), COALESCE(p.date_last_sold, CURDATE())) as days_since_last_sale, CASE WHEN EXISTS ( SELECT 1 FROM orders o WHERE o.pid = p.pid AND o.date >= DATE_SUB(CURDATE(), INTERVAL 30 DAY) AND o.canceled = false AND (SELECT SUM(quantity) FROM orders o2 WHERE o2.pid = p.pid AND o2.date >= o.date AND o2.canceled = false) = 0 ) THEN true ELSE false END as had_recent_stockout FROM products p LEFT JOIN purchase_orders po ON p.pid = po.pid AND po.receiving_status >= 30 -- Partial or fully received AND po.received > 0 WHERE p.pid = ? GROUP BY p.pid `, [product.pid]); // Calculate metrics const salesData = salesMetrics[0] || {}; const purchaseData = purchaseMetrics[0] || {}; const stockData = stockInfo[0] || {}; // Sales velocity metrics const daily_sales_avg = sanitizeValue(salesData.rolling_daily_avg) || 0; const weekly_sales_avg = sanitizeValue(salesData.rolling_weekly_avg) || 0; const monthly_sales_avg = sanitizeValue(salesData.rolling_monthly_avg) || 0; // Stock metrics const stock_quantity = sanitizeValue(stockData.stock_quantity) || 0; const days_of_inventory = daily_sales_avg > 0 ? Math.floor(stock_quantity / daily_sales_avg) : 999; const weeks_of_inventory = Math.floor(days_of_inventory / 7); // Calculate stock status const stock_status = calculateStockStatus( stock_quantity, config, daily_sales_avg, weekly_sales_avg, monthly_sales_avg ); // Calculate reorder quantities const reorder_quantities = calculateReorderQuantities( stock_quantity, stock_status, daily_sales_avg, sanitizeValue(purchaseData.avg_lead_time_days) || 0, config ); // Financial metrics const cost_price = sanitizeValue(stockData.cost_price) || 0; const inventory_value = stock_quantity * cost_price; const total_revenue = sanitizeValue(salesData.total_revenue) || 0; const total_cost = sanitizeValue(salesData.total_cost) || 0; const gross_profit = total_revenue - total_cost; const avg_margin_percent = total_revenue > 0 ? ((gross_profit / total_revenue) * 100) : 0; const gmroi = inventory_value > 0 ? (gross_profit / inventory_value) : 0; // Add to batch update with sanitized values metricsUpdates.push([ product.pid, sanitizeValue(daily_sales_avg), sanitizeValue(weekly_sales_avg), sanitizeValue(monthly_sales_avg), sanitizeValue(salesData.avg_quantity_per_order), sanitizeValue(salesData.number_of_orders), salesData.first_sale_date || null, salesData.last_sale_date || null, sanitizeValue(days_of_inventory), sanitizeValue(weeks_of_inventory), sanitizeValue(reorder_quantities.reorder_point), sanitizeValue(reorder_quantities.safety_stock), sanitizeValue(reorder_quantities.reorder_qty), sanitizeValue(reorder_quantities.overstocked_amt), sanitizeValue(avg_margin_percent), sanitizeValue(total_revenue), sanitizeValue(inventory_value), sanitizeValue(total_cost), sanitizeValue(gross_profit), sanitizeValue(gmroi), sanitizeValue(purchaseData.avg_lead_time_days), purchaseData.last_purchase_date || null, purchaseData.first_received_date || null, purchaseData.last_received_date || null, null, // abc_class - calculated separately stock_status, sanitizeValue(0), // turnover_rate - calculated separately sanitizeValue(purchaseData.avg_lead_time_days), sanitizeValue(config.target_days), stock_status === 'Critical' ? 'Warning' : 'Normal', null, // forecast_accuracy null, // forecast_bias null // last_forecast_date ]); } catch (err) { logError(err, `Failed processing product ${product.pid}`); continue; } } // Batch update metrics if (metricsUpdates.length > 0) { try { await connection.query(` INSERT INTO product_metrics ( pid, daily_sales_avg, weekly_sales_avg, monthly_sales_avg, avg_quantity_per_order, number_of_orders, first_sale_date, last_sale_date, days_of_inventory, weeks_of_inventory, reorder_point, safety_stock, reorder_qty, overstocked_amt, avg_margin_percent, total_revenue, inventory_value, cost_of_goods_sold, gross_profit, gmroi, avg_lead_time_days, last_purchase_date, first_received_date, last_received_date, abc_class, stock_status, turnover_rate, current_lead_time, target_lead_time, lead_time_status, forecast_accuracy, forecast_bias, last_forecast_date ) VALUES ? ON DUPLICATE KEY UPDATE daily_sales_avg = VALUES(daily_sales_avg), weekly_sales_avg = VALUES(weekly_sales_avg), monthly_sales_avg = VALUES(monthly_sales_avg), avg_quantity_per_order = VALUES(avg_quantity_per_order), number_of_orders = VALUES(number_of_orders), first_sale_date = VALUES(first_sale_date), last_sale_date = VALUES(last_sale_date), days_of_inventory = VALUES(days_of_inventory), weeks_of_inventory = VALUES(weeks_of_inventory), reorder_point = VALUES(reorder_point), safety_stock = VALUES(safety_stock), reorder_qty = VALUES(reorder_qty), overstocked_amt = VALUES(overstocked_amt), avg_margin_percent = VALUES(avg_margin_percent), total_revenue = VALUES(total_revenue), inventory_value = VALUES(inventory_value), cost_of_goods_sold = VALUES(cost_of_goods_sold), gross_profit = VALUES(gross_profit), gmroi = VALUES(gmroi), avg_lead_time_days = VALUES(avg_lead_time_days), last_purchase_date = VALUES(last_purchase_date), first_received_date = VALUES(first_received_date), last_received_date = VALUES(last_received_date), stock_status = VALUES(stock_status), turnover_rate = VALUES(turnover_rate), current_lead_time = VALUES(current_lead_time), target_lead_time = VALUES(target_lead_time), lead_time_status = VALUES(lead_time_status), last_calculated_at = CURRENT_TIMESTAMP `, [metricsUpdates]); } catch (err) { logError(err, 'Failed to update metrics batch'); throw err; } } } return processedCount; } finally { if (connection) { connection.release(); } } } function calculateStockStatus(stock, config, daily_sales_avg, weekly_sales_avg, monthly_sales_avg) { if (stock <= 0) { return 'Out of Stock'; } // Use the most appropriate sales average based on data quality let sales_avg = daily_sales_avg; if (sales_avg === 0) { sales_avg = weekly_sales_avg / 7; } if (sales_avg === 0) { sales_avg = monthly_sales_avg / 30; } if (sales_avg === 0) { return stock <= config.low_stock_threshold ? 'Low Stock' : 'In Stock'; } const days_of_stock = stock / sales_avg; if (days_of_stock <= config.critical_days) { return 'Critical'; } else if (days_of_stock <= config.reorder_days) { return 'Reorder'; } else if (days_of_stock > config.overstock_days) { return 'Overstocked'; } return 'Healthy'; } function calculateReorderQuantities(stock, stock_status, daily_sales_avg, avg_lead_time, config) { // Calculate safety stock based on service level and lead time const z_score = 1.96; // 95% service level const lead_time = avg_lead_time || config.target_days; const safety_stock = Math.ceil(daily_sales_avg * Math.sqrt(lead_time) * z_score); // Calculate reorder point const lead_time_demand = daily_sales_avg * lead_time; const reorder_point = Math.ceil(lead_time_demand + safety_stock); // Calculate reorder quantity using EOQ formula if we have the necessary data let reorder_qty = 0; if (daily_sales_avg > 0) { const annual_demand = daily_sales_avg * 365; const order_cost = 25; // Fixed cost per order const holding_cost_percent = 0.25; // 25% annual holding cost reorder_qty = Math.ceil(Math.sqrt((2 * annual_demand * order_cost) / holding_cost_percent)); } else { // If no sales data, use a basic calculation reorder_qty = Math.max(safety_stock, config.low_stock_threshold); } // Calculate overstocked amount const overstocked_amt = stock_status === 'Overstocked' ? stock - Math.ceil(daily_sales_avg * config.overstock_days) : 0; return { safety_stock, reorder_point, reorder_qty, overstocked_amt }; } module.exports = calculateProductMetrics;