Files
inventory/inventory-server/scripts/metrics/category-metrics.js

229 lines
9.4 KiB
JavaScript

const { outputProgress } = require('../utils/progress');
const { getConnection } = require('../utils/db');
async function calculateCategoryMetrics(startTime, totalProducts, processedCount) {
const connection = await getConnection();
try {
outputProgress({
status: 'running',
operation: 'Calculating category metrics',
current: Math.floor(totalProducts * 0.85),
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, Math.floor(totalProducts * 0.85), totalProducts),
rate: calculateRate(startTime, Math.floor(totalProducts * 0.85)),
percentage: '85'
});
// Calculate category performance metrics
await connection.query(`
INSERT INTO category_metrics (
category_id,
product_count,
active_products,
total_value,
avg_margin,
turnover_rate,
growth_rate,
status
)
WITH category_sales AS (
SELECT
c.id as category_id,
COUNT(DISTINCT p.product_id) as product_count,
COUNT(DISTINCT CASE WHEN p.visible = true THEN p.product_id END) as active_products,
SUM(p.stock_quantity * p.cost_price) as total_value,
CASE
WHEN SUM(o.price * o.quantity) > 0
THEN (SUM((o.price - p.cost_price) * o.quantity) * 100.0) / SUM(o.price * o.quantity)
ELSE 0
END as avg_margin,
CASE
WHEN AVG(GREATEST(p.stock_quantity, 0)) >= 0.01
THEN LEAST(
SUM(CASE
WHEN o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 1 YEAR)
THEN COALESCE(o.quantity, 0)
ELSE 0
END) /
GREATEST(
AVG(GREATEST(p.stock_quantity, 0)),
1.0
),
999.99
)
ELSE 0
END as turnover_rate,
-- Current period (last 3 months)
SUM(CASE
WHEN o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 3 MONTH)
THEN COALESCE(o.quantity * o.price, 0)
ELSE 0
END) as current_period_sales,
-- Previous year same period
SUM(CASE
WHEN o.date BETWEEN DATE_SUB(CURRENT_DATE, INTERVAL 15 MONTH) AND DATE_SUB(CURRENT_DATE, INTERVAL 12 MONTH)
THEN COALESCE(o.quantity * o.price, 0)
ELSE 0
END) as previous_year_period_sales,
c.status
FROM categories c
LEFT JOIN product_categories pc ON c.id = pc.category_id
LEFT JOIN products p ON pc.product_id = p.product_id
LEFT JOIN orders o ON p.product_id = o.product_id AND o.canceled = false
GROUP BY c.id, c.status
)
SELECT
category_id,
product_count,
active_products,
total_value,
COALESCE(avg_margin, 0) as avg_margin,
COALESCE(turnover_rate, 0) as turnover_rate,
-- Enhanced YoY growth rate calculation
CASE
WHEN previous_year_period_sales = 0 AND current_period_sales > 0 THEN 100.0
WHEN previous_year_period_sales = 0 THEN 0.0
ELSE LEAST(
GREATEST(
((current_period_sales - previous_year_period_sales) /
NULLIF(previous_year_period_sales, 0)) * 100.0,
-100.0
),
999.99
)
END as growth_rate,
status
FROM category_sales
ON DUPLICATE KEY UPDATE
product_count = VALUES(product_count),
active_products = VALUES(active_products),
total_value = VALUES(total_value),
avg_margin = VALUES(avg_margin),
turnover_rate = VALUES(turnover_rate),
growth_rate = VALUES(growth_rate),
status = VALUES(status),
last_calculated_at = CURRENT_TIMESTAMP
`);
// Calculate category time-based metrics
await connection.query(`
INSERT INTO category_time_metrics (
category_id,
year,
month,
product_count,
active_products,
total_value,
total_revenue,
avg_margin,
turnover_rate
)
SELECT
c.id as category_id,
YEAR(o.date) as year,
MONTH(o.date) as month,
COUNT(DISTINCT p.product_id) as product_count,
COUNT(DISTINCT CASE WHEN p.visible = true THEN p.product_id END) as active_products,
SUM(p.stock_quantity * p.cost_price) as total_value,
SUM(o.price * o.quantity) as total_revenue,
CASE
WHEN SUM(o.price * o.quantity) > 0
THEN (SUM((o.price - p.cost_price) * o.quantity) * 100.0) / SUM(o.price * o.quantity)
ELSE 0
END as avg_margin,
CASE
WHEN AVG(p.stock_quantity) > 0
THEN SUM(o.quantity) / AVG(p.stock_quantity)
ELSE 0
END as turnover_rate
FROM categories c
LEFT JOIN product_categories pc ON c.id = pc.category_id
LEFT JOIN products p ON pc.product_id = p.product_id
LEFT JOIN orders o ON p.product_id = o.product_id AND o.canceled = false
WHERE o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 12 MONTH)
GROUP BY c.id, YEAR(o.date), MONTH(o.date)
ON DUPLICATE KEY UPDATE
product_count = VALUES(product_count),
active_products = VALUES(active_products),
total_value = VALUES(total_value),
total_revenue = VALUES(total_revenue),
avg_margin = VALUES(avg_margin),
turnover_rate = VALUES(turnover_rate)
`);
// Calculate category sales metrics
await connection.query(`
INSERT INTO category_sales_metrics (
category_id,
brand,
period_start,
period_end,
avg_daily_sales,
total_sold,
num_products,
avg_price,
last_calculated_at
)
WITH date_ranges AS (
SELECT
DATE_SUB(CURDATE(), INTERVAL 30 DAY) as period_start,
CURDATE() as period_end
UNION ALL
SELECT
DATE_SUB(CURDATE(), INTERVAL 90 DAY),
CURDATE()
UNION ALL
SELECT
DATE_SUB(CURDATE(), INTERVAL 180 DAY),
CURDATE()
UNION ALL
SELECT
DATE_SUB(CURDATE(), INTERVAL 365 DAY),
CURDATE()
),
category_metrics AS (
SELECT
c.id as category_id,
p.brand,
dr.period_start,
dr.period_end,
COUNT(DISTINCT p.product_id) as num_products,
COALESCE(SUM(o.quantity), 0) / DATEDIFF(dr.period_end, dr.period_start) as avg_daily_sales,
COALESCE(SUM(o.quantity), 0) as total_sold,
COALESCE(AVG(o.price), 0) as avg_price
FROM categories c
JOIN product_categories pc ON c.id = pc.category_id
JOIN products p ON pc.product_id = p.product_id
CROSS JOIN date_ranges dr
LEFT JOIN orders o ON p.product_id = o.product_id
AND o.date BETWEEN dr.period_start AND dr.period_end
AND o.canceled = false
GROUP BY c.id, p.brand, dr.period_start, dr.period_end
)
SELECT
category_id,
brand,
period_start,
period_end,
avg_daily_sales,
total_sold,
num_products,
avg_price,
NOW() as last_calculated_at
FROM category_metrics
ON DUPLICATE KEY UPDATE
avg_daily_sales = VALUES(avg_daily_sales),
total_sold = VALUES(total_sold),
num_products = VALUES(num_products),
avg_price = VALUES(avg_price),
last_calculated_at = NOW()
`);
return Math.floor(totalProducts * 0.9);
} finally {
connection.release();
}
}
module.exports = calculateCategoryMetrics;