Files
inventory/inventory-server/scripts/metrics/product-metrics.js

504 lines
25 KiB
JavaScript

const { outputProgress, logError } = require('./utils/progress');
const { getConnection } = require('./utils/db');
// Helper function to handle NaN and undefined values
function sanitizeValue(value) {
if (value === undefined || value === null || Number.isNaN(value)) {
return null;
}
return value;
}
async function calculateProductMetrics(startTime, totalProducts, processedCount = 0) {
const connection = await getConnection();
try {
// Process in batches of 250
const batchSize = 250;
for (let offset = 0; offset < totalProducts; offset += batchSize) {
const [products] = await connection.query('SELECT pid, vendor FROM products LIMIT ? OFFSET ?', [batchSize, offset])
.catch(err => {
logError(err, `Failed to fetch products batch at offset ${offset}`);
throw err;
});
processedCount += products.length;
// Update progress after each batch
outputProgress({
status: 'running',
operation: 'Processing products',
current: processedCount,
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
});
// Process the batch
const metricsUpdates = [];
for (const product of products) {
try {
// Get configuration values for this product
const [configs] = await connection.query(`
WITH product_info AS (
SELECT
p.pid,
p.vendor,
pc.cat_id as category_id
FROM products p
LEFT JOIN product_categories pc ON p.pid = pc.pid
WHERE p.pid = ?
),
threshold_options AS (
SELECT
st.*,
CASE
WHEN st.category_id = pi.category_id AND st.vendor = pi.vendor THEN 1
WHEN st.category_id = pi.category_id AND st.vendor IS NULL THEN 2
WHEN st.category_id IS NULL AND st.vendor = pi.vendor THEN 3
WHEN st.category_id IS NULL AND st.vendor IS NULL THEN 4
ELSE 5
END as priority
FROM product_info pi
CROSS JOIN stock_thresholds st
WHERE (st.category_id = pi.category_id OR st.category_id IS NULL)
AND (st.vendor = pi.vendor OR st.vendor IS NULL)
),
velocity_options AS (
SELECT
sv.*,
CASE
WHEN sv.category_id = pi.category_id AND sv.vendor = pi.vendor THEN 1
WHEN sv.category_id = pi.category_id AND sv.vendor IS NULL THEN 2
WHEN sv.category_id IS NULL AND sv.vendor = pi.vendor THEN 3
WHEN sv.category_id IS NULL AND sv.vendor IS NULL THEN 4
ELSE 5
END as priority
FROM product_info pi
CROSS JOIN sales_velocity_config sv
WHERE (sv.category_id = pi.category_id OR sv.category_id IS NULL)
AND (sv.vendor = pi.vendor OR sv.vendor IS NULL)
),
safety_options AS (
SELECT
ss.*,
CASE
WHEN ss.category_id = pi.category_id AND ss.vendor = pi.vendor THEN 1
WHEN ss.category_id = pi.category_id AND ss.vendor IS NULL THEN 2
WHEN ss.category_id IS NULL AND ss.vendor = pi.vendor THEN 3
WHEN ss.category_id IS NULL AND ss.vendor IS NULL THEN 4
ELSE 5
END as priority
FROM product_info pi
CROSS JOIN safety_stock_config ss
WHERE (ss.category_id = pi.category_id OR ss.category_id IS NULL)
AND (ss.vendor = pi.vendor OR ss.vendor IS NULL)
)
SELECT
COALESCE(
(SELECT critical_days
FROM threshold_options
ORDER BY priority LIMIT 1),
7
) as critical_days,
COALESCE(
(SELECT reorder_days
FROM threshold_options
ORDER BY priority LIMIT 1),
14
) as reorder_days,
COALESCE(
(SELECT overstock_days
FROM threshold_options
ORDER BY priority LIMIT 1),
90
) as overstock_days,
COALESCE(
(SELECT low_stock_threshold
FROM threshold_options
ORDER BY priority LIMIT 1),
5
) as low_stock_threshold,
COALESCE(
(SELECT daily_window_days
FROM velocity_options
ORDER BY priority LIMIT 1),
30
) as daily_window_days,
COALESCE(
(SELECT weekly_window_days
FROM velocity_options
ORDER BY priority LIMIT 1),
7
) as weekly_window_days,
COALESCE(
(SELECT monthly_window_days
FROM velocity_options
ORDER BY priority LIMIT 1),
90
) as monthly_window_days,
COALESCE(
(SELECT coverage_days
FROM safety_options
ORDER BY priority LIMIT 1),
14
) as safety_stock_days,
COALESCE(
(SELECT service_level
FROM safety_options
ORDER BY priority LIMIT 1),
95.0
) as service_level
`, [product.pid]);
const config = configs[0];
// Calculate sales metrics
const [salesMetrics] = await connection.query(`
WITH sales_summary AS (
SELECT
SUM(o.quantity) as total_quantity_sold,
SUM((o.price - COALESCE(o.discount, 0)) * o.quantity) as total_revenue,
SUM(COALESCE(p.cost_price, 0) * o.quantity) as total_cost,
MAX(o.date) as last_sale_date,
MIN(o.date) as first_sale_date,
COUNT(DISTINCT o.order_number) as number_of_orders,
AVG(o.quantity) as avg_quantity_per_order,
SUM(CASE WHEN o.date >= DATE_SUB(CURDATE(), INTERVAL ? DAY) THEN o.quantity ELSE 0 END) as last_30_days_qty,
CASE
WHEN SUM(CASE WHEN o.date >= DATE_SUB(CURDATE(), INTERVAL ? DAY) THEN o.quantity ELSE 0 END) IS NULL THEN 0
ELSE SUM(CASE WHEN o.date >= DATE_SUB(CURDATE(), INTERVAL ? DAY) THEN o.quantity ELSE 0 END)
END as rolling_weekly_avg,
SUM(CASE WHEN o.date >= DATE_SUB(CURDATE(), INTERVAL ? DAY) THEN o.quantity ELSE 0 END) as last_month_qty
FROM orders o
JOIN products p ON o.pid = p.pid
WHERE o.canceled = 0 AND o.pid = ?
GROUP BY o.pid
)
SELECT
total_quantity_sold,
total_revenue,
total_cost,
last_sale_date,
first_sale_date,
number_of_orders,
avg_quantity_per_order,
last_30_days_qty / ? as rolling_daily_avg,
rolling_weekly_avg / ? as rolling_weekly_avg,
last_month_qty / ? as rolling_monthly_avg
FROM sales_summary
`, [
config.daily_window_days,
config.weekly_window_days,
config.weekly_window_days,
config.monthly_window_days,
product.pid,
config.daily_window_days,
config.weekly_window_days,
config.monthly_window_days
]);
// Calculate purchase metrics
const [purchaseMetrics] = await connection.query(`
WITH recent_orders AS (
SELECT
date,
received_date,
received,
cost_price,
DATEDIFF(received_date, date) as lead_time_days,
ROW_NUMBER() OVER (ORDER BY date DESC) as order_rank
FROM purchase_orders
WHERE receiving_status >= 30 -- Partial or fully received
AND pid = ?
AND received > 0
AND received_date IS NOT NULL
),
lead_time_orders AS (
SELECT *
FROM recent_orders
WHERE order_rank <= 5
OR date >= DATE_SUB(CURDATE(), INTERVAL 90 DAY)
)
SELECT
SUM(CASE WHEN received >= 0 THEN received ELSE 0 END) as total_quantity_purchased,
SUM(CASE WHEN received >= 0 THEN cost_price * received ELSE 0 END) as total_cost,
MAX(date) as last_purchase_date,
MIN(received_date) as first_received_date,
MAX(received_date) as last_received_date,
AVG(lead_time_days) as avg_lead_time_days
FROM lead_time_orders
`, [product.pid]);
// Get stock info
const [stockInfo] = await connection.query(`
SELECT
p.stock_quantity,
p.cost_price,
p.created_at,
p.replenishable,
p.moq,
p.notions_inv_count,
p.date_last_sold,
p.total_sold,
DATEDIFF(CURDATE(), MIN(po.received_date)) as days_since_first_stock,
DATEDIFF(CURDATE(), COALESCE(p.date_last_sold, CURDATE())) as days_since_last_sale,
CASE
WHEN EXISTS (
SELECT 1 FROM orders o
WHERE o.pid = p.pid
AND o.date >= DATE_SUB(CURDATE(), INTERVAL 30 DAY)
AND o.canceled = false
AND (SELECT SUM(quantity) FROM orders o2
WHERE o2.pid = p.pid
AND o2.date >= o.date
AND o2.canceled = false) = 0
) THEN true
ELSE false
END as had_recent_stockout
FROM products p
LEFT JOIN purchase_orders po ON p.pid = po.pid
AND po.receiving_status >= 30 -- Partial or fully received
AND po.received > 0
WHERE p.pid = ?
GROUP BY p.pid
`, [product.pid]);
// Calculate metrics
const salesData = salesMetrics[0] || {};
const purchaseData = purchaseMetrics[0] || {};
const stockData = stockInfo[0] || {};
// Sales velocity metrics
const daily_sales_avg = sanitizeValue(salesData.rolling_daily_avg) || 0;
const weekly_sales_avg = sanitizeValue(salesData.rolling_weekly_avg) || 0;
const monthly_sales_avg = sanitizeValue(salesData.rolling_monthly_avg) || 0;
// Stock metrics
const stock_quantity = sanitizeValue(stockData.stock_quantity) || 0;
const days_of_inventory = daily_sales_avg > 0 ? Math.floor(stock_quantity / daily_sales_avg) : 999;
const weeks_of_inventory = Math.floor(days_of_inventory / 7);
// Calculate stock status
const stock_status = calculateStockStatus(
stock_quantity,
config,
daily_sales_avg,
weekly_sales_avg,
monthly_sales_avg
);
// Calculate reorder quantities
const reorder_quantities = calculateReorderQuantities(
stock_quantity,
stock_status,
daily_sales_avg,
sanitizeValue(purchaseData.avg_lead_time_days) || 0,
config
);
// Financial metrics
const cost_price = sanitizeValue(stockData.cost_price) || 0;
const inventory_value = stock_quantity * cost_price;
const total_revenue = sanitizeValue(salesData.total_revenue) || 0;
const total_cost = sanitizeValue(salesData.total_cost) || 0;
const gross_profit = total_revenue - total_cost;
const avg_margin_percent = total_revenue > 0 ? ((gross_profit / total_revenue) * 100) : 0;
const gmroi = inventory_value > 0 ? (gross_profit / inventory_value) : 0;
// Add to batch update with sanitized values
metricsUpdates.push([
product.pid,
sanitizeValue(daily_sales_avg),
sanitizeValue(weekly_sales_avg),
sanitizeValue(monthly_sales_avg),
sanitizeValue(salesData.avg_quantity_per_order),
sanitizeValue(salesData.number_of_orders),
salesData.first_sale_date || null,
salesData.last_sale_date || null,
sanitizeValue(days_of_inventory),
sanitizeValue(weeks_of_inventory),
sanitizeValue(reorder_quantities.reorder_point),
sanitizeValue(reorder_quantities.safety_stock),
sanitizeValue(reorder_quantities.reorder_qty),
sanitizeValue(reorder_quantities.overstocked_amt),
sanitizeValue(avg_margin_percent),
sanitizeValue(total_revenue),
sanitizeValue(inventory_value),
sanitizeValue(total_cost),
sanitizeValue(gross_profit),
sanitizeValue(gmroi),
sanitizeValue(purchaseData.avg_lead_time_days),
purchaseData.last_purchase_date || null,
purchaseData.first_received_date || null,
purchaseData.last_received_date || null,
null, // abc_class - calculated separately
stock_status,
sanitizeValue(0), // turnover_rate - calculated separately
sanitizeValue(purchaseData.avg_lead_time_days),
sanitizeValue(config.target_days),
stock_status === 'Critical' ? 'Warning' : 'Normal',
null, // forecast_accuracy
null, // forecast_bias
null // last_forecast_date
]);
} catch (err) {
logError(err, `Failed processing product ${product.pid}`);
continue;
}
}
// Batch update metrics
if (metricsUpdates.length > 0) {
try {
await connection.query(`
INSERT INTO product_metrics (
pid,
daily_sales_avg,
weekly_sales_avg,
monthly_sales_avg,
avg_quantity_per_order,
number_of_orders,
first_sale_date,
last_sale_date,
days_of_inventory,
weeks_of_inventory,
reorder_point,
safety_stock,
reorder_qty,
overstocked_amt,
avg_margin_percent,
total_revenue,
inventory_value,
cost_of_goods_sold,
gross_profit,
gmroi,
avg_lead_time_days,
last_purchase_date,
first_received_date,
last_received_date,
abc_class,
stock_status,
turnover_rate,
current_lead_time,
target_lead_time,
lead_time_status,
forecast_accuracy,
forecast_bias,
last_forecast_date
)
VALUES ?
ON DUPLICATE KEY UPDATE
daily_sales_avg = VALUES(daily_sales_avg),
weekly_sales_avg = VALUES(weekly_sales_avg),
monthly_sales_avg = VALUES(monthly_sales_avg),
avg_quantity_per_order = VALUES(avg_quantity_per_order),
number_of_orders = VALUES(number_of_orders),
first_sale_date = VALUES(first_sale_date),
last_sale_date = VALUES(last_sale_date),
days_of_inventory = VALUES(days_of_inventory),
weeks_of_inventory = VALUES(weeks_of_inventory),
reorder_point = VALUES(reorder_point),
safety_stock = VALUES(safety_stock),
reorder_qty = VALUES(reorder_qty),
overstocked_amt = VALUES(overstocked_amt),
avg_margin_percent = VALUES(avg_margin_percent),
total_revenue = VALUES(total_revenue),
inventory_value = VALUES(inventory_value),
cost_of_goods_sold = VALUES(cost_of_goods_sold),
gross_profit = VALUES(gross_profit),
gmroi = VALUES(gmroi),
avg_lead_time_days = VALUES(avg_lead_time_days),
last_purchase_date = VALUES(last_purchase_date),
first_received_date = VALUES(first_received_date),
last_received_date = VALUES(last_received_date),
stock_status = VALUES(stock_status),
turnover_rate = VALUES(turnover_rate),
current_lead_time = VALUES(current_lead_time),
target_lead_time = VALUES(target_lead_time),
lead_time_status = VALUES(lead_time_status),
last_calculated_at = CURRENT_TIMESTAMP
`, [metricsUpdates]);
} catch (err) {
logError(err, 'Failed to update metrics batch');
throw err;
}
}
}
return processedCount;
} finally {
if (connection) {
connection.release();
}
}
}
function calculateStockStatus(stock, config, daily_sales_avg, weekly_sales_avg, monthly_sales_avg) {
if (stock <= 0) {
return 'Out of Stock';
}
// Use the most appropriate sales average based on data quality
let sales_avg = daily_sales_avg;
if (sales_avg === 0) {
sales_avg = weekly_sales_avg / 7;
}
if (sales_avg === 0) {
sales_avg = monthly_sales_avg / 30;
}
if (sales_avg === 0) {
return stock <= config.low_stock_threshold ? 'Low Stock' : 'In Stock';
}
const days_of_stock = stock / sales_avg;
if (days_of_stock <= config.critical_days) {
return 'Critical';
} else if (days_of_stock <= config.reorder_days) {
return 'Reorder';
} else if (days_of_stock > config.overstock_days) {
return 'Overstocked';
}
return 'Healthy';
}
function calculateReorderQuantities(stock, stock_status, daily_sales_avg, avg_lead_time, config) {
// Calculate safety stock based on service level and lead time
const z_score = 1.96; // 95% service level
const lead_time = avg_lead_time || config.target_days;
const safety_stock = Math.ceil(daily_sales_avg * Math.sqrt(lead_time) * z_score);
// Calculate reorder point
const lead_time_demand = daily_sales_avg * lead_time;
const reorder_point = Math.ceil(lead_time_demand + safety_stock);
// Calculate reorder quantity using EOQ formula if we have the necessary data
let reorder_qty = 0;
if (daily_sales_avg > 0) {
const annual_demand = daily_sales_avg * 365;
const order_cost = 25; // Fixed cost per order
const holding_cost_percent = 0.25; // 25% annual holding cost
reorder_qty = Math.ceil(Math.sqrt((2 * annual_demand * order_cost) / holding_cost_percent));
} else {
// If no sales data, use a basic calculation
reorder_qty = Math.max(safety_stock, config.low_stock_threshold);
}
// Calculate overstocked amount
const overstocked_amt = stock_status === 'Overstocked' ?
stock - Math.ceil(daily_sales_avg * config.overstock_days) :
0;
return {
safety_stock,
reorder_point,
reorder_qty,
overstocked_amt
};
}
module.exports = calculateProductMetrics;