Files
inventory/inventory-server/scripts/calculate-metrics.js

2110 lines
93 KiB
JavaScript

const mysql = require('mysql2/promise');
const path = require('path');
require('dotenv').config({ path: path.resolve(__dirname, '..', '.env') });
const fs = require('fs');
// Configuration flags
const SKIP_PRODUCT_METRICS = 0;
// Helper function to format elapsed time
function formatElapsedTime(startTime) {
const elapsed = Date.now() - startTime;
const seconds = Math.floor(elapsed / 1000);
const minutes = Math.floor(seconds / 60);
const hours = Math.floor(minutes / 60);
if (hours > 0) {
return `${hours}h ${minutes % 60}m`;
} else if (minutes > 0) {
return `${minutes}m ${seconds % 60}s`;
} else {
return `${seconds}s`;
}
}
// Helper function to estimate remaining time
function estimateRemaining(startTime, current, total) {
if (current === 0) return null;
const elapsed = Date.now() - startTime;
const rate = current / elapsed;
const remaining = (total - current) / rate;
const minutes = Math.floor(remaining / 60000);
const seconds = Math.floor((remaining % 60000) / 1000);
if (minutes > 0) {
return `${minutes}m ${seconds}s`;
} else {
return `${seconds}s`;
}
}
// Helper function to calculate rate
function calculateRate(startTime, current) {
const elapsed = (Date.now() - startTime) / 1000; // Convert to seconds
return elapsed > 0 ? Math.round(current / elapsed) : 0;
}
// Helper function to output progress
function outputProgress(data) {
// Save progress to file for resumption
saveProgress(data);
// Format as SSE event
const event = {
progress: data
};
// Always send to stdout for frontend
process.stdout.write(JSON.stringify(event) + '\n');
// Log significant events to disk
const isSignificant =
// Operation starts
(data.operation && !data.current) ||
// Operation completions and errors
data.status === 'complete' ||
data.status === 'error' ||
// Major phase changes
data.operation?.includes('Starting ABC classification') ||
data.operation?.includes('Starting time-based aggregates') ||
data.operation?.includes('Starting vendor metrics');
if (isSignificant) {
logImport(`${data.operation || 'Operation'}${data.message ? ': ' + data.message : ''}${data.error ? ' Error: ' + data.error : ''}${data.status ? ' Status: ' + data.status : ''}`);
}
}
// Set up logging
const LOG_DIR = path.join(__dirname, '../logs');
const ERROR_LOG = path.join(LOG_DIR, 'import-errors.log');
const IMPORT_LOG = path.join(LOG_DIR, 'import.log');
// Ensure log directory exists
if (!fs.existsSync(LOG_DIR)) {
fs.mkdirSync(LOG_DIR, { recursive: true });
}
// Helper function to log errors
function logError(error, context = '') {
const timestamp = new Date().toISOString();
const errorMessage = `[${timestamp}] ${context}\nError: ${error.message}\nStack: ${error.stack}\n\n`;
// Log to error file
fs.appendFileSync(ERROR_LOG, errorMessage);
// Also log to console
console.error(`\n${context}\nError: ${error.message}`);
}
// Helper function to log import progress
function logImport(message, isSignificant = true) {
const timestamp = new Date().toISOString();
const logMessage = `[${timestamp}] ${message}\n`;
fs.appendFileSync(IMPORT_LOG, logMessage);
}
// Database configuration
const dbConfig = {
host: process.env.DB_HOST,
user: process.env.DB_USER,
password: process.env.DB_PASSWORD,
database: process.env.DB_NAME,
waitForConnections: true,
connectionLimit: 10,
queueLimit: 0,
// Add performance optimizations
namedPlaceholders: true,
maxPreparedStatements: 256,
enableKeepAlive: true,
keepAliveInitialDelay: 0,
// Add memory optimizations
flags: [
'FOUND_ROWS',
'LONG_PASSWORD',
'PROTOCOL_41',
'TRANSACTIONS',
'SECURE_CONNECTION',
'MULTI_RESULTS',
'PS_MULTI_RESULTS',
'PLUGIN_AUTH',
'CONNECT_ATTRS',
'PLUGIN_AUTH_LENENC_CLIENT_DATA',
'SESSION_TRACK',
'MULTI_STATEMENTS'
]
};
// Add cancel handler
let isCancelled = false;
// Add status file handling for progress resumption
const STATUS_FILE = path.join(__dirname, '..', 'logs', 'metrics-status.json');
function saveProgress(progress) {
try {
fs.writeFileSync(STATUS_FILE, JSON.stringify({
...progress,
timestamp: Date.now()
}));
} catch (err) {
console.error('Failed to save progress:', err);
}
}
function clearProgress() {
try {
if (fs.existsSync(STATUS_FILE)) {
fs.unlinkSync(STATUS_FILE);
}
} catch (err) {
console.error('Failed to clear progress:', err);
}
}
function getProgress() {
try {
if (fs.existsSync(STATUS_FILE)) {
const progress = JSON.parse(fs.readFileSync(STATUS_FILE, 'utf8'));
// Check if the progress is still valid (less than 1 hour old)
if (progress.timestamp && Date.now() - progress.timestamp < 3600000) {
return progress;
} else {
// Clear old progress
clearProgress();
}
}
} catch (err) {
console.error('Failed to read progress:', err);
clearProgress();
}
return null;
}
function cancelCalculation() {
isCancelled = true;
clearProgress();
// Format as SSE event
const event = {
progress: {
status: 'cancelled',
operation: 'Calculation cancelled',
current: 0,
total: 0,
elapsed: null,
remaining: null,
rate: 0,
timestamp: Date.now()
}
};
process.stdout.write(JSON.stringify(event) + '\n');
process.exit(0);
}
// Handle SIGTERM signal for cancellation
process.on('SIGTERM', cancelCalculation);
// Calculate GMROI and other financial metrics
async function calculateFinancialMetrics(connection, startTime, totalProducts) {
outputProgress({
status: 'running',
operation: 'Calculating financial metrics',
current: Math.floor(totalProducts * 0.6),
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, Math.floor(totalProducts * 0.6), totalProducts),
rate: calculateRate(startTime, Math.floor(totalProducts * 0.6)),
percentage: '60'
});
await connection.query(`
UPDATE product_metrics pm
JOIN (
SELECT
p.product_id,
p.cost_price * p.stock_quantity as inventory_value,
SUM(o.quantity * o.price) as total_revenue,
SUM(o.quantity * p.cost_price) as cost_of_goods_sold,
SUM(o.quantity * (o.price - p.cost_price)) as gross_profit,
MIN(o.date) as first_sale_date,
MAX(o.date) as last_sale_date,
DATEDIFF(MAX(o.date), MIN(o.date)) + 1 as calculation_period_days
FROM products p
LEFT JOIN orders o ON p.product_id = o.product_id
WHERE o.canceled = false
AND DATE(o.date) >= DATE_SUB(CURDATE(), INTERVAL 12 MONTH)
GROUP BY p.product_id
) fin ON pm.product_id = fin.product_id
SET
pm.inventory_value = COALESCE(fin.inventory_value, 0),
pm.total_revenue = COALESCE(fin.total_revenue, 0),
pm.cost_of_goods_sold = COALESCE(fin.cost_of_goods_sold, 0),
pm.gross_profit = COALESCE(fin.gross_profit, 0),
pm.gmroi = CASE
WHEN COALESCE(fin.inventory_value, 0) > 0 AND fin.calculation_period_days > 0 THEN
(COALESCE(fin.gross_profit, 0) * (365.0 / fin.calculation_period_days)) / COALESCE(fin.inventory_value, 0)
ELSE 0
END
`);
// Update time-based aggregates with financial metrics
await connection.query(`
UPDATE product_time_aggregates pta
JOIN (
SELECT
p.product_id,
YEAR(o.date) as year,
MONTH(o.date) as month,
p.cost_price * p.stock_quantity as inventory_value,
SUM(o.quantity * (o.price - p.cost_price)) as gross_profit,
COUNT(DISTINCT DATE(o.date)) as days_in_period
FROM products p
LEFT JOIN orders o ON p.product_id = o.product_id
WHERE o.canceled = false
GROUP BY p.product_id, YEAR(o.date), MONTH(o.date)
) fin ON pta.product_id = fin.product_id
AND pta.year = fin.year
AND pta.month = fin.month
SET
pta.inventory_value = COALESCE(fin.inventory_value, 0),
pta.gmroi = CASE
WHEN COALESCE(fin.inventory_value, 0) > 0 AND fin.days_in_period > 0 THEN
(COALESCE(fin.gross_profit, 0) * (365.0 / fin.days_in_period)) / COALESCE(fin.inventory_value, 0)
ELSE 0
END
`);
}
// Calculate vendor metrics
async function calculateVendorMetrics(connection, startTime, totalProducts) {
outputProgress({
status: 'running',
operation: 'Calculating vendor metrics',
current: Math.floor(totalProducts * 0.7),
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, Math.floor(totalProducts * 0.7), totalProducts),
rate: calculateRate(startTime, Math.floor(totalProducts * 0.7)),
percentage: '70'
});
// First, ensure all vendors exist in vendor_details
await connection.query(`
INSERT IGNORE INTO vendor_details (vendor, status)
SELECT DISTINCT vendor, 'active' as status
FROM products
WHERE vendor IS NOT NULL
AND vendor NOT IN (SELECT vendor FROM vendor_details)
`);
// Calculate vendor performance metrics
await connection.query(`
INSERT INTO vendor_metrics (
vendor,
avg_lead_time_days,
on_time_delivery_rate,
order_fill_rate,
total_orders,
total_late_orders,
total_purchase_value,
avg_order_value,
active_products,
total_products,
total_revenue,
avg_margin_percent,
status
)
WITH vendor_orders AS (
SELECT
po.vendor,
AVG(DATEDIFF(po.received_date, po.date)) as avg_lead_time_days,
COUNT(*) as total_orders,
COUNT(CASE WHEN po.received_date > po.expected_date THEN 1 END) as total_late_orders,
SUM(po.cost_price * po.ordered) as total_purchase_value,
AVG(po.cost_price * po.ordered) as avg_order_value,
CASE
WHEN COUNT(*) > 0 THEN
(COUNT(CASE WHEN po.received = po.ordered THEN 1 END) * 100.0) / COUNT(*)
ELSE 0
END as order_fill_rate
FROM purchase_orders po
WHERE po.status = 'closed'
GROUP BY po.vendor
),
vendor_products AS (
SELECT
p.vendor,
COUNT(DISTINCT p.product_id) as total_products,
COUNT(DISTINCT CASE WHEN p.visible = true THEN p.product_id END) as active_products,
SUM(o.price * o.quantity) as total_revenue,
CASE
WHEN SUM(o.price * o.quantity) > 0 THEN
(SUM((o.price - p.cost_price) * o.quantity) * 100.0) / SUM(o.price * o.quantity)
ELSE 0
END as avg_margin_percent
FROM products p
LEFT JOIN orders o ON p.product_id = o.product_id AND o.canceled = false
GROUP BY p.vendor
)
SELECT
vd.vendor,
COALESCE(vo.avg_lead_time_days, 0) as avg_lead_time_days,
CASE
WHEN COALESCE(vo.total_orders, 0) > 0 THEN
((COALESCE(vo.total_orders, 0) - COALESCE(vo.total_late_orders, 0)) * 100.0) / COALESCE(vo.total_orders, 1)
ELSE 0
END as on_time_delivery_rate,
COALESCE(vo.order_fill_rate, 0) as order_fill_rate,
COALESCE(vo.total_orders, 0) as total_orders,
COALESCE(vo.total_late_orders, 0) as total_late_orders,
COALESCE(vo.total_purchase_value, 0) as total_purchase_value,
COALESCE(vo.avg_order_value, 0) as avg_order_value,
COALESCE(vp.active_products, 0) as active_products,
COALESCE(vp.total_products, 0) as total_products,
COALESCE(vp.total_revenue, 0) as total_revenue,
COALESCE(vp.avg_margin_percent, 0) as avg_margin_percent,
vd.status
FROM vendor_details vd
LEFT JOIN vendor_orders vo ON vd.vendor = vo.vendor
LEFT JOIN vendor_products vp ON vd.vendor = vp.vendor
ON DUPLICATE KEY UPDATE
avg_lead_time_days = VALUES(avg_lead_time_days),
on_time_delivery_rate = VALUES(on_time_delivery_rate),
order_fill_rate = VALUES(order_fill_rate),
total_orders = VALUES(total_orders),
total_late_orders = VALUES(total_late_orders),
total_purchase_value = VALUES(total_purchase_value),
avg_order_value = VALUES(avg_order_value),
active_products = VALUES(active_products),
total_products = VALUES(total_products),
total_revenue = VALUES(total_revenue),
avg_margin_percent = VALUES(avg_margin_percent),
status = VALUES(status),
last_calculated_at = CURRENT_TIMESTAMP
`);
// Calculate vendor time-based metrics
await connection.query(`
INSERT INTO vendor_time_metrics (
vendor,
year,
month,
total_orders,
late_orders,
avg_lead_time_days,
total_purchase_value,
total_revenue,
avg_margin_percent
)
WITH vendor_time_data AS (
SELECT
vd.vendor,
YEAR(po.date) as year,
MONTH(po.date) as month,
COUNT(DISTINCT po.po_id) as total_orders,
COUNT(DISTINCT CASE WHEN po.received_date > po.expected_date THEN po.po_id END) as late_orders,
AVG(DATEDIFF(po.received_date, po.date)) as avg_lead_time_days,
SUM(po.cost_price * po.ordered) as total_purchase_value,
SUM(o.price * o.quantity) as total_revenue,
CASE
WHEN SUM(o.price * o.quantity) > 0 THEN
(SUM((o.price - p.cost_price) * o.quantity) * 100.0) / SUM(o.price * o.quantity)
ELSE 0
END as avg_margin_percent
FROM vendor_details vd
LEFT JOIN products p ON vd.vendor = p.vendor
LEFT JOIN purchase_orders po ON p.product_id = po.product_id
LEFT JOIN orders o ON p.product_id = o.product_id AND o.canceled = false
WHERE po.date >= DATE_SUB(CURRENT_DATE, INTERVAL 12 MONTH)
GROUP BY vd.vendor, YEAR(po.date), MONTH(po.date)
)
SELECT
vendor,
year,
month,
COALESCE(total_orders, 0) as total_orders,
COALESCE(late_orders, 0) as late_orders,
COALESCE(avg_lead_time_days, 0) as avg_lead_time_days,
COALESCE(total_purchase_value, 0) as total_purchase_value,
COALESCE(total_revenue, 0) as total_revenue,
COALESCE(avg_margin_percent, 0) as avg_margin_percent
FROM vendor_time_data
ON DUPLICATE KEY UPDATE
total_orders = VALUES(total_orders),
late_orders = VALUES(late_orders),
avg_lead_time_days = VALUES(avg_lead_time_days),
total_purchase_value = VALUES(total_purchase_value),
total_revenue = VALUES(total_revenue),
avg_margin_percent = VALUES(avg_margin_percent)
`);
}
async function calculateCategoryMetrics(connection, startTime, totalProducts) {
outputProgress({
status: 'running',
operation: 'Calculating category metrics',
current: Math.floor(totalProducts * 0.85),
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, Math.floor(totalProducts * 0.85), totalProducts),
rate: calculateRate(startTime, Math.floor(totalProducts * 0.85)),
percentage: '85'
});
// Calculate category performance metrics
await connection.query(`
INSERT INTO category_metrics (
category_id,
product_count,
active_products,
total_value,
avg_margin,
turnover_rate,
growth_rate,
status
)
WITH category_sales AS (
SELECT
c.id as category_id,
COUNT(DISTINCT p.product_id) as product_count,
COUNT(DISTINCT CASE WHEN p.visible = true THEN p.product_id END) as active_products,
SUM(p.stock_quantity * p.cost_price) as total_value,
CASE
WHEN SUM(o.price * o.quantity) > 0
THEN (SUM((o.price - p.cost_price) * o.quantity) * 100.0) / SUM(o.price * o.quantity)
ELSE 0
END as avg_margin,
CASE
WHEN AVG(GREATEST(p.stock_quantity, 0)) >= 0.01
THEN LEAST(
SUM(CASE
WHEN o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 1 YEAR)
THEN COALESCE(o.quantity, 0)
ELSE 0
END) /
GREATEST(
AVG(GREATEST(p.stock_quantity, 0)),
1.0
),
999.99
)
ELSE 0
END as turnover_rate,
-- Current period (last 3 months)
SUM(CASE
WHEN o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 3 MONTH)
THEN COALESCE(o.quantity * o.price, 0)
ELSE 0
END) as current_period_sales,
-- Previous year same period
SUM(CASE
WHEN o.date BETWEEN DATE_SUB(CURRENT_DATE, INTERVAL 15 MONTH) AND DATE_SUB(CURRENT_DATE, INTERVAL 12 MONTH)
THEN COALESCE(o.quantity * o.price, 0)
ELSE 0
END) as previous_year_period_sales,
c.status
FROM categories c
LEFT JOIN product_categories pc ON c.id = pc.category_id
LEFT JOIN products p ON pc.product_id = p.product_id
LEFT JOIN orders o ON p.product_id = o.product_id AND o.canceled = false
GROUP BY c.id, c.status
)
SELECT
category_id,
product_count,
active_products,
total_value,
COALESCE(avg_margin, 0) as avg_margin,
COALESCE(turnover_rate, 0) as turnover_rate,
-- Enhanced YoY growth rate calculation
CASE
WHEN previous_year_period_sales = 0 AND current_period_sales > 0 THEN 100.0
WHEN previous_year_period_sales = 0 THEN 0.0
ELSE LEAST(
GREATEST(
((current_period_sales - previous_year_period_sales) /
NULLIF(previous_year_period_sales, 0)) * 100.0,
-100.0
),
999.99
)
END as growth_rate,
status
FROM category_sales
ON DUPLICATE KEY UPDATE
product_count = VALUES(product_count),
active_products = VALUES(active_products),
total_value = VALUES(total_value),
avg_margin = VALUES(avg_margin),
turnover_rate = VALUES(turnover_rate),
growth_rate = VALUES(growth_rate),
status = VALUES(status),
last_calculated_at = CURRENT_TIMESTAMP
`);
// Calculate category time-based metrics
await connection.query(`
INSERT INTO category_time_metrics (
category_id,
year,
month,
product_count,
active_products,
total_value,
total_revenue,
avg_margin,
turnover_rate
)
SELECT
c.id as category_id,
YEAR(o.date) as year,
MONTH(o.date) as month,
COUNT(DISTINCT p.product_id) as product_count,
COUNT(DISTINCT CASE WHEN p.visible = true THEN p.product_id END) as active_products,
SUM(p.stock_quantity * p.cost_price) as total_value,
SUM(o.price * o.quantity) as total_revenue,
CASE
WHEN SUM(o.price * o.quantity) > 0
THEN (SUM((o.price - p.cost_price) * o.quantity) * 100.0) / SUM(o.price * o.quantity)
ELSE 0
END as avg_margin,
CASE
WHEN AVG(p.stock_quantity) > 0
THEN SUM(o.quantity) / AVG(p.stock_quantity)
ELSE 0
END as turnover_rate
FROM categories c
LEFT JOIN product_categories pc ON c.id = pc.category_id
LEFT JOIN products p ON pc.product_id = p.product_id
LEFT JOIN orders o ON p.product_id = o.product_id AND o.canceled = false
WHERE o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 12 MONTH)
GROUP BY c.id, YEAR(o.date), MONTH(o.date)
ON DUPLICATE KEY UPDATE
product_count = VALUES(product_count),
active_products = VALUES(active_products),
total_value = VALUES(total_value),
total_revenue = VALUES(total_revenue),
avg_margin = VALUES(avg_margin),
turnover_rate = VALUES(turnover_rate)
`);
}
// Calculate turnover rate metrics
async function calculateTurnoverMetrics(connection, startTime, totalProducts) {
outputProgress({
status: 'running',
operation: 'Calculating turnover metrics',
current: Math.floor(totalProducts * 0.75),
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, Math.floor(totalProducts * 0.75), totalProducts),
rate: calculateRate(startTime, Math.floor(totalProducts * 0.75)),
percentage: '75'
});
await connection.query(`
WITH product_turnover AS (
SELECT
p.product_id,
p.vendor,
pc.category_id,
COALESCE(
(SELECT calculation_period_days
FROM turnover_config tc
WHERE tc.category_id = pc.category_id
AND tc.vendor = p.vendor
LIMIT 1),
COALESCE(
(SELECT calculation_period_days
FROM turnover_config tc
WHERE tc.category_id = pc.category_id
AND tc.vendor IS NULL
LIMIT 1),
COALESCE(
(SELECT calculation_period_days
FROM turnover_config tc
WHERE tc.category_id IS NULL
AND tc.vendor = p.vendor
LIMIT 1),
(SELECT calculation_period_days
FROM turnover_config
WHERE category_id IS NULL
AND vendor IS NULL
LIMIT 1)
)
)
) as calculation_period_days,
-- Calculate average daily sales over the calculation period
SUM(o.quantity) / GREATEST(DATEDIFF(CURDATE(), DATE_SUB(CURDATE(), INTERVAL 30 DAY)), 1) as avg_daily_sales,
-- Calculate average stock level, excluding zero stock periods
AVG(CASE WHEN p.stock_quantity > 0 THEN p.stock_quantity ELSE NULL END) as avg_stock_level
FROM products p
LEFT JOIN product_categories pc ON p.product_id = pc.product_id
LEFT JOIN orders o ON p.product_id = o.product_id
WHERE o.date >= DATE_SUB(CURDATE(), INTERVAL 30 DAY)
AND o.canceled = 0
GROUP BY p.product_id, p.vendor, pc.category_id
)
UPDATE product_metrics pm
JOIN product_turnover pt ON pm.product_id = pt.product_id
SET
pm.turnover_rate = CASE
WHEN pt.avg_stock_level > 0 AND pt.avg_daily_sales > 0 THEN
-- Calculate annualized turnover rate
LEAST(
(pt.avg_daily_sales * 365) / GREATEST(pt.avg_stock_level, 1),
999999.999
)
ELSE 0
END,
pm.last_calculated_at = NOW()
`);
}
// Enhance lead time calculations
async function calculateLeadTimeMetrics(connection, startTime, totalProducts) {
outputProgress({
status: 'running',
operation: 'Calculating lead time metrics',
current: Math.floor(totalProducts * 0.8),
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, Math.floor(totalProducts * 0.8), totalProducts),
rate: calculateRate(startTime, Math.floor(totalProducts * 0.8)),
percentage: '80'
});
await connection.query(`
WITH lead_time_stats AS (
SELECT
p.product_id,
p.vendor,
pc.category_id,
AVG(DATEDIFF(po.received_date, po.date)) as current_lead_time,
(
SELECT target_days
FROM lead_time_thresholds lt
WHERE lt.category_id = pc.category_id
AND lt.vendor = p.vendor
LIMIT 1
) as target_lead_time_cat_vendor,
(
SELECT target_days
FROM lead_time_thresholds lt
WHERE lt.category_id = pc.category_id
AND lt.vendor IS NULL
LIMIT 1
) as target_lead_time_cat,
(
SELECT target_days
FROM lead_time_thresholds lt
WHERE lt.category_id IS NULL
AND lt.vendor = p.vendor
LIMIT 1
) as target_lead_time_vendor,
(
SELECT target_days
FROM lead_time_thresholds
WHERE category_id IS NULL
AND vendor IS NULL
LIMIT 1
) as target_lead_time_default,
(
SELECT warning_days
FROM lead_time_thresholds lt
WHERE lt.category_id = pc.category_id
AND lt.vendor = p.vendor
LIMIT 1
) as warning_lead_time_cat_vendor,
(
SELECT warning_days
FROM lead_time_thresholds lt
WHERE lt.category_id = pc.category_id
AND lt.vendor IS NULL
LIMIT 1
) as warning_lead_time_cat,
(
SELECT warning_days
FROM lead_time_thresholds lt
WHERE lt.category_id IS NULL
AND lt.vendor = p.vendor
LIMIT 1
) as warning_lead_time_vendor,
(
SELECT warning_days
FROM lead_time_thresholds
WHERE category_id IS NULL
AND vendor IS NULL
LIMIT 1
) as warning_lead_time_default
FROM products p
LEFT JOIN product_categories pc ON p.product_id = pc.product_id
LEFT JOIN purchase_orders po ON p.product_id = po.product_id
WHERE po.status = 'completed'
AND po.received_date IS NOT NULL
AND po.date >= DATE_SUB(CURDATE(), INTERVAL 90 DAY)
GROUP BY p.product_id, p.vendor, pc.category_id
),
lead_time_final AS (
SELECT
product_id,
current_lead_time,
COALESCE(
target_lead_time_cat_vendor,
target_lead_time_cat,
target_lead_time_vendor,
target_lead_time_default,
14
) as target_lead_time,
COALESCE(
warning_lead_time_cat_vendor,
warning_lead_time_cat,
warning_lead_time_vendor,
warning_lead_time_default,
21
) as warning_lead_time
FROM lead_time_stats
)
UPDATE product_metrics pm
JOIN lead_time_final lt ON pm.product_id = lt.product_id
SET
pm.current_lead_time = lt.current_lead_time,
pm.target_lead_time = lt.target_lead_time,
pm.lead_time_status = CASE
WHEN lt.current_lead_time <= lt.target_lead_time THEN 'On Target'
WHEN lt.current_lead_time <= lt.warning_lead_time THEN 'Warning'
ELSE 'Critical'
END,
pm.last_calculated_at = NOW()
`);
}
// Add new function for category sales metrics
async function calculateCategorySalesMetrics(connection, startTime, totalProducts) {
outputProgress({
status: 'running',
operation: 'Calculating category sales metrics',
current: Math.floor(totalProducts * 0.9),
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, Math.floor(totalProducts * 0.9), totalProducts),
rate: calculateRate(startTime, Math.floor(totalProducts * 0.9)),
percentage: '90'
});
await connection.query(`
INSERT INTO category_sales_metrics (
category_id,
brand,
period_start,
period_end,
avg_daily_sales,
total_sold,
num_products,
avg_price,
last_calculated_at
)
WITH date_ranges AS (
SELECT
DATE_SUB(CURDATE(), INTERVAL 30 DAY) as period_start,
CURDATE() as period_end
UNION ALL
SELECT
DATE_SUB(CURDATE(), INTERVAL 90 DAY),
CURDATE()
UNION ALL
SELECT
DATE_SUB(CURDATE(), INTERVAL 180 DAY),
CURDATE()
UNION ALL
SELECT
DATE_SUB(CURDATE(), INTERVAL 365 DAY),
CURDATE()
),
category_metrics AS (
SELECT
c.id as category_id,
p.brand,
dr.period_start,
dr.period_end,
COUNT(DISTINCT p.product_id) as num_products,
COALESCE(SUM(o.quantity), 0) / DATEDIFF(dr.period_end, dr.period_start) as avg_daily_sales,
COALESCE(SUM(o.quantity), 0) as total_sold,
COALESCE(AVG(o.price), 0) as avg_price
FROM categories c
JOIN product_categories pc ON c.id = pc.category_id
JOIN products p ON pc.product_id = p.product_id
CROSS JOIN date_ranges dr
LEFT JOIN orders o ON p.product_id = o.product_id
AND o.date BETWEEN dr.period_start AND dr.period_end
AND o.canceled = false
GROUP BY c.id, p.brand, dr.period_start, dr.period_end
)
SELECT
category_id,
brand,
period_start,
period_end,
avg_daily_sales,
total_sold,
num_products,
avg_price,
NOW() as last_calculated_at
FROM category_metrics
ON DUPLICATE KEY UPDATE
avg_daily_sales = VALUES(avg_daily_sales),
total_sold = VALUES(total_sold),
num_products = VALUES(num_products),
avg_price = VALUES(avg_price),
last_calculated_at = NOW()
`);
}
// Add new function for safety stock calculation
async function calculateSafetyStock(connection, startTime, totalProducts) {
outputProgress({
status: 'running',
operation: 'Calculating safety stock levels',
current: Math.floor(totalProducts * 0.7),
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, Math.floor(totalProducts * 0.7), totalProducts),
rate: calculateRate(startTime, Math.floor(totalProducts * 0.7)),
percentage: '70'
});
await connection.query(`
WITH daily_sales AS (
SELECT
o.product_id,
DATE(o.date) as sale_date,
SUM(o.quantity) as daily_quantity
FROM orders o
WHERE o.canceled = false
AND o.date >= DATE_SUB(CURDATE(), INTERVAL 90 DAY)
GROUP BY o.product_id, DATE(o.date)
),
sales_stats AS (
SELECT
ds.product_id,
AVG(ds.daily_quantity) as avg_daily_sales,
STDDEV_SAMP(ds.daily_quantity) as daily_sales_stddev,
COUNT(DISTINCT ds.sale_date) as days_with_sales
FROM daily_sales ds
GROUP BY ds.product_id
),
product_config AS (
SELECT
p.product_id,
p.vendor,
pc.category_id,
COALESCE(
(SELECT service_level
FROM safety_stock_config sc
WHERE sc.category_id = pc.category_id
AND sc.vendor = p.vendor
LIMIT 1),
COALESCE(
(SELECT service_level
FROM safety_stock_config sc
WHERE sc.category_id = pc.category_id
AND sc.vendor IS NULL
LIMIT 1),
COALESCE(
(SELECT service_level
FROM safety_stock_config sc
WHERE sc.category_id IS NULL
AND sc.vendor = p.vendor
LIMIT 1),
(SELECT service_level
FROM safety_stock_config
WHERE category_id IS NULL
AND vendor IS NULL
LIMIT 1)
)
)
) as service_level,
COALESCE(
(SELECT coverage_days
FROM safety_stock_config sc
WHERE sc.category_id = pc.category_id
AND sc.vendor = p.vendor
LIMIT 1),
COALESCE(
(SELECT coverage_days
FROM safety_stock_config sc
WHERE sc.category_id = pc.category_id
AND sc.vendor IS NULL
LIMIT 1),
COALESCE(
(SELECT coverage_days
FROM safety_stock_config sc
WHERE sc.category_id IS NULL
AND sc.vendor = p.vendor
LIMIT 1),
(SELECT coverage_days
FROM safety_stock_config
WHERE category_id IS NULL
AND vendor IS NULL
LIMIT 1)
)
)
) as coverage_days
FROM products p
LEFT JOIN product_categories pc ON p.product_id = pc.product_id
)
UPDATE product_metrics pm
JOIN sales_stats ss ON pm.product_id = ss.product_id
JOIN product_config pc ON pm.product_id = pc.product_id
SET pm.safety_stock = GREATEST(1,
CEIL(
ss.avg_daily_sales * pc.coverage_days *
(1 + (
COALESCE(ss.daily_sales_stddev, 0) *
CASE
WHEN pc.service_level >= 99.9 THEN 3.1
WHEN pc.service_level >= 99 THEN 2.33
WHEN pc.service_level >= 95 THEN 1.65
WHEN pc.service_level >= 90 THEN 1.29
ELSE 1
END
))
)
),
pm.last_calculated_at = NOW()
WHERE ss.days_with_sales > 0
`);
}
// Add new function for brand metrics calculation
async function calculateBrandMetrics(connection, startTime, totalProducts) {
outputProgress({
status: 'running',
operation: 'Calculating brand metrics',
current: Math.floor(totalProducts * 0.95),
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, Math.floor(totalProducts * 0.95), totalProducts),
rate: calculateRate(startTime, Math.floor(totalProducts * 0.95)),
percentage: '95'
});
// Calculate brand metrics
await connection.query(`
INSERT INTO brand_metrics (
brand,
product_count,
active_products,
total_stock_units,
total_stock_cost,
total_stock_retail,
total_revenue,
avg_margin,
growth_rate
)
WITH brand_data AS (
SELECT
p.brand,
COUNT(DISTINCT p.product_id) as product_count,
COUNT(DISTINCT CASE WHEN p.visible = true THEN p.product_id END) as active_products,
SUM(p.stock_quantity) as total_stock_units,
SUM(p.stock_quantity * p.cost_price) as total_stock_cost,
SUM(p.stock_quantity * p.price) as total_stock_retail,
SUM(o.price * o.quantity) as total_revenue,
CASE
WHEN SUM(o.price * o.quantity) > 0 THEN
(SUM((o.price - p.cost_price) * o.quantity) * 100.0) / SUM(o.price * o.quantity)
ELSE 0
END as avg_margin,
-- Current period (last 3 months)
SUM(CASE
WHEN o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 3 MONTH)
THEN COALESCE(o.quantity * o.price, 0)
ELSE 0
END) as current_period_sales,
-- Previous year same period
SUM(CASE
WHEN o.date BETWEEN DATE_SUB(CURRENT_DATE, INTERVAL 15 MONTH) AND DATE_SUB(CURRENT_DATE, INTERVAL 12 MONTH)
THEN COALESCE(o.quantity * o.price, 0)
ELSE 0
END) as previous_year_period_sales
FROM products p
LEFT JOIN orders o ON p.product_id = o.product_id AND o.canceled = false
WHERE p.brand IS NOT NULL
GROUP BY p.brand
)
SELECT
brand,
product_count,
active_products,
total_stock_units,
total_stock_cost,
total_stock_retail,
total_revenue,
avg_margin,
CASE
WHEN previous_year_period_sales = 0 AND current_period_sales > 0 THEN 100.0
WHEN previous_year_period_sales = 0 THEN 0.0
ELSE LEAST(
GREATEST(
((current_period_sales - previous_year_period_sales) /
NULLIF(previous_year_period_sales, 0)) * 100.0,
-100.0
),
999.99
)
END as growth_rate
FROM brand_data
ON DUPLICATE KEY UPDATE
product_count = VALUES(product_count),
active_products = VALUES(active_products),
total_stock_units = VALUES(total_stock_units),
total_stock_cost = VALUES(total_stock_cost),
total_stock_retail = VALUES(total_stock_retail),
total_revenue = VALUES(total_revenue),
avg_margin = VALUES(avg_margin),
growth_rate = VALUES(growth_rate),
last_calculated_at = CURRENT_TIMESTAMP
`);
// Calculate brand time-based metrics
await connection.query(`
INSERT INTO brand_time_metrics (
brand,
year,
month,
product_count,
active_products,
total_stock_units,
total_stock_cost,
total_stock_retail,
total_revenue,
avg_margin
)
SELECT
p.brand,
YEAR(o.date) as year,
MONTH(o.date) as month,
COUNT(DISTINCT p.product_id) as product_count,
COUNT(DISTINCT CASE WHEN p.visible = true THEN p.product_id END) as active_products,
SUM(p.stock_quantity) as total_stock_units,
SUM(p.stock_quantity * p.cost_price) as total_stock_cost,
SUM(p.stock_quantity * p.price) as total_stock_retail,
SUM(o.price * o.quantity) as total_revenue,
CASE
WHEN SUM(o.price * o.quantity) > 0 THEN
(SUM((o.price - p.cost_price) * o.quantity) * 100.0) / SUM(o.price * o.quantity)
ELSE 0
END as avg_margin
FROM products p
LEFT JOIN orders o ON p.product_id = o.product_id AND o.canceled = false
WHERE p.brand IS NOT NULL
AND o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 12 MONTH)
GROUP BY p.brand, YEAR(o.date), MONTH(o.date)
ON DUPLICATE KEY UPDATE
product_count = VALUES(product_count),
active_products = VALUES(active_products),
total_stock_units = VALUES(total_stock_units),
total_stock_cost = VALUES(total_stock_cost),
total_stock_retail = VALUES(total_stock_retail),
total_revenue = VALUES(total_revenue),
avg_margin = VALUES(avg_margin)
`);
}
// Add new function for sales forecast calculation
async function calculateSalesForecasts(connection, startTime, totalProducts) {
outputProgress({
status: 'running',
operation: 'Calculating sales forecasts',
current: Math.floor(totalProducts * 0.98),
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, Math.floor(totalProducts * 0.98), totalProducts),
rate: calculateRate(startTime, Math.floor(totalProducts * 0.98)),
percentage: '98'
});
// Calculate product-level forecasts
await connection.query(`
INSERT INTO sales_forecasts (
product_id,
forecast_date,
forecast_units,
forecast_revenue,
confidence_level,
last_calculated_at
)
WITH daily_sales AS (
SELECT
o.product_id,
DATE(o.date) as sale_date,
SUM(o.quantity) as daily_quantity,
SUM(o.price * o.quantity) as daily_revenue
FROM orders o
WHERE o.canceled = false
AND o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 90 DAY)
GROUP BY o.product_id, DATE(o.date)
),
forecast_dates AS (
SELECT
DATE_ADD(CURRENT_DATE, INTERVAL n DAY) as forecast_date
FROM (
SELECT 0 as n UNION SELECT 1 UNION SELECT 2 UNION SELECT 3 UNION SELECT 4 UNION
SELECT 5 UNION SELECT 6 UNION SELECT 7 UNION SELECT 14 UNION SELECT 30 UNION
SELECT 60 UNION SELECT 90
) numbers
),
product_stats AS (
SELECT
ds.product_id,
AVG(ds.daily_quantity) as avg_daily_quantity,
STDDEV_SAMP(ds.daily_quantity) as std_daily_quantity,
AVG(ds.daily_revenue) as avg_daily_revenue,
STDDEV_SAMP(ds.daily_revenue) as std_daily_revenue,
COUNT(*) as data_points
FROM daily_sales ds
GROUP BY ds.product_id
)
SELECT
ps.product_id,
fd.forecast_date,
GREATEST(0,
ps.avg_daily_quantity *
(1 + COALESCE(
(SELECT seasonality_factor
FROM sales_seasonality
WHERE MONTH(fd.forecast_date) = month
LIMIT 1),
0
))
) as forecast_units,
GREATEST(0,
ps.avg_daily_revenue *
(1 + COALESCE(
(SELECT seasonality_factor
FROM sales_seasonality
WHERE MONTH(fd.forecast_date) = month
LIMIT 1),
0
))
) as forecast_revenue,
CASE
WHEN ps.data_points >= 60 THEN 90
WHEN ps.data_points >= 30 THEN 80
WHEN ps.data_points >= 14 THEN 70
ELSE 60
END as confidence_level,
NOW() as last_calculated_at
FROM product_stats ps
CROSS JOIN forecast_dates fd
WHERE ps.avg_daily_quantity > 0
ON DUPLICATE KEY UPDATE
forecast_units = VALUES(forecast_units),
forecast_revenue = VALUES(forecast_revenue),
confidence_level = VALUES(confidence_level),
last_calculated_at = NOW()
`);
// Calculate category-level forecasts
await connection.query(`
INSERT INTO category_forecasts (
category_id,
forecast_date,
forecast_units,
forecast_revenue,
confidence_level,
last_calculated_at
)
WITH category_daily_sales AS (
SELECT
pc.category_id,
DATE(o.date) as sale_date,
SUM(o.quantity) as daily_quantity,
SUM(o.price * o.quantity) as daily_revenue
FROM orders o
JOIN product_categories pc ON o.product_id = pc.product_id
WHERE o.canceled = false
AND o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 90 DAY)
GROUP BY pc.category_id, DATE(o.date)
),
forecast_dates AS (
SELECT
DATE_ADD(CURRENT_DATE, INTERVAL n DAY) as forecast_date
FROM (
SELECT 0 as n UNION SELECT 1 UNION SELECT 2 UNION SELECT 3 UNION SELECT 4 UNION
SELECT 5 UNION SELECT 6 UNION SELECT 7 UNION SELECT 14 UNION SELECT 30 UNION
SELECT 60 UNION SELECT 90
) numbers
),
category_stats AS (
SELECT
cds.category_id,
AVG(cds.daily_quantity) as avg_daily_quantity,
STDDEV_SAMP(cds.daily_quantity) as std_daily_quantity,
AVG(cds.daily_revenue) as avg_daily_revenue,
STDDEV_SAMP(cds.daily_revenue) as std_daily_revenue,
COUNT(*) as data_points
FROM category_daily_sales cds
GROUP BY cds.category_id
)
SELECT
cs.category_id,
fd.forecast_date,
GREATEST(0,
cs.avg_daily_quantity *
(1 + COALESCE(
(SELECT seasonality_factor
FROM sales_seasonality
WHERE MONTH(fd.forecast_date) = month
LIMIT 1),
0
))
) as forecast_units,
GREATEST(0,
cs.avg_daily_revenue *
(1 + COALESCE(
(SELECT seasonality_factor
FROM sales_seasonality
WHERE MONTH(fd.forecast_date) = month
LIMIT 1),
0
))
) as forecast_revenue,
CASE
WHEN cs.data_points >= 60 THEN 90
WHEN cs.data_points >= 30 THEN 80
WHEN cs.data_points >= 14 THEN 70
ELSE 60
END as confidence_level,
NOW() as last_calculated_at
FROM category_stats cs
CROSS JOIN forecast_dates fd
WHERE cs.avg_daily_quantity > 0
ON DUPLICATE KEY UPDATE
forecast_units = VALUES(forecast_units),
forecast_revenue = VALUES(forecast_revenue),
confidence_level = VALUES(confidence_level),
last_calculated_at = NOW()
`);
}
// Update the main calculation function to include the new metrics
async function calculateMetrics() {
let pool;
const startTime = Date.now();
let processedCount = 0;
let totalProducts = 0;
try {
isCancelled = false;
pool = mysql.createPool(dbConfig);
const connection = await pool.getConnection();
try {
outputProgress({
status: 'running',
operation: 'Starting metrics calculation',
current: 0,
total: 100,
elapsed: '0s',
remaining: 'Calculating...',
rate: 0,
percentage: '0'
});
// Get total number of products
const [countResult] = await connection.query('SELECT COUNT(*) as total FROM products')
.catch(err => {
logError(err, 'Failed to count products');
throw err;
});
totalProducts = countResult[0].total;
if (!SKIP_PRODUCT_METRICS) {
// Initial progress with percentage
outputProgress({
status: 'running',
operation: 'Processing sales and stock metrics',
current: processedCount,
total: totalProducts,
elapsed: '0s',
remaining: 'Calculating...',
rate: 0,
percentage: '0'
});
// Process in batches of 250
const batchSize = 250;
for (let offset = 0; offset < totalProducts; offset += batchSize) {
if (isCancelled) {
throw new Error('Operation cancelled');
}
const [products] = await connection.query('SELECT product_id, vendor FROM products LIMIT ? OFFSET ?', [batchSize, offset])
.catch(err => {
logError(err, `Failed to fetch products batch at offset ${offset}`);
throw err;
});
processedCount += products.length;
// Update progress after each batch
outputProgress({
status: 'running',
operation: 'Processing products',
current: processedCount,
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
});
// Process the batch
const metricsUpdates = [];
for (const product of products) {
try {
// Get configuration values for this product
const [configs] = await connection.query(`
WITH product_info AS (
SELECT
p.product_id,
p.vendor,
pc.category_id
FROM products p
LEFT JOIN product_categories pc ON p.product_id = pc.product_id
WHERE p.product_id = ?
),
threshold_options AS (
SELECT
st.*,
CASE
WHEN st.category_id = pi.category_id AND st.vendor = pi.vendor THEN 1 -- Category + vendor match
WHEN st.category_id = pi.category_id AND st.vendor IS NULL THEN 2 -- Category match
WHEN st.category_id IS NULL AND st.vendor = pi.vendor THEN 3 -- Vendor match
WHEN st.category_id IS NULL AND st.vendor IS NULL THEN 4 -- Default
ELSE 5
END as priority
FROM product_info pi
CROSS JOIN stock_thresholds st
WHERE (st.category_id = pi.category_id OR st.category_id IS NULL)
AND (st.vendor = pi.vendor OR st.vendor IS NULL)
),
velocity_options AS (
SELECT
sv.*,
CASE
WHEN sv.category_id = pi.category_id AND sv.vendor = pi.vendor THEN 1
WHEN sv.category_id = pi.category_id AND sv.vendor IS NULL THEN 2
WHEN sv.category_id IS NULL AND sv.vendor = pi.vendor THEN 3
WHEN sv.category_id IS NULL AND sv.vendor IS NULL THEN 4
ELSE 5
END as priority
FROM product_info pi
CROSS JOIN sales_velocity_config sv
WHERE (sv.category_id = pi.category_id OR sv.category_id IS NULL)
AND (sv.vendor = pi.vendor OR sv.vendor IS NULL)
),
safety_options AS (
SELECT
ss.*,
CASE
WHEN ss.category_id = pi.category_id AND ss.vendor = pi.vendor THEN 1
WHEN ss.category_id = pi.category_id AND ss.vendor IS NULL THEN 2
WHEN ss.category_id IS NULL AND ss.vendor = pi.vendor THEN 3
WHEN ss.category_id IS NULL AND ss.vendor IS NULL THEN 4
ELSE 5
END as priority
FROM product_info pi
CROSS JOIN safety_stock_config ss
WHERE (ss.category_id = pi.category_id OR ss.category_id IS NULL)
AND (ss.vendor = pi.vendor OR ss.vendor IS NULL)
)
SELECT
-- Stock thresholds
COALESCE(
(SELECT critical_days
FROM threshold_options
ORDER BY priority LIMIT 1),
7
) as critical_days,
COALESCE(
(SELECT reorder_days
FROM threshold_options
ORDER BY priority LIMIT 1),
14
) as reorder_days,
COALESCE(
(SELECT overstock_days
FROM threshold_options
ORDER BY priority LIMIT 1),
90
) as overstock_days,
COALESCE(
(SELECT low_stock_threshold
FROM threshold_options
ORDER BY priority LIMIT 1),
5
) as low_stock_threshold,
-- Sales velocity windows
COALESCE(
(SELECT daily_window_days
FROM velocity_options
ORDER BY priority LIMIT 1),
30
) as daily_window_days,
COALESCE(
(SELECT weekly_window_days
FROM velocity_options
ORDER BY priority LIMIT 1),
7
) as weekly_window_days,
COALESCE(
(SELECT monthly_window_days
FROM velocity_options
ORDER BY priority LIMIT 1),
90
) as monthly_window_days,
-- Safety stock config
COALESCE(
(SELECT coverage_days
FROM safety_options
ORDER BY priority LIMIT 1),
14
) as safety_stock_days,
COALESCE(
(SELECT service_level
FROM safety_options
ORDER BY priority LIMIT 1),
95.0
) as service_level,
-- ABC Classification
(SELECT a_threshold FROM abc_classification_config WHERE id = 1) as abc_a_threshold,
(SELECT b_threshold FROM abc_classification_config WHERE id = 1) as abc_b_threshold,
(SELECT classification_period_days FROM abc_classification_config WHERE id = 1) as abc_period_days
`, [product.product_id]);
const config = configs[0] || {
critical_days: 7,
reorder_days: 14,
overstock_days: 90,
low_stock_threshold: 5,
daily_window_days: 30,
weekly_window_days: 7,
monthly_window_days: 90,
safety_stock_days: 14,
service_level: 95.0,
abc_a_threshold: 20.0,
abc_b_threshold: 50.0,
abc_period_days: 90
};
// Calculate sales metrics with trends using configured windows
const [salesMetrics] = await connection.query(`
WITH sales_summary AS (
SELECT
SUM(o.quantity) as total_quantity_sold,
SUM((o.price - COALESCE(o.discount, 0)) * o.quantity) as total_revenue,
SUM(COALESCE(p.cost_price, 0) * o.quantity) as total_cost,
MAX(o.date) as last_sale_date,
MIN(o.date) as first_sale_date,
COUNT(DISTINCT o.order_number) as number_of_orders,
AVG(o.quantity) as avg_quantity_per_order,
-- Calculate rolling averages using configured windows
SUM(CASE WHEN o.date >= DATE_SUB(CURDATE(), INTERVAL ? DAY) THEN o.quantity ELSE 0 END) as last_30_days_qty,
CASE
WHEN SUM(CASE WHEN o.date >= DATE_SUB(CURDATE(), INTERVAL ? DAY) THEN o.quantity ELSE 0 END) IS NULL THEN 0
ELSE SUM(CASE WHEN o.date >= DATE_SUB(CURDATE(), INTERVAL ? DAY) THEN o.quantity ELSE 0 END)
END as rolling_weekly_avg,
SUM(CASE WHEN o.date >= DATE_SUB(CURDATE(), INTERVAL ? DAY) THEN o.quantity ELSE 0 END) as last_month_qty
FROM orders o
JOIN products p ON o.product_id = p.product_id
WHERE o.canceled = 0 AND o.product_id = ?
GROUP BY o.product_id
)
SELECT
total_quantity_sold,
total_revenue,
total_cost,
last_sale_date,
first_sale_date,
number_of_orders,
avg_quantity_per_order,
last_30_days_qty / ? as rolling_daily_avg,
rolling_weekly_avg / ? as rolling_weekly_avg,
last_month_qty / ? as rolling_monthly_avg,
total_quantity_sold as total_sales_to_date
FROM sales_summary
`, [
config.daily_window_days,
config.weekly_window_days,
config.weekly_window_days,
config.monthly_window_days,
product.product_id,
config.daily_window_days,
config.weekly_window_days,
config.monthly_window_days
]).catch(err => {
logError(err, `Failed to calculate sales metrics for product ${product.product_id}`);
throw err;
});
// Calculate purchase metrics with proper handling of negative quantities
const [purchaseMetrics] = await connection.query(`
WITH recent_orders AS (
SELECT
date,
received_date,
received,
cost_price,
DATEDIFF(received_date, date) as lead_time_days,
ROW_NUMBER() OVER (ORDER BY date DESC) as order_rank
FROM purchase_orders
WHERE status = 'closed'
AND product_id = ?
AND received > 0
AND received_date IS NOT NULL
),
lead_time_orders AS (
SELECT *
FROM recent_orders
WHERE order_rank <= 5 -- Last 5 orders
OR date >= DATE_SUB(CURDATE(), INTERVAL 90 DAY) -- Or orders from last 90 days
)
SELECT
SUM(CASE WHEN received >= 0 THEN received ELSE 0 END) as total_quantity_purchased,
SUM(CASE WHEN received >= 0 THEN cost_price * received ELSE 0 END) as total_cost,
MAX(date) as last_purchase_date,
MIN(received_date) as first_received_date,
MAX(received_date) as last_received_date,
AVG(lead_time_days) as avg_lead_time_days,
COUNT(*) as orders_analyzed
FROM lead_time_orders
`, [product.product_id]).catch(err => {
logError(err, `Failed to calculate purchase metrics for product ${product.product_id}`);
throw err;
});
// Get current stock and stock age
const [stockInfo] = await connection.query(`
SELECT
p.stock_quantity,
p.cost_price,
p.created_at,
p.replenishable,
p.moq,
DATEDIFF(CURDATE(), MIN(po.received_date)) as days_since_first_stock,
DATEDIFF(CURDATE(), COALESCE(
(SELECT MAX(o2.date)
FROM orders o2
WHERE o2.product_id = p.product_id
AND o2.canceled = false),
CURDATE() -- If no sales, use current date
)) as days_since_last_sale,
(SELECT SUM(quantity)
FROM orders o3
WHERE o3.product_id = p.product_id
AND o3.canceled = false) as total_quantity_sold,
CASE
WHEN EXISTS (
SELECT 1 FROM orders o
WHERE o.product_id = p.product_id
AND o.date >= DATE_SUB(CURDATE(), INTERVAL 30 DAY)
AND o.canceled = false
AND (SELECT SUM(quantity) FROM orders o2
WHERE o2.product_id = p.product_id
AND o2.date >= o.date
AND o2.canceled = false) = 0
) THEN true
ELSE false
END as had_recent_stockout
FROM products p
LEFT JOIN purchase_orders po ON p.product_id = po.product_id
AND po.status = 'closed'
AND po.received > 0
WHERE p.product_id = ?
GROUP BY p.product_id
`, [product.product_id]).catch(err => {
logError(err, `Failed to get stock info for product ${product.product_id}`);
throw err;
});
// Calculate metrics
const metrics = salesMetrics[0] || {};
const purchases = purchaseMetrics[0] || {};
const stock = stockInfo[0] || {};
const daily_sales_avg = metrics.rolling_daily_avg || 0;
const weekly_sales_avg = metrics.rolling_weekly_avg || 0;
const monthly_sales_avg = metrics.total_quantity_sold ? metrics.total_quantity_sold / 30 : 0;
// Calculate days of inventory with safety factor and lead times
const days_of_inventory = daily_sales_avg > 0 ?
Math.ceil(
(stock.stock_quantity / daily_sales_avg) +
(purchases.avg_lead_time_days || config.reorder_days) *
(1 + (config.service_level / 100))
) : null;
const weeks_of_inventory = days_of_inventory ? Math.ceil(days_of_inventory / 7) : null;
// Calculate margin percent with proper handling of zero revenue
const margin_percent = metrics.total_revenue > 0 ?
((metrics.total_revenue - metrics.total_cost) / metrics.total_revenue) * 100 :
null;
// Calculate current inventory value
const inventory_value = (stock.stock_quantity || 0) * (stock.cost_price || 0);
// Calculate stock status with improved handling
const stock_status = (() => {
const days_since_first_stock = stockInfo[0]?.days_since_first_stock || 0;
const days_since_last_sale = stockInfo[0]?.days_since_last_sale || 9999;
const total_quantity_sold = stockInfo[0]?.total_quantity_sold || 0;
const had_recent_stockout = stockInfo[0]?.had_recent_stockout || false;
const dq = stock.stock_quantity || 0;
const ds = daily_sales_avg || 0;
const ws = weekly_sales_avg || 0;
const ms = monthly_sales_avg || 0;
// If no stock, return immediately
if (dq === 0) {
return had_recent_stockout ? 'Critical' : 'Out of Stock';
}
// 1. Check if truly "New" (≤30 days and no sales)
if (days_since_first_stock <= 30 && total_quantity_sold === 0) {
return 'New';
}
// 2. Handle zero or very low sales velocity cases
if (ds === 0 || (ds < 0.1 && ws < 0.5)) { // Less than 1 sale per 10 days and less than 0.5 per week
if (days_since_first_stock > config.overstock_days) {
return 'Overstocked';
}
if (days_since_first_stock > 30) {
return 'At Risk';
}
}
// 3. Calculate days of supply and check velocity trends
const days_of_supply = ds > 0 ? dq / ds : 999;
const velocity_trend = ds > 0 ? (ds / (ms || ds) - 1) * 100 : 0; // Percent change from monthly to daily avg
// Critical stock level
if (days_of_supply <= config.critical_days) {
return 'Critical';
}
// Reorder cases
if (days_of_supply <= config.reorder_days ||
(had_recent_stockout && days_of_supply <= config.reorder_days * 1.5)) {
return 'Reorder';
}
// At Risk cases (multiple scenarios)
if (
// Approaching overstock threshold
(days_of_supply >= config.overstock_days * 0.8) ||
// Significant sales decline
(velocity_trend <= -50 && days_of_supply > config.reorder_days * 2) ||
// No recent sales
(days_since_last_sale > 45 && dq > 0) ||
// Very low velocity with significant stock
(ds > 0 && ds < 0.2 && dq > ds * config.overstock_days * 0.5)
) {
return 'At Risk';
}
// Overstock cases
if (days_of_supply >= config.overstock_days) {
return 'Overstocked';
}
// If none of the above conditions are met
return 'Healthy';
})();
// Calculate reorder quantity and overstocked amount
let reorder_qty = 0;
let overstocked_amt = 0;
// Only calculate reorder quantity for replenishable products
if (stock.replenishable && (stock_status === 'Critical' || stock_status === 'Reorder')) {
const ds = daily_sales_avg || 0;
const lt = purchases.avg_lead_time_days || 14; // Default to 14 days if no lead time data
const sc = config.safety_stock_days || 14;
const ss = config.safety_stock_days || 14;
const dq = stock.stock_quantity || 0;
const moq = stock.moq || 1;
// Calculate desired stock level based on daily sales, lead time, coverage days, and safety stock
const desired_stock = (ds * (lt + sc)) + ss;
// Calculate raw reorder amount
const raw_reorder = Math.max(0, desired_stock - dq);
// Round up to nearest MOQ
reorder_qty = Math.ceil(raw_reorder / moq) * moq;
}
// Calculate overstocked amount for overstocked products
if (stock_status === 'Overstocked') {
const ds = daily_sales_avg || 0;
const dq = stock.stock_quantity || 0;
const lt = purchases.avg_lead_time_days || 14;
const sc = config.safety_stock_days || 14;
const ss = config.safety_stock_days || 14;
// Calculate maximum desired stock based on overstock days configuration
const max_desired_stock = (ds * config.overstock_days) + ss;
// Calculate excess inventory
overstocked_amt = Math.max(0, dq - max_desired_stock);
}
// Add to batch update (remove safety_stock from the array since it's calculated separately)
metricsUpdates.push([
product.product_id,
daily_sales_avg || null,
weekly_sales_avg || null,
monthly_sales_avg || null,
metrics.avg_quantity_per_order || null,
metrics.number_of_orders || 0,
metrics.first_sale_date || null,
metrics.last_sale_date || null,
days_of_inventory,
weeks_of_inventory,
daily_sales_avg > 0 ? Math.max(1, Math.ceil(daily_sales_avg * config.reorder_days)) : null,
margin_percent,
metrics.total_revenue || 0,
inventory_value || 0,
purchases.avg_lead_time_days || null,
purchases.last_purchase_date || null,
purchases.first_received_date || null,
purchases.last_received_date || null,
stock_status,
reorder_qty,
overstocked_amt
]);
} catch (err) {
logError(err, `Failed processing product ${product.product_id}`);
// Continue with next product instead of failing entire batch
continue;
}
}
// Batch update metrics
if (metricsUpdates.length > 0) {
await connection.query(`
INSERT INTO product_metrics (
product_id,
daily_sales_avg,
weekly_sales_avg,
monthly_sales_avg,
avg_quantity_per_order,
number_of_orders,
first_sale_date,
last_sale_date,
days_of_inventory,
weeks_of_inventory,
reorder_point,
avg_margin_percent,
total_revenue,
inventory_value,
avg_lead_time_days,
last_purchase_date,
first_received_date,
last_received_date,
stock_status,
reorder_qty,
overstocked_amt
) VALUES ?
ON DUPLICATE KEY UPDATE
last_calculated_at = NOW(),
daily_sales_avg = VALUES(daily_sales_avg),
weekly_sales_avg = VALUES(weekly_sales_avg),
monthly_sales_avg = VALUES(monthly_sales_avg),
avg_quantity_per_order = VALUES(avg_quantity_per_order),
number_of_orders = VALUES(number_of_orders),
first_sale_date = VALUES(first_sale_date),
last_sale_date = VALUES(last_sale_date),
days_of_inventory = VALUES(days_of_inventory),
weeks_of_inventory = VALUES(weeks_of_inventory),
reorder_point = VALUES(reorder_point),
avg_margin_percent = VALUES(avg_margin_percent),
total_revenue = VALUES(total_revenue),
inventory_value = VALUES(inventory_value),
avg_lead_time_days = VALUES(avg_lead_time_days),
last_purchase_date = VALUES(last_purchase_date),
first_received_date = VALUES(first_received_date),
last_received_date = VALUES(last_received_date),
stock_status = VALUES(stock_status),
reorder_qty = VALUES(reorder_qty),
overstocked_amt = VALUES(overstocked_amt)
`, [metricsUpdates]).catch(err => {
logError(err, `Failed to batch update metrics for ${metricsUpdates.length} products`);
throw err;
});
}
}
} else {
console.log('Skipping product metrics calculation...');
outputProgress({
status: 'running',
operation: 'Skipping product metrics calculation',
current: Math.floor(totalProducts * 0.6),
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, Math.floor(totalProducts * 0.6), totalProducts),
rate: calculateRate(startTime, Math.floor(totalProducts * 0.6)),
percentage: '60'
});
}
outputProgress({
status: 'running',
operation: 'Starting financial metrics calculation',
current: Math.floor(totalProducts * 0.6),
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, Math.floor(totalProducts * 0.6), totalProducts),
rate: calculateRate(startTime, Math.floor(totalProducts * 0.6)),
percentage: '60'
});
await calculateFinancialMetrics(connection, startTime, totalProducts);
outputProgress({
status: 'running',
operation: 'Starting vendor metrics calculation',
current: Math.floor(totalProducts * 0.7),
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, Math.floor(totalProducts * 0.7), totalProducts),
rate: calculateRate(startTime, Math.floor(totalProducts * 0.7)),
percentage: '70'
});
await calculateVendorMetrics(connection, startTime, totalProducts);
outputProgress({
status: 'running',
operation: 'Starting turnover metrics calculation',
current: Math.floor(totalProducts * 0.75),
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, Math.floor(totalProducts * 0.75), totalProducts),
rate: calculateRate(startTime, Math.floor(totalProducts * 0.75)),
percentage: '75'
});
await calculateTurnoverMetrics(connection, startTime, totalProducts);
outputProgress({
status: 'running',
operation: 'Starting lead time metrics calculation',
current: Math.floor(totalProducts * 0.8),
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, Math.floor(totalProducts * 0.8), totalProducts),
rate: calculateRate(startTime, Math.floor(totalProducts * 0.8)),
percentage: '80'
});
await calculateLeadTimeMetrics(connection, startTime, totalProducts);
// Calculate category metrics
await calculateCategoryMetrics(connection, startTime, totalProducts);
// Calculate category sales metrics
await calculateCategorySalesMetrics(connection, startTime, totalProducts);
// Calculate ABC classification
const [abcConfig] = await connection.query('SELECT a_threshold, b_threshold FROM abc_classification_config WHERE id = 1');
const abcThresholds = abcConfig[0] || { a_threshold: 20, b_threshold: 50 };
await connection.query(`
WITH revenue_rankings AS (
SELECT
product_id,
total_revenue,
PERCENT_RANK() OVER (ORDER BY COALESCE(total_revenue, 0) DESC) * 100 as revenue_percentile
FROM product_metrics
),
classification_update AS (
SELECT
product_id,
CASE
WHEN revenue_percentile <= ? THEN 'A'
WHEN revenue_percentile <= ? THEN 'B'
ELSE 'C'
END as abc_class
FROM revenue_rankings
)
UPDATE product_metrics pm
JOIN classification_update cu ON pm.product_id = cu.product_id
SET pm.abc_class = cu.abc_class,
pm.last_calculated_at = NOW()
`, [abcThresholds.a_threshold, abcThresholds.b_threshold]);
// Calculate time-based aggregates
outputProgress({
status: 'running',
operation: 'Starting time-based aggregates calculation',
current: Math.floor(totalProducts * 0.85),
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, Math.floor(totalProducts * 0.85), totalProducts),
rate: calculateRate(startTime, Math.floor(totalProducts * 0.85)),
percentage: '85'
});
await connection.query('TRUNCATE TABLE product_time_aggregates;');
await connection.query(`
INSERT INTO product_time_aggregates (
product_id,
year,
month,
total_quantity_sold,
total_revenue,
total_cost,
order_count,
stock_received,
stock_ordered,
avg_price,
profit_margin
)
WITH sales_data AS (
SELECT
o.product_id,
YEAR(o.date) as year,
MONTH(o.date) as month,
SUM(o.quantity) as total_quantity_sold,
SUM((o.price - COALESCE(o.discount, 0)) * o.quantity) as total_revenue,
SUM(COALESCE(p.cost_price, 0) * o.quantity) as total_cost,
COUNT(DISTINCT o.order_number) as order_count,
AVG(o.price - COALESCE(o.discount, 0)) as avg_price,
CASE
WHEN SUM((o.price - COALESCE(o.discount, 0)) * o.quantity) = 0 THEN 0
ELSE ((SUM((o.price - COALESCE(o.discount, 0)) * o.quantity) -
SUM(COALESCE(p.cost_price, 0) * o.quantity)) /
SUM((o.price - COALESCE(o.discount, 0)) * o.quantity)) * 100
END as profit_margin
FROM orders o
JOIN products p ON o.product_id = p.product_id
WHERE o.canceled = 0
GROUP BY o.product_id, YEAR(o.date), MONTH(o.date)
),
purchase_data AS (
SELECT
product_id,
YEAR(date) as year,
MONTH(date) as month,
SUM(received) as stock_received,
SUM(ordered) as stock_ordered
FROM purchase_orders
WHERE status = 'closed'
GROUP BY product_id, YEAR(date), MONTH(date)
)
SELECT
s.product_id,
s.year,
s.month,
s.total_quantity_sold,
s.total_revenue,
s.total_cost,
s.order_count,
COALESCE(p.stock_received, 0) as stock_received,
COALESCE(p.stock_ordered, 0) as stock_ordered,
0 as avg_price,
0 as profit_margin
FROM sales_data s
LEFT JOIN purchase_data p
ON s.product_id = p.product_id
AND s.year = p.year
AND s.month = p.month
UNION
SELECT
p.product_id,
p.year,
p.month,
0 as total_quantity_sold,
0 as total_revenue,
0 as total_cost,
0 as order_count,
p.stock_received,
p.stock_ordered,
0 as avg_price,
0 as profit_margin
FROM purchase_data p
LEFT JOIN sales_data s
ON p.product_id = s.product_id
AND p.year = s.year
AND p.month = s.month
WHERE s.product_id IS NULL
`);
// Add new metric calculations before final success message
await calculateBrandMetrics(connection, startTime, totalProducts);
await calculateSalesForecasts(connection, startTime, totalProducts);
// Final success message
outputProgress({
status: 'complete',
operation: 'Metrics calculation complete',
current: totalProducts,
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: '0s',
rate: calculateRate(startTime, totalProducts),
percentage: '100'
});
// Clear progress file on successful completion
clearProgress();
} catch (error) {
if (isCancelled) {
outputProgress({
status: 'cancelled',
operation: 'Calculation cancelled',
current: processedCount,
total: totalProducts || 0,
elapsed: formatElapsedTime(startTime),
remaining: null,
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / (totalProducts || 1)) * 100).toFixed(1)
});
} else {
outputProgress({
status: 'error',
operation: 'Error: ' + error.message,
current: processedCount,
total: totalProducts || 0,
elapsed: formatElapsedTime(startTime),
remaining: null,
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / (totalProducts || 1)) * 100).toFixed(1)
});
}
throw error;
} finally {
connection.release();
}
} finally {
if (pool) {
await pool.end();
}
}
}
// Export both functions and progress checker
module.exports = calculateMetrics;
module.exports.cancelCalculation = cancelCalculation;
module.exports.getProgress = getProgress;
// Run directly if called from command line
if (require.main === module) {
calculateMetrics().catch(error => {
if (!error.message.includes('Operation cancelled')) {
console.error('Error:', error);
}
process.exit(1);
});
}