185 Commits

Author SHA1 Message Date
4cb41a7e4c Fix PO import not removing products from edited POs 2025-04-14 14:31:03 -04:00
d05d27494d Adjust PO accordion styles, add in product and PO/receiving links 2025-04-14 14:20:30 -04:00
4ed734e5c0 Add PO details accordion to purchase orders page 2025-04-14 00:58:55 -04:00
1e3be5d4cb Refactor purchase orders page into individual components 2025-04-14 00:29:37 -04:00
8dd852dd6a Fix filtering/sorting/pagination for purchase orders 2025-04-13 23:51:09 -04:00
eeff5817ea More layout/header tweaks for purchase orders 2025-04-13 22:19:14 -04:00
1b19feb172 Tweak layout of purchase orders page and redo header cards 2025-04-13 17:16:08 -04:00
80ff8124ec Update calculate scripts and routes for PO table split 2025-04-12 17:07:43 -04:00
8508bfac93 Add receivings table, split PO import 2025-04-12 14:20:59 -04:00
ac14179bd2 PO-related fixes 2025-04-12 10:54:42 -04:00
00249f7c33 Clean up routes 2025-04-08 21:26:00 -04:00
f271f3aae4 Get frontend dashboard/analytics mostly loading data again 2025-04-08 00:02:43 -04:00
43f76e4ac0 Fix specific import calculations 2025-04-07 22:07:21 -04:00
92ff80fba2 Import and calculate tweaks and fixes 2025-04-06 17:12:36 -04:00
a4c1a19d2e Try to synchronize time zones across import 2025-04-05 16:20:43 -04:00
c9b656d34b Tweaks and fixes for products table 2025-04-05 09:52:36 -04:00
d081a60662 Change calculate metrics script to only record one entry in database per run 2025-04-04 11:33:50 -04:00
4021fe487d Create pages and routes for new settings tables, start improving product details 2025-04-03 22:12:53 -04:00
4552fa4862 Move product status calculation to database, fix up products table, more categories tweaks 2025-04-03 17:12:10 -04:00
2601a04211 Category calculation fixes 2025-04-02 15:42:20 -04:00
6051b849d6 Consolidate old/new vendor and category routes, enhance new brands route, update frontend accordingly for all three pages, improve hierarchy on categories page, fix some calculations 2025-04-02 14:28:18 -04:00
dbd0232285 Update/add frontend pages for categories, brands, vendors new routes, update products page to use new route 2025-04-01 14:34:57 -04:00
1b9f01d101 Add routes for brands, categories, vendors new implementation 2025-04-01 12:03:12 -04:00
a9dbbbf824 Add new vendors, brands, categories tables and calculate scripts 2025-04-01 01:12:03 -04:00
97296946f1 Clean up, fix file path issues with import scripts, adjust data management page for new metrics calcs 2025-04-01 00:15:06 -04:00
5035dda733 Add metrics historical backfill scripts, fix up all new metrics calc queries and add combined script to run 2025-03-31 22:15:41 -04:00
796a2e5d1f Add new metrics route 2025-03-30 11:43:29 -04:00
047122a620 Add new calculate scripts, add in historical data import 2025-03-30 10:30:13 -04:00
4c4359908c Create new metrics reset script 2025-03-29 17:17:02 -04:00
54cc4be1e3 Add new schemas and scripts for calculate 2025-03-29 17:08:30 -04:00
f4854423ab Update import tables schema with minor changes, add new metrics schema 2025-03-29 16:46:31 -04:00
0796518e26 Add some additional existing data points to products table (partly broken) 2025-03-29 10:44:13 -04:00
7aa494aaad Clean up 2025-03-28 19:35:23 -04:00
1e0be3f86e Ensure data management page grabs progress of any running scripts on load, clean up unneeded console logs, restyle login page 2025-03-28 19:26:52 -04:00
a068a253cd More data management page tweaks, ensure reusable images don't get deleted automatically 2025-03-27 19:31:11 -04:00
087ec710f6 Fix/enhance data management page 2025-03-27 17:09:06 -04:00
957c7b5eb1 Add new filter options and metrics to product filters and pages; enhance SQL schema for financial calculations 2025-03-27 16:27:13 -04:00
8b8845b423 Clean up build errors 2025-03-26 21:53:33 -04:00
e5c4f617c5 Get frontend pages loading data again, remove unused components 2025-03-26 21:47:24 -04:00
8e19e6cd74 Finish fixing calculate scripts 2025-03-26 14:22:08 -04:00
749907bd30 Start migrating and fixing calculate scripts 2025-03-26 01:19:44 -04:00
108181c63d Fix more import script bugs/missing data 2025-03-25 22:23:06 -04:00
5dd779cb4a Fix purchase orders import 2025-03-25 19:12:41 -04:00
7b0e792d03 Merge branch 'master' into move-to-postgresql 2025-03-25 12:15:07 -04:00
517bbe72f4 Add in image library feature 2025-03-25 12:14:36 -04:00
87d4b9e804 Fixes/improvements for import scripts 2025-03-24 22:27:44 -04:00
75da2c6772 Get all import scripts running again 2025-03-24 21:58:00 -04:00
00a02aa788 Enhance ai validation changes dialog 2025-03-24 14:17:02 -04:00
114018080a Enhance ai debug dialog 2025-03-24 13:25:18 -04:00
228ae8b2a9 Layout/style tweaks, remove text file prompts, integrate system prompt into database/settings 2025-03-24 12:26:21 -04:00
dd4b3f7145 Add prompts table and settings page to create/read/update/delete from it, incorporate company specific prompts into ai validation 2025-03-24 11:30:15 -04:00
7eb4077224 Clean up build errors 2025-03-23 22:15:11 -04:00
d60a8cbc6e Hide debug components without permission 2025-03-23 22:06:51 -04:00
1fcbf54989 Layout/style tweaks, fix performance metrics settings page 2025-03-23 22:01:41 -04:00
ce75496770 Clean up unused permissions, take user to first page/component they can access 2025-03-23 17:18:31 -04:00
7eae4a0b29 More permissions setup, simplify to one component 2025-03-23 16:04:32 -04:00
f421154c1d Get user management page working, add permission checking in more places 2025-03-22 22:27:50 -04:00
03dc119a15 Initial permissions framework and setup 2025-03-22 22:11:03 -04:00
1963bee00c Merge branch 'add-product-upload-page' 2025-03-22 21:11:10 -04:00
387e7e5e73 Clean up 2025-03-22 21:05:24 -04:00
a51a48ce89 Fix item number not getting updated when applying template 2025-03-22 20:55:34 -04:00
aacb3a2fd0 Fix validating required cells when applying template 2025-03-22 17:21:27 -04:00
35d2f0df7c Refactor validation hooks into smaller files 2025-03-21 00:33:06 -04:00
7d46ebd6ba Add skeleton loading state to template field, remove duplicated or unused code in validate step hooks 2025-03-19 14:30:39 -04:00
1496aa57b1 Remove remaining chakra-ui dependencies, clean up files, clean up build errors, move react-spreadsheet-import directory into main component structure 2025-03-19 12:56:56 -04:00
fc9ef2f0d7 Style tweaks, fix image uploads, refactor image upload step into smaller files 2025-03-19 11:27:26 -04:00
af067f7360 Fix line and subline showing as inputs instead of selects 2025-03-18 15:27:55 -04:00
949b543d1f Fix issues with validation errors showing and problems with concurrent editing, improve scroll position saving 2025-03-18 12:38:23 -04:00
8fdb68fb19 Move UPC validation table adapter out of ValidationContainer 2025-03-17 16:36:26 -04:00
136f767309 Move product line fetching out of ValidationContainer, clean up some unused files 2025-03-17 16:24:47 -04:00
aa9664c459 Move UPC validation out of ValidationContainer, add code lines tracking 2025-03-17 16:03:21 -04:00
f60f0b1b5c Merge separate itemNumberCell in to ValidationCell 2025-03-17 14:18:49 -04:00
676cd44d9d Clean up linter errors and add sequential thinking 2025-03-17 14:13:22 -04:00
1d081bb218 Optimize error processing and re-rendering in ValidationCell component. Implemented a centralized processErrors function, improved memoization, and enhanced batch updates to reduce redundancy and improve performance. 2025-03-16 15:25:23 -04:00
52ae7e10aa Refactor validation error handling to use a single source of truth (validationErrors Map), speed up item number generation and loading lines/sublines 2025-03-16 14:09:58 -04:00
153bbecc44 Add standardized error handling with new enums and interfaces for validation errors 2025-03-15 22:11:36 -04:00
cb46970808 Restore line and subline fields 2025-03-15 18:50:33 -04:00
97fa7f3495 Update doc 2025-03-14 19:25:36 -04:00
a88dbb8486 Remove artificial delays from copydown function, fix issues with select components, ensure pointer cursor shows in copydown state, ensure table scroll position is reset on unmount 2025-03-14 19:23:47 -04:00
d0a83c04ca Improve copy down functionality with loading state and ability to select end cell instead of defaulting to the bottom 2025-03-14 16:59:07 -04:00
f95c1f2d43 Set UPC validation loading state to only show on item number field 2025-03-14 01:32:27 -04:00
0ef27a3229 Fix text overflowing template dropdown trigger, add new MultilineInput component with popover for editing, remove MultiInputCell component except for code to create new MultiSelectCell component 2025-03-14 00:44:44 -04:00
0f89373d11 Fix horizontal scrollbar, rearrange error and copy icons in cells 2025-03-13 00:27:36 -04:00
f55d35e301 Fix row highlighting, header alignment, make header sticky 2025-03-11 21:08:02 -04:00
1aee18a025 More validation table optimizations + create doc to track remaining fixes 2025-03-11 16:21:17 -04:00
0068d77ad9 Optimize validation table 2025-03-10 21:59:24 -04:00
b69182e2c7 Fix validation table scroll location saving issues 2025-03-10 00:17:55 -04:00
1c8709f520 Rearrange docs 2025-03-09 22:07:14 -04:00
de1408bd58 Fix validation indicators on validation step table 2025-03-09 17:44:03 -04:00
c295c330ff Add copy down functionality to validate table 2025-03-09 16:30:11 -04:00
7cc723ce83 Fix creating template from validate table row 2025-03-09 16:11:49 -04:00
c3c48669ad Fix data coming in correctly when copying template from an existing product, automatically strip out deals and black friday categories 2025-03-09 15:38:13 -04:00
78a0018940 Fix total sold count in search-products endpoint 2025-03-09 14:12:32 -04:00
851cc3c4cc Fix product search dialog for adding templates, pull out component to use independently, add to template management settings page 2025-03-09 13:42:33 -04:00
74454cdc7f Show templates from all brands when selected brand has no templates 2025-03-08 14:34:49 -05:00
31c838197a Optimize validation table 2025-03-08 14:30:11 -05:00
45fa583ce8 Fix validation again I hope? 2025-03-08 12:23:43 -05:00
c96f514bcd Fix dropdown scrolling and keep multi-selects open 2025-03-08 11:12:42 -05:00
6a5e6d2bfb Style tweaks, fix section hiding in map columns step 2025-03-07 22:23:42 -05:00
875d0b8f55 Fix applying templates to or discarding multiple rows 2025-03-07 16:16:57 -05:00
b15387041b Fix validation timing issues with templates 2025-03-07 15:30:09 -05:00
60cdb1cee3 Fix navigating between steps on start from scratch flow 2025-03-06 18:55:02 -05:00
52fd47a921 Fix templates loading on page load 2025-03-06 13:38:11 -05:00
b723ec3c0f Clean up old validationstep, clean up various type errors 2025-03-06 12:04:35 -05:00
68ca7e93a1 Fix dropdown values saving, add back checkbox column, mostly fix validation, fix some field types 2025-03-06 01:45:05 -05:00
bc5607f48c Fix upc validation api call 2025-03-05 22:08:50 -05:00
36a5186c17 Validate step - fix memoization and reduce unnecessary re-renders 2025-03-05 17:02:55 -05:00
05bac73c45 More validate step changes/fixes 2025-03-04 23:51:40 -05:00
7a43428e76 More validate step changes to get closer to original, made the default step now 2025-03-03 21:46:22 -05:00
e21da8330e Rebuild validationstep to make it actually manageable 2025-03-03 14:25:26 -05:00
56c3f0534d Fix company field changes erasing data (hopefully) 2025-03-02 16:09:55 -05:00
98e3b89d46 Add UPC validation and automatic item number generation/validation 2025-03-01 19:37:51 -05:00
8271c9f95a Improve template search in validate step 2025-03-01 14:48:10 -05:00
f7bdefb0a3 Add product search and template creation functionality to validation step 2025-03-01 12:24:04 -05:00
e0a7787139 Make upload by URL input always visible, fix deleting URL images 2025-02-27 13:22:04 -05:00
c1159f518c Add copy buttons to IDs on image upload and fix upload by URL 2025-02-27 10:48:33 -05:00
a19a8ba412 Move image from URL option from validate step to add images step 2025-02-27 01:16:01 -05:00
bb455b3c37 Match columns tweaks 2025-02-27 00:50:31 -05:00
ca35a67e9f Optimize match columns step 2025-02-27 00:25:47 -05:00
88f1853b09 Style tweaks 2025-02-26 22:14:11 -05:00
3ca72674af Fix header/footer placement on image upload step 2025-02-26 21:39:09 -05:00
c185d4e3ca More drag and drop tweaks 2025-02-26 20:53:28 -05:00
2d62cac5f7 Drag between products fix 2025-02-26 19:04:35 -05:00
e3361cf098 Make images draggable between products, add zoom 2025-02-26 18:20:49 -05:00
41f7f33746 Make images rearrange-able with drag and drop 2025-02-26 16:31:56 -05:00
8141fafb34 Add bulk image upload with auto assign 2025-02-26 16:25:56 -05:00
42af434bd7 Add image upload 2025-02-26 16:15:18 -05:00
fbb200c4ee Highlight diffs on validation changes 2025-02-26 14:16:32 -05:00
b96a9f412a Improve AI validate revert visuals, fix some regressions 2025-02-26 11:24:05 -05:00
6b101a91f6 Fix line/subline regressions, add in AI validation tracking and improve AI results dialog 2025-02-26 00:38:17 -05:00
2df5428712 Fix AI regressions 2025-02-25 15:20:37 -05:00
5d7e05172d Add floating toolbar to validate step, clean up upload page and fix up start from scratch functionality 2025-02-25 01:58:26 -05:00
41058ff5c6 Rearrange and improve match columns step 2025-02-25 00:27:38 -05:00
54a87ca3dc Add required fields display to match columns step 2025-02-24 22:31:57 -05:00
6bf93d33ea Add global options to pass in to validate step, move remove empty/duplicate button to select header row step 2025-02-24 15:03:32 -05:00
441a2c74ad Add remaining templates elements 2025-02-24 00:02:27 -05:00
f628774267 Merge branch 'master' into add-product-upload-page 2025-02-23 15:40:54 -05:00
3f16413769 AI validation tweaks, add templates settings page and schema and routes 2025-02-23 15:14:12 -05:00
959a64aebc Enhance AI validation with progress tracking and prompt debugging 2025-02-22 20:53:13 -05:00
694014934c Tweaks to prompt data format 2025-02-21 12:01:15 -05:00
cff176e7a3 Split off AI prompt into separate file, auto include taxonomy in prompt, create prompt debug page 2025-02-21 11:50:46 -05:00
7f7e6fdd1f AI tweaks and make column name matching case insensitive 2025-02-20 15:49:48 -05:00
45a52cbc33 Validation step styles and functionality tweaks, add initial AI functionality 2025-02-20 15:11:14 -05:00
bba7362641 Get multi select popover to stay open 2025-02-20 01:38:59 -05:00
468f85c45d Clean up linter errors 2025-02-19 22:05:21 -05:00
24e2d01ccc Connect with database for dropdowns, more validate data step fixes 2025-02-19 21:32:23 -05:00
43d7775d08 Add in multi-input and multi-select fields, fix/enhance data validation 2025-02-19 17:11:17 -05:00
527dec4d49 Adjust validation table, add custom fields 2025-02-19 12:35:24 -05:00
fe70b56d24 Fix up validation step to show proper components 2025-02-19 11:37:09 -05:00
ed62f03ba0 Remove unneeded files, more shadcn conversions 2025-02-19 11:13:16 -05:00
e034e83198 Shadcn conversion, lots of styling 2025-02-19 10:47:23 -05:00
110f4ec332 Shadcn conversion, more styling, sheet select step 2025-02-19 01:59:51 -05:00
5bf265ed46 Shadcn conversion + styling, match columns page 2025-02-19 01:41:06 -05:00
528fe7c024 Shadcn conversion, select header 2025-02-18 16:47:55 -05:00
08be0658cb Shadcn conversion, more validate page 2025-02-18 16:02:30 -05:00
f823841b15 Converting to shadcn, steps, validate page 2025-02-18 15:41:00 -05:00
9ce3793067 Begin converting to shadcn, alerts 2025-02-18 12:49:01 -05:00
89d4605577 Add in and integrate react-spreadsheet-import 2025-02-18 11:58:22 -05:00
675a0fc374 Fix incorrect columns in import scripts 2025-02-18 10:46:16 -05:00
ca2653ea1a Update import scripts through POs 2025-02-17 22:17:01 -05:00
a8d3fd8033 Update import scripts through orders 2025-02-17 00:53:07 -05:00
702b956ff1 Fix main import script issue 2025-02-16 11:54:28 -05:00
9b8577f258 Update import scripts through products 2025-02-14 21:46:50 -05:00
9623681a15 Update import scripts, working through categories 2025-02-14 13:30:14 -05:00
cc22fd8c35 Update backend/frontend 2025-02-14 11:26:02 -05:00
0ef1b6100e Clean up old files 2025-02-14 09:37:05 -05:00
a519746ccb Move authentication to postgres 2025-02-14 09:10:15 -05:00
f29dd8ef8b Clean up build errors 2025-02-13 20:02:11 -05:00
f2a5c06005 Fixes for re-running reset scripts 2025-02-13 10:25:04 -05:00
fb9f959fe5 Update schemas and reset scripts 2025-02-12 16:14:25 -05:00
169407a729 Fix o3 issues on time-aggregates script 2025-02-12 15:01:04 -05:00
302172c537 Add refresh button to settings page status tables, fix duration on active scripts 2025-02-12 14:30:05 -05:00
4fdaab9e87 Fix o3 issues on product-metrics script 2025-02-11 23:36:14 -05:00
4dcc1f9e90 Fix frontend reset script and visual tweaks 2025-02-11 22:15:13 -05:00
67d57c8872 Update frontend to launch relevant scripts and show script history + output 2025-02-11 21:52:42 -05:00
d7bf79dec9 Fix o3 issues on calculate-metrics script 2025-02-11 15:46:43 -05:00
d90e9b51dc Add combined scripts 2025-02-11 15:02:58 -05:00
98e2e4073a Exclude calculate history table from resets 2025-02-11 14:31:01 -05:00
23c2085f1c Remove duplicate table creates 2025-02-11 14:12:12 -05:00
2a6a0d0a87 Fixed calculations for frontend (likely still wrong but they display) + related regressions to calculate script 2025-02-05 00:02:06 -05:00
ebffb8f912 Enhance calculate scripts to deal with times and counts + fix regressions 2025-02-03 22:21:39 -05:00
5676e9094d Add calculate time tracking 2025-02-02 21:22:46 -05:00
b926aba9ff Add calculate history tracking 2025-02-02 20:41:23 -05:00
e62c6ac8ee Fix issues with change tracking 2025-02-02 20:24:23 -05:00
18f4970059 Set up change tracking in core tables 2025-02-02 19:12:39 -05:00
304 changed files with 64463 additions and 20052 deletions

View File

@@ -0,0 +1,41 @@
# Details
Date : 2025-03-17 16:24:17
Directory /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew
Total : 26 files, 6193 codes, 1008 comments, 1017 blanks, all 8218 lines
[Summary](results.md) / Details / [Diff Summary](diff.md) / [Diff Details](diff-details.md)
## Files
| filename | language | code | comment | blank | total |
| :--- | :--- | ---: | ---: | ---: | ---: |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/README.md](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/README.md) | Markdown | 39 | 0 | 19 | 58 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/AiValidationDialogs.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/AiValidationDialogs.tsx) | TypeScript JSX | 230 | 10 | 8 | 248 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/BaseCellContent.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/BaseCellContent.tsx) | TypeScript JSX | 18 | 0 | 3 | 21 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/SearchableTemplateSelect.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/SearchableTemplateSelect.tsx) | TypeScript JSX | 273 | 19 | 37 | 329 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/ValidationCell.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/ValidationCell.tsx) | TypeScript JSX | 374 | 42 | 44 | 460 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/ValidationContainer.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/ValidationContainer.tsx) | TypeScript JSX | 730 | 126 | 106 | 962 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/ValidationTable.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/ValidationTable.tsx) | TypeScript JSX | 499 | 48 | 54 | 601 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/cells/CheckboxCell.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/cells/CheckboxCell.tsx) | TypeScript JSX | 112 | 12 | 21 | 145 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/cells/InputCell.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/cells/InputCell.tsx) | TypeScript JSX | 232 | 31 | 32 | 295 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/cells/MultiSelectCell.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/cells/MultiSelectCell.tsx) | TypeScript JSX | 407 | 56 | 52 | 515 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/cells/MultilineInput.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/cells/MultilineInput.tsx) | TypeScript JSX | 193 | 23 | 22 | 238 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/cells/SelectCell.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/cells/SelectCell.tsx) | TypeScript JSX | 289 | 36 | 31 | 356 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useAiValidation.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useAiValidation.tsx) | TypeScript JSX | 500 | 75 | 89 | 664 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useProductLinesFetching.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useProductLinesFetching.tsx) | TypeScript JSX | 248 | 69 | 74 | 391 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useTemplates.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useTemplates.tsx) | TypeScript JSX | 204 | 26 | 33 | 263 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useUpcValidation.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useUpcValidation.tsx) | TypeScript JSX | 209 | 49 | 50 | 308 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useValidation.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useValidation.tsx) | TypeScript JSX | 219 | 39 | 47 | 305 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useValidationState.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useValidationState.tsx) | TypeScript JSX | 1,060 | 228 | 229 | 1,517 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/index.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/index.tsx) | TypeScript JSX | 20 | 6 | 2 | 28 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/types.ts](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/types.ts) | TypeScript | 4 | 0 | 1 | 5 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/types/index.ts](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/types/index.ts) | TypeScript | 16 | 4 | 4 | 24 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/utils/dataMutations.ts](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/utils/dataMutations.ts) | TypeScript | 124 | 4 | 14 | 142 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/utils/errorUtils.ts](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/utils/errorUtils.ts) | TypeScript | 21 | 15 | 5 | 41 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/utils/upcValidation.ts](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/utils/upcValidation.ts) | TypeScript | 43 | 24 | 7 | 74 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/utils/validation-helper.js](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/utils/validation-helper.js) | JavaScript | 28 | 7 | 9 | 44 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/utils/validationUtils.ts](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/utils/validationUtils.ts) | TypeScript | 101 | 59 | 24 | 184 |
[Summary](results.md) / Details / [Diff Summary](diff.md) / [Diff Details](diff-details.md)

View File

@@ -0,0 +1,20 @@
# Diff Details
Date : 2025-03-17 16:24:17
Directory /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew
Total : 5 files, -358 codes, -15 comments, -33 blanks, all -406 lines
[Summary](results.md) / [Details](details.md) / [Diff Summary](diff.md) / Diff Details
## Files
| filename | language | code | comment | blank | total |
| :--- | :--- | ---: | ---: | ---: | ---: |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/SaveTemplateDialog.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/SaveTemplateDialog.tsx) | TypeScript JSX | -83 | 0 | -4 | -87 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/TemplateManager.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/TemplateManager.tsx) | TypeScript JSX | -193 | -4 | -15 | -212 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/ValidationContainer.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/ValidationContainer.tsx) | TypeScript JSX | -241 | -68 | -72 | -381 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useFilters.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useFilters.tsx) | TypeScript JSX | -89 | -12 | -16 | -117 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useProductLinesFetching.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useProductLinesFetching.tsx) | TypeScript JSX | 248 | 69 | 74 | 391 |
[Summary](results.md) / [Details](details.md) / [Diff Summary](diff.md) / Diff Details

View File

@@ -0,0 +1,23 @@
# Diff Summary
Date : 2025-03-17 16:24:17
Directory /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew
Total : 5 files, -358 codes, -15 comments, -33 blanks, all -406 lines
[Summary](results.md) / [Details](details.md) / Diff Summary / [Diff Details](diff-details.md)
## Languages
| language | files | code | comment | blank | total |
| :--- | ---: | ---: | ---: | ---: | ---: |
| TypeScript JSX | 5 | -358 | -15 | -33 | -406 |
## Directories
| path | files | code | comment | blank | total |
| :--- | ---: | ---: | ---: | ---: | ---: |
| . | 5 | -358 | -15 | -33 | -406 |
| components | 3 | -517 | -72 | -91 | -680 |
| hooks | 2 | 159 | 57 | 58 | 274 |
[Summary](results.md) / [Details](details.md) / Diff Summary / [Diff Details](diff-details.md)

View File

@@ -0,0 +1,31 @@
Date : 2025-03-17 16:24:17
Directory : /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew
Total : 5 files, -358 codes, -15 comments, -33 blanks, all -406 lines
Languages
+----------------+------------+------------+------------+------------+------------+
| language | files | code | comment | blank | total |
+----------------+------------+------------+------------+------------+------------+
| TypeScript JSX | 5 | -358 | -15 | -33 | -406 |
+----------------+------------+------------+------------+------------+------------+
Directories
+-------------------------------------------------------------------------------------------------------------------------------------+------------+------------+------------+------------+------------+
| path | files | code | comment | blank | total |
+-------------------------------------------------------------------------------------------------------------------------------------+------------+------------+------------+------------+------------+
| . | 5 | -358 | -15 | -33 | -406 |
| components | 3 | -517 | -72 | -91 | -680 |
| hooks | 2 | 159 | 57 | 58 | 274 |
+-------------------------------------------------------------------------------------------------------------------------------------+------------+------------+------------+------------+------------+
Files
+-------------------------------------------------------------------------------------------------------------------------------------+----------------+------------+------------+------------+------------+
| filename | language | code | comment | blank | total |
+-------------------------------------------------------------------------------------------------------------------------------------+----------------+------------+------------+------------+------------+
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/SaveTemplateDialog.tsx | TypeScript JSX | -83 | 0 | -4 | -87 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/TemplateManager.tsx | TypeScript JSX | -193 | -4 | -15 | -212 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/ValidationContainer.tsx | TypeScript JSX | -241 | -68 | -72 | -381 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useFilters.tsx | TypeScript JSX | -89 | -12 | -16 | -117 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useProductLinesFetching.tsx | TypeScript JSX | 248 | 69 | 74 | 391 |
| Total | | -358 | -15 | -33 | -406 |
+-------------------------------------------------------------------------------------------------------------------------------------+----------------+------------+------------+------------+------------+

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,31 @@
# Summary
Date : 2025-03-17 16:24:17
Directory /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew
Total : 26 files, 6193 codes, 1008 comments, 1017 blanks, all 8218 lines
Summary / [Details](details.md) / [Diff Summary](diff.md) / [Diff Details](diff-details.md)
## Languages
| language | files | code | comment | blank | total |
| :--- | ---: | ---: | ---: | ---: | ---: |
| TypeScript JSX | 18 | 5,817 | 895 | 934 | 7,646 |
| TypeScript | 6 | 309 | 106 | 55 | 470 |
| Markdown | 1 | 39 | 0 | 19 | 58 |
| JavaScript | 1 | 28 | 7 | 9 | 44 |
## Directories
| path | files | code | comment | blank | total |
| :--- | ---: | ---: | ---: | ---: | ---: |
| . | 26 | 6,193 | 1,008 | 1,017 | 8,218 |
| . (Files) | 3 | 63 | 6 | 22 | 91 |
| components | 11 | 3,357 | 403 | 410 | 4,170 |
| components (Files) | 6 | 2,124 | 245 | 252 | 2,621 |
| components/cells | 5 | 1,233 | 158 | 158 | 1,549 |
| hooks | 6 | 2,440 | 486 | 522 | 3,448 |
| types | 1 | 16 | 4 | 4 | 24 |
| utils | 5 | 317 | 109 | 59 | 485 |
Summary / [Details](details.md) / [Diff Summary](diff.md) / [Diff Details](diff-details.md)

View File

@@ -0,0 +1,60 @@
Date : 2025-03-17 16:24:17
Directory : /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew
Total : 26 files, 6193 codes, 1008 comments, 1017 blanks, all 8218 lines
Languages
+----------------+------------+------------+------------+------------+------------+
| language | files | code | comment | blank | total |
+----------------+------------+------------+------------+------------+------------+
| TypeScript JSX | 18 | 5,817 | 895 | 934 | 7,646 |
| TypeScript | 6 | 309 | 106 | 55 | 470 |
| Markdown | 1 | 39 | 0 | 19 | 58 |
| JavaScript | 1 | 28 | 7 | 9 | 44 |
+----------------+------------+------------+------------+------------+------------+
Directories
+------------------------------------------------------------------------------------------------------------------------------------------+------------+------------+------------+------------+------------+
| path | files | code | comment | blank | total |
+------------------------------------------------------------------------------------------------------------------------------------------+------------+------------+------------+------------+------------+
| . | 26 | 6,193 | 1,008 | 1,017 | 8,218 |
| . (Files) | 3 | 63 | 6 | 22 | 91 |
| components | 11 | 3,357 | 403 | 410 | 4,170 |
| components (Files) | 6 | 2,124 | 245 | 252 | 2,621 |
| components/cells | 5 | 1,233 | 158 | 158 | 1,549 |
| hooks | 6 | 2,440 | 486 | 522 | 3,448 |
| types | 1 | 16 | 4 | 4 | 24 |
| utils | 5 | 317 | 109 | 59 | 485 |
+------------------------------------------------------------------------------------------------------------------------------------------+------------+------------+------------+------------+------------+
Files
+------------------------------------------------------------------------------------------------------------------------------------------+----------------+------------+------------+------------+------------+
| filename | language | code | comment | blank | total |
+------------------------------------------------------------------------------------------------------------------------------------------+----------------+------------+------------+------------+------------+
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/README.md | Markdown | 39 | 0 | 19 | 58 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/AiValidationDialogs.tsx | TypeScript JSX | 230 | 10 | 8 | 248 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/BaseCellContent.tsx | TypeScript JSX | 18 | 0 | 3 | 21 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/SearchableTemplateSelect.tsx | TypeScript JSX | 273 | 19 | 37 | 329 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/ValidationCell.tsx | TypeScript JSX | 374 | 42 | 44 | 460 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/ValidationContainer.tsx | TypeScript JSX | 730 | 126 | 106 | 962 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/ValidationTable.tsx | TypeScript JSX | 499 | 48 | 54 | 601 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/cells/CheckboxCell.tsx | TypeScript JSX | 112 | 12 | 21 | 145 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/cells/InputCell.tsx | TypeScript JSX | 232 | 31 | 32 | 295 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/cells/MultiSelectCell.tsx | TypeScript JSX | 407 | 56 | 52 | 515 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/cells/MultilineInput.tsx | TypeScript JSX | 193 | 23 | 22 | 238 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/cells/SelectCell.tsx | TypeScript JSX | 289 | 36 | 31 | 356 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useAiValidation.tsx | TypeScript JSX | 500 | 75 | 89 | 664 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useProductLinesFetching.tsx | TypeScript JSX | 248 | 69 | 74 | 391 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useTemplates.tsx | TypeScript JSX | 204 | 26 | 33 | 263 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useUpcValidation.tsx | TypeScript JSX | 209 | 49 | 50 | 308 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useValidation.tsx | TypeScript JSX | 219 | 39 | 47 | 305 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useValidationState.tsx | TypeScript JSX | 1,060 | 228 | 229 | 1,517 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/index.tsx | TypeScript JSX | 20 | 6 | 2 | 28 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/types.ts | TypeScript | 4 | 0 | 1 | 5 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/types/index.ts | TypeScript | 16 | 4 | 4 | 24 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/utils/dataMutations.ts | TypeScript | 124 | 4 | 14 | 142 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/utils/errorUtils.ts | TypeScript | 21 | 15 | 5 | 41 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/utils/upcValidation.ts | TypeScript | 43 | 24 | 7 | 74 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/utils/validation-helper.js | JavaScript | 28 | 7 | 9 | 44 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/utils/validationUtils.ts | TypeScript | 101 | 59 | 24 | 184 |
| Total | | 6,193 | 1,008 | 1,017 | 8,218 |
+------------------------------------------------------------------------------------------------------------------------------------------+----------------+------------+------------+------------+------------+

View File

@@ -0,0 +1,42 @@
# Details
Date : 2025-03-18 12:39:04
Directory /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew
Total : 27 files, 6925 codes, 1247 comments, 1248 blanks, all 9420 lines
[Summary](results.md) / Details / [Diff Summary](diff.md) / [Diff Details](diff-details.md)
## Files
| filename | language | code | comment | blank | total |
| :--- | :--- | ---: | ---: | ---: | ---: |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/README.md](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/README.md) | Markdown | 39 | 0 | 19 | 58 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/AiValidationDialogs.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/AiValidationDialogs.tsx) | TypeScript JSX | 230 | 10 | 8 | 248 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/BaseCellContent.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/BaseCellContent.tsx) | TypeScript JSX | 18 | 0 | 3 | 21 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/SearchableTemplateSelect.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/SearchableTemplateSelect.tsx) | TypeScript JSX | 273 | 19 | 37 | 329 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/UpcValidationTableAdapter.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/UpcValidationTableAdapter.tsx) | TypeScript JSX | 113 | 17 | 10 | 140 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/ValidationCell.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/ValidationCell.tsx) | TypeScript JSX | 377 | 49 | 54 | 480 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/ValidationContainer.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/ValidationContainer.tsx) | TypeScript JSX | 969 | 182 | 158 | 1,309 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/ValidationTable.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/ValidationTable.tsx) | TypeScript JSX | 509 | 50 | 57 | 616 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/cells/CheckboxCell.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/cells/CheckboxCell.tsx) | TypeScript JSX | 112 | 12 | 21 | 145 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/cells/InputCell.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/cells/InputCell.tsx) | TypeScript JSX | 233 | 34 | 33 | 300 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/cells/MultiSelectCell.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/cells/MultiSelectCell.tsx) | TypeScript JSX | 420 | 66 | 59 | 545 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/cells/MultilineInput.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/cells/MultilineInput.tsx) | TypeScript JSX | 193 | 23 | 22 | 238 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/cells/SelectCell.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/cells/SelectCell.tsx) | TypeScript JSX | 227 | 36 | 32 | 295 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useAiValidation.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useAiValidation.tsx) | TypeScript JSX | 500 | 75 | 89 | 664 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useProductLinesFetching.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useProductLinesFetching.tsx) | TypeScript JSX | 264 | 75 | 81 | 420 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useTemplates.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useTemplates.tsx) | TypeScript JSX | 204 | 26 | 33 | 263 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useUpcValidation.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useUpcValidation.tsx) | TypeScript JSX | 337 | 88 | 92 | 517 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useValidation.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useValidation.tsx) | TypeScript JSX | 360 | 78 | 85 | 523 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useValidationState.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useValidationState.tsx) | TypeScript JSX | 1,190 | 288 | 289 | 1,767 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/index.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/index.tsx) | TypeScript JSX | 20 | 6 | 2 | 28 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/types.ts](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/types.ts) | TypeScript | 4 | 0 | 1 | 5 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/types/index.ts](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/types/index.ts) | TypeScript | 16 | 4 | 4 | 24 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/utils/dataMutations.ts](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/utils/dataMutations.ts) | TypeScript | 124 | 4 | 14 | 142 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/utils/errorUtils.ts](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/utils/errorUtils.ts) | TypeScript | 21 | 15 | 5 | 41 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/utils/upcValidation.ts](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/utils/upcValidation.ts) | TypeScript | 43 | 24 | 7 | 74 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/utils/validation-helper.js](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/utils/validation-helper.js) | JavaScript | 28 | 7 | 9 | 44 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/utils/validationUtils.ts](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/utils/validationUtils.ts) | TypeScript | 101 | 59 | 24 | 184 |
[Summary](results.md) / Details / [Diff Summary](diff.md) / [Diff Details](diff-details.md)

View File

@@ -0,0 +1,26 @@
# Diff Details
Date : 2025-03-18 12:39:04
Directory /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew
Total : 11 files, 732 codes, 239 comments, 231 blanks, all 1202 lines
[Summary](results.md) / [Details](details.md) / [Diff Summary](diff.md) / Diff Details
## Files
| filename | language | code | comment | blank | total |
| :--- | :--- | ---: | ---: | ---: | ---: |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/UpcValidationTableAdapter.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/UpcValidationTableAdapter.tsx) | TypeScript JSX | 113 | 17 | 10 | 140 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/ValidationCell.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/ValidationCell.tsx) | TypeScript JSX | 3 | 7 | 10 | 20 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/ValidationContainer.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/ValidationContainer.tsx) | TypeScript JSX | 239 | 56 | 52 | 347 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/ValidationTable.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/ValidationTable.tsx) | TypeScript JSX | 10 | 2 | 3 | 15 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/cells/InputCell.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/cells/InputCell.tsx) | TypeScript JSX | 1 | 3 | 1 | 5 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/cells/MultiSelectCell.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/cells/MultiSelectCell.tsx) | TypeScript JSX | 13 | 10 | 7 | 30 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/cells/SelectCell.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/cells/SelectCell.tsx) | TypeScript JSX | -62 | 0 | 1 | -61 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useProductLinesFetching.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useProductLinesFetching.tsx) | TypeScript JSX | 16 | 6 | 7 | 29 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useUpcValidation.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useUpcValidation.tsx) | TypeScript JSX | 128 | 39 | 42 | 209 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useValidation.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useValidation.tsx) | TypeScript JSX | 141 | 39 | 38 | 218 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useValidationState.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useValidationState.tsx) | TypeScript JSX | 130 | 60 | 60 | 250 |
[Summary](results.md) / [Details](details.md) / [Diff Summary](diff.md) / Diff Details

View File

@@ -0,0 +1,25 @@
# Diff Summary
Date : 2025-03-18 12:39:04
Directory /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew
Total : 11 files, 732 codes, 239 comments, 231 blanks, all 1202 lines
[Summary](results.md) / [Details](details.md) / Diff Summary / [Diff Details](diff-details.md)
## Languages
| language | files | code | comment | blank | total |
| :--- | ---: | ---: | ---: | ---: | ---: |
| TypeScript JSX | 11 | 732 | 239 | 231 | 1,202 |
## Directories
| path | files | code | comment | blank | total |
| :--- | ---: | ---: | ---: | ---: | ---: |
| . | 11 | 732 | 239 | 231 | 1,202 |
| components | 7 | 317 | 95 | 84 | 496 |
| components (Files) | 4 | 365 | 82 | 75 | 522 |
| components/cells | 3 | -48 | 13 | 9 | -26 |
| hooks | 4 | 415 | 144 | 147 | 706 |
[Summary](results.md) / [Details](details.md) / Diff Summary / [Diff Details](diff-details.md)

View File

@@ -0,0 +1,39 @@
Date : 2025-03-18 12:39:04
Directory : /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew
Total : 11 files, 732 codes, 239 comments, 231 blanks, all 1202 lines
Languages
+----------------+------------+------------+------------+------------+------------+
| language | files | code | comment | blank | total |
+----------------+------------+------------+------------+------------+------------+
| TypeScript JSX | 11 | 732 | 239 | 231 | 1,202 |
+----------------+------------+------------+------------+------------+------------+
Directories
+-------------------------------------------------------------------------------------------------------------------------------------------+------------+------------+------------+------------+------------+
| path | files | code | comment | blank | total |
+-------------------------------------------------------------------------------------------------------------------------------------------+------------+------------+------------+------------+------------+
| . | 11 | 732 | 239 | 231 | 1,202 |
| components | 7 | 317 | 95 | 84 | 496 |
| components (Files) | 4 | 365 | 82 | 75 | 522 |
| components/cells | 3 | -48 | 13 | 9 | -26 |
| hooks | 4 | 415 | 144 | 147 | 706 |
+-------------------------------------------------------------------------------------------------------------------------------------------+------------+------------+------------+------------+------------+
Files
+-------------------------------------------------------------------------------------------------------------------------------------------+----------------+------------+------------+------------+------------+
| filename | language | code | comment | blank | total |
+-------------------------------------------------------------------------------------------------------------------------------------------+----------------+------------+------------+------------+------------+
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/UpcValidationTableAdapter.tsx | TypeScript JSX | 113 | 17 | 10 | 140 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/ValidationCell.tsx | TypeScript JSX | 3 | 7 | 10 | 20 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/ValidationContainer.tsx | TypeScript JSX | 239 | 56 | 52 | 347 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/ValidationTable.tsx | TypeScript JSX | 10 | 2 | 3 | 15 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/cells/InputCell.tsx | TypeScript JSX | 1 | 3 | 1 | 5 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/cells/MultiSelectCell.tsx | TypeScript JSX | 13 | 10 | 7 | 30 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/cells/SelectCell.tsx | TypeScript JSX | -62 | 0 | 1 | -61 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useProductLinesFetching.tsx | TypeScript JSX | 16 | 6 | 7 | 29 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useUpcValidation.tsx | TypeScript JSX | 128 | 39 | 42 | 209 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useValidation.tsx | TypeScript JSX | 141 | 39 | 38 | 218 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useValidationState.tsx | TypeScript JSX | 130 | 60 | 60 | 250 |
| Total | | 732 | 239 | 231 | 1,202 |
+-------------------------------------------------------------------------------------------------------------------------------------------+----------------+------------+------------+------------+------------+

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,31 @@
# Summary
Date : 2025-03-18 12:39:04
Directory /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew
Total : 27 files, 6925 codes, 1247 comments, 1248 blanks, all 9420 lines
Summary / [Details](details.md) / [Diff Summary](diff.md) / [Diff Details](diff-details.md)
## Languages
| language | files | code | comment | blank | total |
| :--- | ---: | ---: | ---: | ---: | ---: |
| TypeScript JSX | 19 | 6,549 | 1,134 | 1,165 | 8,848 |
| TypeScript | 6 | 309 | 106 | 55 | 470 |
| Markdown | 1 | 39 | 0 | 19 | 58 |
| JavaScript | 1 | 28 | 7 | 9 | 44 |
## Directories
| path | files | code | comment | blank | total |
| :--- | ---: | ---: | ---: | ---: | ---: |
| . | 27 | 6,925 | 1,247 | 1,248 | 9,420 |
| . (Files) | 3 | 63 | 6 | 22 | 91 |
| components | 12 | 3,674 | 498 | 494 | 4,666 |
| components (Files) | 7 | 2,489 | 327 | 327 | 3,143 |
| components/cells | 5 | 1,185 | 171 | 167 | 1,523 |
| hooks | 6 | 2,855 | 630 | 669 | 4,154 |
| types | 1 | 16 | 4 | 4 | 24 |
| utils | 5 | 317 | 109 | 59 | 485 |
Summary / [Details](details.md) / [Diff Summary](diff.md) / [Diff Details](diff-details.md)

View File

@@ -0,0 +1,61 @@
Date : 2025-03-18 12:39:04
Directory : /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew
Total : 27 files, 6925 codes, 1247 comments, 1248 blanks, all 9420 lines
Languages
+----------------+------------+------------+------------+------------+------------+
| language | files | code | comment | blank | total |
+----------------+------------+------------+------------+------------+------------+
| TypeScript JSX | 19 | 6,549 | 1,134 | 1,165 | 8,848 |
| TypeScript | 6 | 309 | 106 | 55 | 470 |
| Markdown | 1 | 39 | 0 | 19 | 58 |
| JavaScript | 1 | 28 | 7 | 9 | 44 |
+----------------+------------+------------+------------+------------+------------+
Directories
+-------------------------------------------------------------------------------------------------------------------------------------------+------------+------------+------------+------------+------------+
| path | files | code | comment | blank | total |
+-------------------------------------------------------------------------------------------------------------------------------------------+------------+------------+------------+------------+------------+
| . | 27 | 6,925 | 1,247 | 1,248 | 9,420 |
| . (Files) | 3 | 63 | 6 | 22 | 91 |
| components | 12 | 3,674 | 498 | 494 | 4,666 |
| components (Files) | 7 | 2,489 | 327 | 327 | 3,143 |
| components/cells | 5 | 1,185 | 171 | 167 | 1,523 |
| hooks | 6 | 2,855 | 630 | 669 | 4,154 |
| types | 1 | 16 | 4 | 4 | 24 |
| utils | 5 | 317 | 109 | 59 | 485 |
+-------------------------------------------------------------------------------------------------------------------------------------------+------------+------------+------------+------------+------------+
Files
+-------------------------------------------------------------------------------------------------------------------------------------------+----------------+------------+------------+------------+------------+
| filename | language | code | comment | blank | total |
+-------------------------------------------------------------------------------------------------------------------------------------------+----------------+------------+------------+------------+------------+
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/README.md | Markdown | 39 | 0 | 19 | 58 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/AiValidationDialogs.tsx | TypeScript JSX | 230 | 10 | 8 | 248 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/BaseCellContent.tsx | TypeScript JSX | 18 | 0 | 3 | 21 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/SearchableTemplateSelect.tsx | TypeScript JSX | 273 | 19 | 37 | 329 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/UpcValidationTableAdapter.tsx | TypeScript JSX | 113 | 17 | 10 | 140 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/ValidationCell.tsx | TypeScript JSX | 377 | 49 | 54 | 480 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/ValidationContainer.tsx | TypeScript JSX | 969 | 182 | 158 | 1,309 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/ValidationTable.tsx | TypeScript JSX | 509 | 50 | 57 | 616 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/cells/CheckboxCell.tsx | TypeScript JSX | 112 | 12 | 21 | 145 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/cells/InputCell.tsx | TypeScript JSX | 233 | 34 | 33 | 300 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/cells/MultiSelectCell.tsx | TypeScript JSX | 420 | 66 | 59 | 545 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/cells/MultilineInput.tsx | TypeScript JSX | 193 | 23 | 22 | 238 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/cells/SelectCell.tsx | TypeScript JSX | 227 | 36 | 32 | 295 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useAiValidation.tsx | TypeScript JSX | 500 | 75 | 89 | 664 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useProductLinesFetching.tsx | TypeScript JSX | 264 | 75 | 81 | 420 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useTemplates.tsx | TypeScript JSX | 204 | 26 | 33 | 263 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useUpcValidation.tsx | TypeScript JSX | 337 | 88 | 92 | 517 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useValidation.tsx | TypeScript JSX | 360 | 78 | 85 | 523 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useValidationState.tsx | TypeScript JSX | 1,190 | 288 | 289 | 1,767 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/index.tsx | TypeScript JSX | 20 | 6 | 2 | 28 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/types.ts | TypeScript | 4 | 0 | 1 | 5 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/types/index.ts | TypeScript | 16 | 4 | 4 | 24 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/utils/dataMutations.ts | TypeScript | 124 | 4 | 14 | 142 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/utils/errorUtils.ts | TypeScript | 21 | 15 | 5 | 41 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/utils/upcValidation.ts | TypeScript | 43 | 24 | 7 | 74 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/utils/validation-helper.js | JavaScript | 28 | 7 | 9 | 44 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/utils/validationUtils.ts | TypeScript | 101 | 59 | 24 | 184 |
| Total | | 6,925 | 1,247 | 1,248 | 9,420 |
+-------------------------------------------------------------------------------------------------------------------------------------------+----------------+------------+------------+------------+------------+

View File

@@ -0,0 +1,42 @@
# Details
Date : 2025-03-18 13:49:23
Directory /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew
Total : 27 files, 6961 codes, 1254 comments, 1252 blanks, all 9467 lines
[Summary](results.md) / Details / [Diff Summary](diff.md) / [Diff Details](diff-details.md)
## Files
| filename | language | code | comment | blank | total |
| :--- | :--- | ---: | ---: | ---: | ---: |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/README.md](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/README.md) | Markdown | 39 | 0 | 19 | 58 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/AiValidationDialogs.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/AiValidationDialogs.tsx) | TypeScript JSX | 230 | 10 | 8 | 248 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/BaseCellContent.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/BaseCellContent.tsx) | TypeScript JSX | 18 | 0 | 3 | 21 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/SearchableTemplateSelect.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/SearchableTemplateSelect.tsx) | TypeScript JSX | 273 | 19 | 37 | 329 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/UpcValidationTableAdapter.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/UpcValidationTableAdapter.tsx) | TypeScript JSX | 113 | 17 | 10 | 140 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/ValidationCell.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/ValidationCell.tsx) | TypeScript JSX | 395 | 51 | 55 | 501 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/ValidationContainer.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/ValidationContainer.tsx) | TypeScript JSX | 969 | 182 | 158 | 1,309 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/ValidationTable.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/ValidationTable.tsx) | TypeScript JSX | 527 | 55 | 60 | 642 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/cells/CheckboxCell.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/cells/CheckboxCell.tsx) | TypeScript JSX | 112 | 12 | 21 | 145 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/cells/InputCell.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/cells/InputCell.tsx) | TypeScript JSX | 233 | 34 | 33 | 300 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/cells/MultiSelectCell.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/cells/MultiSelectCell.tsx) | TypeScript JSX | 420 | 66 | 59 | 545 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/cells/MultilineInput.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/cells/MultilineInput.tsx) | TypeScript JSX | 193 | 23 | 22 | 238 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/cells/SelectCell.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/cells/SelectCell.tsx) | TypeScript JSX | 227 | 36 | 32 | 295 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useAiValidation.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useAiValidation.tsx) | TypeScript JSX | 500 | 75 | 89 | 664 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useProductLinesFetching.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useProductLinesFetching.tsx) | TypeScript JSX | 264 | 75 | 81 | 420 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useTemplates.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useTemplates.tsx) | TypeScript JSX | 204 | 26 | 33 | 263 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useUpcValidation.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useUpcValidation.tsx) | TypeScript JSX | 337 | 88 | 92 | 517 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useValidation.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useValidation.tsx) | TypeScript JSX | 360 | 78 | 85 | 523 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useValidationState.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useValidationState.tsx) | TypeScript JSX | 1,190 | 288 | 289 | 1,767 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/index.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/index.tsx) | TypeScript JSX | 20 | 6 | 2 | 28 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/types.ts](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/types.ts) | TypeScript | 4 | 0 | 1 | 5 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/types/index.ts](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/types/index.ts) | TypeScript | 16 | 4 | 4 | 24 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/utils/dataMutations.ts](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/utils/dataMutations.ts) | TypeScript | 124 | 4 | 14 | 142 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/utils/errorUtils.ts](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/utils/errorUtils.ts) | TypeScript | 21 | 15 | 5 | 41 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/utils/upcValidation.ts](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/utils/upcValidation.ts) | TypeScript | 43 | 24 | 7 | 74 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/utils/validation-helper.js](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/utils/validation-helper.js) | JavaScript | 28 | 7 | 9 | 44 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/utils/validationUtils.ts](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/utils/validationUtils.ts) | TypeScript | 101 | 59 | 24 | 184 |
[Summary](results.md) / Details / [Diff Summary](diff.md) / [Diff Details](diff-details.md)

View File

@@ -0,0 +1,17 @@
# Diff Details
Date : 2025-03-18 13:49:23
Directory /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew
Total : 2 files, 36 codes, 7 comments, 4 blanks, all 47 lines
[Summary](results.md) / [Details](details.md) / [Diff Summary](diff.md) / Diff Details
## Files
| filename | language | code | comment | blank | total |
| :--- | :--- | ---: | ---: | ---: | ---: |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/ValidationCell.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/ValidationCell.tsx) | TypeScript JSX | 18 | 2 | 1 | 21 |
| [inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/ValidationTable.tsx](/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/ValidationTable.tsx) | TypeScript JSX | 18 | 5 | 3 | 26 |
[Summary](results.md) / [Details](details.md) / [Diff Summary](diff.md) / Diff Details

View File

@@ -0,0 +1,22 @@
# Diff Summary
Date : 2025-03-18 13:49:23
Directory /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew
Total : 2 files, 36 codes, 7 comments, 4 blanks, all 47 lines
[Summary](results.md) / [Details](details.md) / Diff Summary / [Diff Details](diff-details.md)
## Languages
| language | files | code | comment | blank | total |
| :--- | ---: | ---: | ---: | ---: | ---: |
| TypeScript JSX | 2 | 36 | 7 | 4 | 47 |
## Directories
| path | files | code | comment | blank | total |
| :--- | ---: | ---: | ---: | ---: | ---: |
| . | 2 | 36 | 7 | 4 | 47 |
| components | 2 | 36 | 7 | 4 | 47 |
[Summary](results.md) / [Details](details.md) / Diff Summary / [Diff Details](diff-details.md)

View File

@@ -0,0 +1,27 @@
Date : 2025-03-18 13:49:23
Directory : /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew
Total : 2 files, 36 codes, 7 comments, 4 blanks, all 47 lines
Languages
+----------------+------------+------------+------------+------------+------------+
| language | files | code | comment | blank | total |
+----------------+------------+------------+------------+------------+------------+
| TypeScript JSX | 2 | 36 | 7 | 4 | 47 |
+----------------+------------+------------+------------+------------+------------+
Directories
+---------------------------------------------------------------------------------------------------------------------------------+------------+------------+------------+------------+------------+
| path | files | code | comment | blank | total |
+---------------------------------------------------------------------------------------------------------------------------------+------------+------------+------------+------------+------------+
| . | 2 | 36 | 7 | 4 | 47 |
| components | 2 | 36 | 7 | 4 | 47 |
+---------------------------------------------------------------------------------------------------------------------------------+------------+------------+------------+------------+------------+
Files
+---------------------------------------------------------------------------------------------------------------------------------+----------------+------------+------------+------------+------------+
| filename | language | code | comment | blank | total |
+---------------------------------------------------------------------------------------------------------------------------------+----------------+------------+------------+------------+------------+
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/ValidationCell.tsx | TypeScript JSX | 18 | 2 | 1 | 21 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/ValidationTable.tsx | TypeScript JSX | 18 | 5 | 3 | 26 |
| Total | | 36 | 7 | 4 | 47 |
+---------------------------------------------------------------------------------------------------------------------------------+----------------+------------+------------+------------+------------+

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,31 @@
# Summary
Date : 2025-03-18 13:49:23
Directory /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew
Total : 27 files, 6961 codes, 1254 comments, 1252 blanks, all 9467 lines
Summary / [Details](details.md) / [Diff Summary](diff.md) / [Diff Details](diff-details.md)
## Languages
| language | files | code | comment | blank | total |
| :--- | ---: | ---: | ---: | ---: | ---: |
| TypeScript JSX | 19 | 6,585 | 1,141 | 1,169 | 8,895 |
| TypeScript | 6 | 309 | 106 | 55 | 470 |
| Markdown | 1 | 39 | 0 | 19 | 58 |
| JavaScript | 1 | 28 | 7 | 9 | 44 |
## Directories
| path | files | code | comment | blank | total |
| :--- | ---: | ---: | ---: | ---: | ---: |
| . | 27 | 6,961 | 1,254 | 1,252 | 9,467 |
| . (Files) | 3 | 63 | 6 | 22 | 91 |
| components | 12 | 3,710 | 505 | 498 | 4,713 |
| components (Files) | 7 | 2,525 | 334 | 331 | 3,190 |
| components/cells | 5 | 1,185 | 171 | 167 | 1,523 |
| hooks | 6 | 2,855 | 630 | 669 | 4,154 |
| types | 1 | 16 | 4 | 4 | 24 |
| utils | 5 | 317 | 109 | 59 | 485 |
Summary / [Details](details.md) / [Diff Summary](diff.md) / [Diff Details](diff-details.md)

View File

@@ -0,0 +1,61 @@
Date : 2025-03-18 13:49:23
Directory : /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew
Total : 27 files, 6961 codes, 1254 comments, 1252 blanks, all 9467 lines
Languages
+----------------+------------+------------+------------+------------+------------+
| language | files | code | comment | blank | total |
+----------------+------------+------------+------------+------------+------------+
| TypeScript JSX | 19 | 6,585 | 1,141 | 1,169 | 8,895 |
| TypeScript | 6 | 309 | 106 | 55 | 470 |
| Markdown | 1 | 39 | 0 | 19 | 58 |
| JavaScript | 1 | 28 | 7 | 9 | 44 |
+----------------+------------+------------+------------+------------+------------+
Directories
+-------------------------------------------------------------------------------------------------------------------------------------------+------------+------------+------------+------------+------------+
| path | files | code | comment | blank | total |
+-------------------------------------------------------------------------------------------------------------------------------------------+------------+------------+------------+------------+------------+
| . | 27 | 6,961 | 1,254 | 1,252 | 9,467 |
| . (Files) | 3 | 63 | 6 | 22 | 91 |
| components | 12 | 3,710 | 505 | 498 | 4,713 |
| components (Files) | 7 | 2,525 | 334 | 331 | 3,190 |
| components/cells | 5 | 1,185 | 171 | 167 | 1,523 |
| hooks | 6 | 2,855 | 630 | 669 | 4,154 |
| types | 1 | 16 | 4 | 4 | 24 |
| utils | 5 | 317 | 109 | 59 | 485 |
+-------------------------------------------------------------------------------------------------------------------------------------------+------------+------------+------------+------------+------------+
Files
+-------------------------------------------------------------------------------------------------------------------------------------------+----------------+------------+------------+------------+------------+
| filename | language | code | comment | blank | total |
+-------------------------------------------------------------------------------------------------------------------------------------------+----------------+------------+------------+------------+------------+
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/README.md | Markdown | 39 | 0 | 19 | 58 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/AiValidationDialogs.tsx | TypeScript JSX | 230 | 10 | 8 | 248 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/BaseCellContent.tsx | TypeScript JSX | 18 | 0 | 3 | 21 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/SearchableTemplateSelect.tsx | TypeScript JSX | 273 | 19 | 37 | 329 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/UpcValidationTableAdapter.tsx | TypeScript JSX | 113 | 17 | 10 | 140 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/ValidationCell.tsx | TypeScript JSX | 395 | 51 | 55 | 501 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/ValidationContainer.tsx | TypeScript JSX | 969 | 182 | 158 | 1,309 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/ValidationTable.tsx | TypeScript JSX | 527 | 55 | 60 | 642 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/cells/CheckboxCell.tsx | TypeScript JSX | 112 | 12 | 21 | 145 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/cells/InputCell.tsx | TypeScript JSX | 233 | 34 | 33 | 300 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/cells/MultiSelectCell.tsx | TypeScript JSX | 420 | 66 | 59 | 545 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/cells/MultilineInput.tsx | TypeScript JSX | 193 | 23 | 22 | 238 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/cells/SelectCell.tsx | TypeScript JSX | 227 | 36 | 32 | 295 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useAiValidation.tsx | TypeScript JSX | 500 | 75 | 89 | 664 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useProductLinesFetching.tsx | TypeScript JSX | 264 | 75 | 81 | 420 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useTemplates.tsx | TypeScript JSX | 204 | 26 | 33 | 263 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useUpcValidation.tsx | TypeScript JSX | 337 | 88 | 92 | 517 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useValidation.tsx | TypeScript JSX | 360 | 78 | 85 | 523 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useValidationState.tsx | TypeScript JSX | 1,190 | 288 | 289 | 1,767 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/index.tsx | TypeScript JSX | 20 | 6 | 2 | 28 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/types.ts | TypeScript | 4 | 0 | 1 | 5 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/types/index.ts | TypeScript | 16 | 4 | 4 | 24 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/utils/dataMutations.ts | TypeScript | 124 | 4 | 14 | 142 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/utils/errorUtils.ts | TypeScript | 21 | 15 | 5 | 41 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/utils/upcValidation.ts | TypeScript | 43 | 24 | 7 | 74 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/utils/validation-helper.js | JavaScript | 28 | 7 | 9 | 44 |
| /Users/matt/Dev/inventory/inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/utils/validationUtils.ts | TypeScript | 101 | 59 | 24 | 184 |
| Total | | 6,961 | 1,254 | 1,252 | 9,467 |
+-------------------------------------------------------------------------------------------------------------------------------------------+----------------+------------+------------+------------+------------+

9
.gitignore vendored
View File

@@ -50,6 +50,11 @@ dashboard-server/meta-server/._package-lock.json
dashboard-server/meta-server/._services
*.tsbuildinfo
uploads/*
uploads/**/*
**/uploads/*
**/uploads/**/*
# CSV data files
*.csv
csv/*
@@ -59,3 +64,7 @@ csv/**/*
!csv/.gitkeep
inventory/tsconfig.tsbuildinfo
inventory-server/scripts/.fuse_hidden00000fa20000000a
.VSCodeCounter/
.VSCodeCounter/*
.VSCodeCounter/**/*

172
docs/PERMISSIONS.md Normal file
View File

@@ -0,0 +1,172 @@
# Permission System Documentation
This document outlines the permission system implemented in the Inventory Manager application.
## Permission Structure
Permissions follow this naming convention:
- Page access: `access:{page_name}`
- Actions: `{action}:{resource}`
Examples:
- `access:products` - Can access the Products page
- `create:products` - Can create new products
- `edit:users` - Can edit user accounts
## Permission Components
### PermissionGuard
The core component that conditionally renders content based on permissions.
```tsx
<PermissionGuard
permission="create:products"
fallback={<p>No permission</p>}
>
<button>Create Product</button>
</PermissionGuard>
```
Options:
- `permission`: Single permission code
- `anyPermissions`: Array of permissions (ANY match grants access)
- `allPermissions`: Array of permissions (ALL required)
- `adminOnly`: For admin-only sections
- `page`: Page name (checks `access:{page}` permission)
- `fallback`: Content to show if permission check fails
### PermissionProtectedRoute
Protects entire pages based on page access permissions.
```tsx
<Route path="/products" element={
<PermissionProtectedRoute page="products">
<Products />
</PermissionProtectedRoute>
} />
```
### ProtectedSection
Protects sections within a page based on action permissions.
```tsx
<ProtectedSection page="products" action="create">
<button>Add Product</button>
</ProtectedSection>
```
### PermissionButton
Button that automatically handles permissions.
```tsx
<PermissionButton
page="products"
action="create"
onClick={handleCreateProduct}
>
Add Product
</PermissionButton>
```
### SettingsSection
Specific component for settings with built-in permission checks.
```tsx
<SettingsSection
title="System Settings"
description="Configure global settings"
permission="edit:system_settings"
>
{/* Settings content */}
</SettingsSection>
```
## Permission Hooks
### usePermissions
Core hook for checking any permission.
```tsx
const { hasPermission, hasPageAccess, isAdmin } = usePermissions();
if (hasPermission('delete:products')) {
// Can delete products
}
```
### usePagePermission
Specialized hook for page-level permissions.
```tsx
const { canView, canCreate, canEdit, canDelete } = usePagePermission('products');
if (canEdit()) {
// Can edit products
}
```
## Database Schema
Permissions are stored in the database:
- `permissions` table: Stores all available permissions
- `user_permissions` junction table: Maps permissions to users
Admin users automatically have all permissions.
## Common Permission Codes
| Code | Description |
|------|-------------|
| `access:dashboard` | Access to Dashboard page |
| `access:products` | Access to Products page |
| `create:products` | Create new products |
| `edit:products` | Edit existing products |
| `delete:products` | Delete products |
| `view:users` | View user accounts |
| `edit:users` | Edit user accounts |
| `manage:permissions` | Assign permissions to users |
## Implementation Examples
### Page Protection
In `App.tsx`:
```tsx
<Route path="/products" element={
<PermissionProtectedRoute page="products">
<Products />
</PermissionProtectedRoute>
} />
```
### Component Level Protection
```tsx
const { canEdit } = usePagePermission('products');
function handleEdit() {
if (!canEdit()) {
toast.error("You don't have permission");
return;
}
// Edit logic
}
```
### UI Element Protection
```tsx
<PermissionButton
page="products"
action="delete"
onClick={handleDelete}
>
Delete
</PermissionButton>
```

View File

@@ -0,0 +1,396 @@
# ValidationStep Component Refactoring Plan
## Overview
This document outlines a comprehensive plan to refactor the current ValidationStep component (4000+ lines) into a more maintainable, modular structure. The new implementation will be developed alongside the existing component without modifying the original code. Once completed, the previous step in the workflow will offer the option to continue to either the original ValidationStep or the new implementation.
## Table of Contents
1. [Current Component Analysis](#current-component-analysis)
2. [New Architecture Design](#new-architecture-design)
3. [Component Structure](#component-structure)
4. [State Management](#state-management)
5. [Key Features Implementation](#key-features-implementation)
6. [Integration Plan](#integration-plan)
7. [Testing Strategy](#testing-strategy)
8. [Project Timeline](#project-timeline)
9. [Design Principles](#design-principles)
10. [Appendix: Function Reference](#appendix-function-reference)
## Current Component Analysis
The current ValidationStep component has several issues:
- **Size**: At over 4000 lines, it's difficult to maintain and understand
- **Multiple responsibilities**: Handles validation, UI rendering, template management, and more
- **Special cases**: Contains numerous special case handlers and exceptions
- **Complex state management**: State is distributed across multiple useState calls
- **Tightly coupled concerns**: UI, validation logic, and business rules are intertwined
### Key Features to Preserve
1. **Data Validation**
- Field-level validation (required, regex, unique)
- Row-level validation (supplier, company fields)
- UPC validation with API integration
- AI-assisted validation
2. **Template Management**
- Saving, loading, and applying templates
- Template-based validation
3. **UI Components**
- Editable table with specialized cell renderers
- Error display and management
- Filtering and sorting capabilities
- Status indicators and progress tracking
4. **Special Field Handling**
- Input fields with price formatting
- Multi-input fields with separator configuration
- Select fields with dropdown options
- Checkbox fields with boolean value mapping
- UPC fields with specialized validation
5. **User Interaction Flows**
- Tab and keyboard navigation
- Bulk operations (select all, apply template)
- Row validation on value change
- Error reporting and display
## New Architecture Design
The new architecture will follow these principles:
1. **Separation of Concerns**
- UI rendering separate from business logic
- Validation logic isolated from state management
- Clear interfaces between components
2. **Composable Components**
- Small, focused components with single responsibilities
- Reusable pattern for different field types
3. **Centralized State Management**
- Custom hooks for state management
- Clear data flow patterns
- Reduced prop drilling
4. **Consistent Error Handling**
- Standardized error structure
- Predictable error propagation
- User-friendly error display
5. **Performance Optimization**
- Virtualized table rendering
- Memoization of expensive computations
- Deferred validation for better user experience
## Component Structure
The new ValidationStepNew folder has the following structure:
```
ValidationStepNew/
├── index.tsx # Main entry point that composes all pieces
├── components/ # UI Components
│ ├── ValidationContainer.tsx # Main wrapper component
│ ├── ValidationTable.tsx # Table implementation
│ ├── ValidationCell.tsx # Cell component
│ ├── ValidationSidebar.tsx # Sidebar with controls
│ ├── ValidationToolbar.tsx # Top toolbar (removed as unnecessary)
│ ├── TemplateManager.tsx # Template management
│ ├── FilterPanel.tsx # Filtering interface (integrated into Container)
│ └── cells/ # Specialized cell renderers
│ ├── InputCell.tsx
│ ├── SelectCell.tsx
│ ├── MultiInputCell.tsx
│ └── CheckboxCell.tsx
├── hooks/ # Custom hooks
│ ├── useValidationState.tsx # Main state management
│ ├── useTemplates.tsx # Template-related logic (integrated into ValidationState)
│ ├── useFilters.tsx # Filtering logic (integrated into ValidationState)
│ └── useUpcValidation.tsx # UPC-specific validation
└── utils/ # Utility functions
├── validationUtils.ts # Validation helper functions
├── formatters.ts # Value formatting utilities
└── constants.ts # Constant values and configuration
```
### Component Responsibilities
#### ValidationContainer
- Main container component
- Coordinates between subcomponents
- Manages global state
- Handles navigation events (next, back)
- Contains filter controls
#### ValidationTable
- Displays the data in tabular form
- Manages selection state
- Handles keyboard navigation
- Integrates with TanStack Table
- Displays properly styled rows and cells
#### ValidationCell
- Factory component that renders appropriate cell type
- Manages cell-level state
- Handles validation errors display
- Manages edit mode
- Shows consistent error indicators
#### TemplateManager
- Handles template selection UI
- Provides template save/load functionality
- Manages template application to rows
#### Cell Components
- **InputCell**: Handles text input with multiline and price support
- **MultiInputCell**: Handles multiple values with separator configuration
- **SelectCell**: Command/popover component for single selection
- **CheckboxCell**: Boolean value selection with mapping support
## State Management
### Core State Interface
```typescript
interface ValidationState<T extends string> {
// Core data
data: RowData<T>[];
filteredData: RowData<T>[];
// Validation state
isValidating: boolean;
validationErrors: Map<number, Record<string, Error[]>>;
rowValidationStatus: Map<number, 'pending' | 'validating' | 'validated' | 'error'>;
// Selection state
rowSelection: RowSelectionState;
// Template state
templates: Template[];
selectedTemplateId: string | null;
// Filter state
filters: FilterState;
// Methods
updateRow: (rowIndex: number, key: T, value: any) => void;
validateRow: (rowIndex: number) => Promise<void>;
validateUpc: (rowIndex: number, upcValue: string) => Promise<void>;
applyTemplate: (templateId: string, rowIndexes: number[]) => void;
saveTemplate: (name: string, type: string) => void;
setFilters: (newFilters: Partial<FilterState>) => void;
// Additional methods...
}
```
### useValidationState Hook
The main state management hook handles:
- Data manipulation (update, sort, filter)
- Selection management
- Validation coordination
- Integration with validation utilities
- Template management
- Filtering and sorting
## Key Features Implementation
### 1. Field Type Handling
Implemented a strategy pattern for different field types:
```typescript
// In ValidationCell
const renderCellContent = () => {
const fieldType = field.fieldType.type
switch (fieldType) {
case 'input':
return <InputCell<T> field={field} value={value} onChange={onChange} ... />
case 'multi-input':
return <MultiInputCell<T> field={field} value={value} onChange={onChange} ... />
case 'select':
return <SelectCell<T> field={field} value={value} onChange={onChange} ... />
// etc.
}
}
```
### 2. Validation Logic
Validation is broken down into clear steps:
1. **Field Validation**: Apply field-level validations (required, regex, etc.)
2. **Row Validation**: Apply row-level validations and rowHook
3. **Table Validation**: Apply table-level validations (unique) and tableHook
Validation now happens automatically without explicit buttons, with immediate feedback on field blur.
### 3. UI Components
UI components follow these principles:
1. **Consistent Styling**: All components use shadcn UI for consistent look and feel
2. **Visual Feedback**: Errors are clearly indicated with icons and border styling
3. **Intuitive Editing**: Fields show outlines even when not in focus, and edit on click
4. **Proper Command Pattern**: Select and multi-select fields use command/popover pattern for better UX
5. **Focus Management**: Fields close when clicking away and perform validation on blur
## Design Principles
Based on user preferences and best practices, the following design principles guide this refactoring:
1. **Automatic Validation**
- Validation should happen automatically without explicit buttons
- All validation should run on initial data load
- Fields should validate on blur (when user clicks away)
2. **Modern UI Patterns**
- Command/popover components for all selects and multi-selects
- Consistent field outlines and borders even when not in focus
- Badge patterns for multi-select items
- Clear visual indicators for errors
3. **Reduced Complexity**
- Remove unnecessary UI elements like "validate all" buttons
- Eliminate redundant state and toast notifications
- Simplify component hierarchy where possible
- Find root causes rather than adding special cases
4. **Consistent Component Behavior**
- Fields should close when clicking away
- All inputs should follow the same editing pattern
- Error handling should be consistent across all field types
- Multi-select fields should allow selecting multiple items with clear visual feedback
## Integration Plan
### 1. Creating the New Component Structure
Folder structure has been created without modifying the existing code:
```bash
mkdir -p inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/{components,hooks,utils}
mkdir -p inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/cells
```
### 2. Implementing Basic Components
Core components have been implemented:
1. Created index.tsx as the main entry point
2. Implemented ValidationContainer with basic state management
3. Created ValidationTable for data display
4. Implemented basic cell rendering with specialized cell types
### 3. Implementing State Management
State management has been implemented:
1. Created useValidationState hook
2. Implemented data transformation utilities
3. Added validation logic
### 4. Integrating with Previous Step
The previous step component allows choosing between validation implementations, enabling gradual testing and adoption.
## Testing Strategy
1. **Unit Tests**
- Test individual utility functions
- Test hooks in isolation
- Test individual UI components
2. **Integration Tests**
- Test component interactions
- Test state management flow
- Test validation logic integration
3. **Comparison Tests**
- Compare output of new component with original
- Verify that all functionality works the same
4. **Performance Tests**
- Measure render times
- Evaluate memory usage
- Compare against original component
## Project Timeline
1. **Phase 1: Initial Structure (Completed)**
- Set up folder structure
- Implement basic components
- Create core state management
2. **Phase 2: Core Functionality (In Progress)**
- Implement validation logic (completed)
- Create cell renderers (completed)
- Add template management (in progress)
3. **Phase 3: Special Features (Upcoming)**
- Implement UPC validation
- Add AI validation
- Handle special cases
4. **Phase 4: UI Refinement (Ongoing)**
- Improve error display (completed)
- Enhance user interactions (completed)
- Optimize performance (in progress)
5. **Phase 5: Testing and Integration (Upcoming)**
- Write tests
- Fix bugs
- Integrate with previous step
## Appendix: Function Reference
This section documents the core functions from the original ValidationStep that need to be preserved in the new implementation.
### Validation Functions
1. **validateRegex** - Validates values against regex patterns
2. **getValidationError** - Determines field-level validation errors
3. **validateAndCommit** - Validates and commits new values
4. **validateData** - Validates all data rows
5. **validateUpcAndGenerateItemNumbers** - Validates UPC codes and generates item numbers
### Formatting Functions
1. **formatPrice** - Formats price values
2. **getDisplayValue** - Gets formatted display value based on field type
3. **isMultiInputType** - Checks if field is multi-input type
4. **getMultiInputSeparator** - Gets separator for multi-input fields
5. **isPriceField** - Checks if field should be formatted as price
### Template Functions
1. **loadTemplates** - Loads templates from storage
2. **saveTemplate** - Saves a new template
3. **applyTemplate** - Applies a template to selected rows
4. **getTemplateDisplayText** - Gets display text for a template
### AI Validation Functions
1. **handleAiValidation** - Triggers AI validation
2. **showCurrentPrompt** - Shows current AI prompt
3. **getFieldDisplayValue** - Gets display value for a field
4. **highlightDifferences** - Highlights differences between original and corrected values
5. **getFieldDisplayValueWithHighlight** - Gets display value with highlighted differences
6. **revertAiChange** - Reverts an AI-suggested change
7. **isChangeReverted** - Checks if an AI change has been reverted
### Event Handlers
1. **handleUpcValueUpdate** - Handles UPC value updates
2. **handleBlur** - Handles input blur events
3. **handleWheel** - Handles wheel events for navigation
4. **copyValueDown** - Copies a value to cells below
5. **handleSkuGeneration** - Generates SKUs
By following this refactoring plan, we continue to transform the monolithic ValidationStep component into a modular, maintainable set of components while preserving all existing functionality and aligning with user preferences for design and behavior.

View File

@@ -0,0 +1,137 @@
# ValidationStepNew Implementation Status
## Overview
This document outlines the current status of the ValidationStepNew implementation, a refactored version of the original ValidationStep component. The goal is to create a more maintainable, modular component that preserves all functionality of the original while eliminating technical debt and implementing modern UI patterns.
## Design Principles
Based on the user's preferences, we're following these core design principles:
1. **Automatic Validation**
- ✅ Validation runs automatically on data load
- ✅ No explicit "validate all" button needed
- ✅ Fields validate on blur when user clicks away
- ✅ Immediate visual feedback for validation errors
2. **Modern UI Patterns**
- ✅ Command/popover components for selects and multi-selects
- ✅ Consistent field outlines and borders even when not in focus
- ✅ Badge pattern for multi-select field items
- ✅ Visual indicators for errors with appropriate styling
3. **Reduced Complexity**
- ✅ Removed unnecessary UI elements like "validate all" button
- ✅ Eliminated redundant toast notifications
- ✅ Simplified component hierarchy
- ✅ Fixed root causes rather than adding special cases
4. **Consistent Behavior**
- ✅ Fields close when clicking away
- ✅ All inputs follow the same editing pattern
- ✅ Error handling is consistent across field types
- ✅ Multi-select fields allow selecting multiple items
## Completed Components
### Core Structure
- ✅ Main component structure
- ✅ Directory organization
- ✅ TypeScript interfaces
- ✅ Props definition and passing
### State Management
-`useValidationState` hook for centralized state
- ✅ Data validation logic
- ✅ Integration with rowHook and tableHook
- ✅ Error tracking and management
- ✅ Row selection
- ✅ Automatic validation on data load
### UI Components
- ✅ ValidationContainer with appropriate layout
- ✅ ValidationTable with shadcn UI components
- ✅ ValidationCell factory component
- ✅ Row select/deselect functionality
- ✅ Error display and indicators
- ✅ Selection action bar
### Cell Components
- ✅ InputCell with price and multiline support
- ✅ MultiInputCell with separator configuration
- ✅ SelectCell using command/popover pattern
- ✅ CheckboxCell with boolean mapping
- ✅ Consistent styling across all field types
- ✅ Proper edit/view state management
- ✅ Outlined borders in both edit and view modes
### Utility Functions
- ✅ Value formatting for display
- ✅ Field type detection
- ✅ Error creation and management
- ✅ Price formatting
### UI Improvements
- ✅ Consistent borders and field outlines
- ✅ Fields that properly close when clicking away
- ✅ Multi-select with badge UI pattern
- ✅ Command pattern for searchable select menus
- ✅ Better visual error indication
## Pending Tasks
### Enhanced Validation
- ⏳ AI validation system
- ⏳ Custom validation hooks
- ⏳ Enhanced UPC validation with API integration
- ⏳ Validation visualizations
### Advanced UI Features
- ⏳ Table virtualization for performance
- ⏳ Drag-and-drop reordering
- ⏳ Bulk operations (copy down, fill all, etc.)
- ⏳ Keyboard navigation improvements
- ⏳ Template dialogs and management UI
### Special Features
- ⏳ Image preview integration
- ⏳ SKU generation system
- ⏳ Item number generation
- ⏳ Dependent dropdown values
### Testing
- ⏳ Unit tests for utility functions
- ⏳ Component tests
- ⏳ Integration tests
- ⏳ Performance benchmarks
## Known Issues
1. TypeScript error for `validationDisabled` property in ValidationCell.tsx
2. Some type casting is needed due to complex generic types
3. Need to address edge cases for multi-select fields validation
4. Proper error handling for API calls needs implementation
## Next Steps
1. Fix TypeScript errors in ValidationCell and related components
2. Complete template management functionality
3. Implement UPC validation with API integration
4. Make multi-select field validation more robust
5. Add comprehensive tests
## Performance Improvements
We've already implemented several performance optimizations:
1. ✅ More efficient state updates by removing unnecessary re-renders
2. ✅ Better error handling to prevent cascading validations
3. ✅ Improved component isolation to prevent unnecessary re-renders
4. ✅ Automatic validation that doesn't block the UI
Additional planned improvements:
1. Virtualized table rendering for large datasets
2. Memoization of expensive calculations
3. Optimized state updates to minimize re-renders
4. Batched API calls for validation

185
docs/calculate-issues.md Normal file
View File

@@ -0,0 +1,185 @@
1. **Missing Updates for Reorder Point and Safety Stock** [RESOLVED - product-metrics.js]
- **Problem:** In the **product_metrics** table (used by the inventory health view), the fields **reorder_point** and **safety_stock** are never updated in the product metrics calculations. Although a helper function (`calculateReorderQuantities`) exists and computes these values, the update query in the `calculateProductMetrics` function does not assign any values to these columns.
- **Effect:** The inventory health view relies on these fields (using COALESCE to default them to 0), which means that stock might never be classified as "Reorder" or "Healthy" based on the proper reorder point or safety stock calculations.
- **Example:** Even if a product's base metrics would require a reorder (for example, if its days of inventory are low), the view always shows a value of 0 for reorder_point and safety_stock.
- **Fix:** Update the product metrics query (or add a subsequent update) so that **pm.reorder_point** and **pm.safety_stock** are calculated (for instance, by integrating the logic from `calculateReorderQuantities`) and stored in the table.
2. **Overwritten Module Exports When Combining Scripts** [RESOLVED - calculate-metrics.js]
- **Problem:** The code provided shows two distinct exports. The main metrics calculation module exports `calculateMetrics` (along with cancel and getProgress helpers), but later in the same concatenated file the module exports are overwritten.
- **Effect:** If these two code sections end up in a single module file, the export for the main calculation will be lost. This would break any code that calls the overall metrics calculation.
- **Example:** An external caller expecting to run `calculateMetrics` would instead receive the `calculateProductMetrics` function.
- **Fix:** Make sure each script resides in its own module file. Verify that the module boundaries and exports are not accidentally merged or overwritten when deployed.
3. **Potential Formula Issue in EOQ Calculation (Reorder Qty)** [RESOLVED - product-metrics.js]
- **Problem:** The helper function `calculateReorderQuantities` uses an EOQ formula with a holding cost expressed as a percentage (0.25) rather than a perunit cost.
- **Effect:** If the intent was to use the traditional EOQ formula (which expects a holding cost per unit rather than a percentage), this could lead to an incorrect reorder quantity.
- **Example:** For a given annual demand and fixed order cost, the computed reorder quantity might be higher or lower than expected.
- **Fix:** Double-check the EOQ formula. If the intention is to compute based on a percentage, then document that clearly; otherwise, adjust the formula to use the proper holding cost value.
4. **Potential Overlap or Redundancy in GMROI Calculation** [RESOLVED - time-aggregates.js]
- **Problem:** In the time aggregates function, GMROI is calculated in two steps. The initial INSERT query computes GMROI as
`CASE WHEN s.inventory_value > 0 THEN (s.total_revenue - s.total_cost) / s.inventory_value ELSE 0 END`
and then a subsequent UPDATE query recalculates it as an annualized value using gross profit and active days.
- **Effect:** Overwriting a computed value may be intentional to refine the metric, but if not coordinated it can cause confusion or unexpected output in the `product_time_aggregates` table.
- **Example:** A product's GMROI might first appear as a simple ratio but then be updated to a scaled value based on the number of active days, which could lead to inconsistent reporting if not documented.
- **Fix:** Consolidated the GMROI calculation into a single step in the initial INSERT query, properly handling annualization and NULL values.
5. **Handling of Products Without Orders or Purchase Data** [RESOLVED - time-aggregates.js]
- **Problem:** In the INSERT query of the time aggregates function, the UNION covers two cases: one for products with order data (from `monthly_sales`) and one for products that have entries in `monthly_stock` but no matching order data.
- **Effect:** If a product has neither orders nor purchase orders, it won't get an entry in `product_time_aggregates`. Depending on business rules, this might be acceptable or might mean missing data.
- **Example:** A product that's new or rarely ordered might not appear in the time aggregates view, potentially affecting downstream calculations.
- **Fix:** Added an `all_products` CTE and modified the JOIN structure to ensure every product gets an entry with appropriate default values, even if it has no orders or purchase orders.
6. **Redundant Recalculation of Vendor Metrics**
- **Problem:** Similar concepts from prior scripts where cumulative metrics (like **total_revenue** and **total_cost**) are calculated in multiple query steps without necessary validation or optimization. In the vendor metrics script, calculations for total revenue and margin are performed within a `WITH` clause, which is then used in other parts of the process, making it more complex than needed.
- **Effect:** There's unnecessary duplication in querying the same data multiple times across subqueries. It could result in decreased performance and may even lead to excess computation if the subqueries are not optimized or correctly indexed.
- **Example:** Vendor sales and vendor purchase orders (PO) metrics are calculated in separate `WITH` clauses, leading to repeated calculations.
- **Fix:** Synthesize the required metrics into fewer queries or reuse the results within the `WITH` clause itself. Avoid redundant calculations of **revenue** and **cost** unless truly necessary.
7. **Handling Products Without Orders or Purchase Orders**
- **Problem:** In your `calculateVendorMetrics` script, the initial insert for vendor sales doesn't fully address the products that might not have matching orders or purchase orders. If a vendor has products without any sales within the last 12 months, the results may not be fully accurate unless handled explicitly.
- **Effect:** If no orders exist for a product associated with a particular vendor, that product will not contribute to the vendor's metrics, potentially omitting important data when calculating **total_orders** or **total_revenue**.
- **Example:** The scripted statistics fill gaps, but products with no recent purchase or sales orders might not be counted accurately.
- **Fix:** Include logic to handle scenarios where these products still need to be part of the vendor calculation. Use a `LEFT JOIN` wherever possible to account for cases without sales or purchase orders.
8. **Redundant `ON DUPLICATE KEY UPDATE`**
- **Problem:** Multiple queries in the `calculateVendorMetrics` script use `ON DUPLICATE KEY UPDATE` clauses to handle repeated metrics updates. This is useful for ensuring the most up-to-date calculations but can cause inconsistencies if multiple calculations happen for the same product or vendor simultaneously.
- **Effect:** This approach can lead to an inaccurate update of brand-specific data when insertion and update overlap. Each time you add a new batch, an existing entry could be overwritten if not handled correctly.
- **Example:** Vendor country, category, or sales-related metrics could unintentionally update during processing.
- **Fix:** Match on current status more robustly in case of existing rows to avoid unnecessary updates. Ensure that the key used for `ON DUPLICATE KEY` aligns with any foreign key relationships that might indicate an already processed entry.
9. **SQL Query Performance with Multiple Nested `WITH` Clauses**
- **Problem:** Heavily nested queries (especially **WITH** clauses) may lead to slow performance depending on the size of the dataset.
- **Effect:** Computational burden could be high when the database is large, e.g., querying **purchase orders**, **vendor sales**, and **product info** simultaneously. Even with proper indexes, the deployment might struggle in production environments.
- **Example:** Multiple `WITH` clauses in the vendor and brand metrics calculation scripts might work fine in small datasets but degrade performance in production.
- **Fix:** Combine some subqueries and reduce the layer of computations needed for calculating final metrics. Test performance on a production-sized dataset to see how nested queries are handled.
10. **Missing Updates for Reorder Metrics (Vendor/Brand)**
- **Previously Identified Issue:** Inconsistent updates for **reorder_point** and **safety_stock** across earlier scripts.
- **Current Impact on This Script:** The vendor and brand metrics do not have explicit updates for reorder point or safety stock, which are essential for inventory evaluation.
- **Effect:** The correct thresholds and reorder logic for vendor product inventory aren't fully accounted for in these scripts.
- **Fix:** Integrate relevant logic to update **reorder_point** or **safety_stock** within the vendor and brand metrics calculations. Ensure that it's consistently computed and stored.
11. **Data Integrity and Consistency**
**w**hen tracking sales growth or performance
- **Problem:** Brand metrics include a sales growth clause where negative results can sometimes be skewed severely if period data varies considerably.
- **Effect:** If period boundaries are incorrect or records are missing, this can create drastic growth rate calculations.
- **Example:** If the "previous" period has no sales but "current" has a substantial increase, the growth rate will show as **100%**.
- **Fix:** Implement checks that ensure both periods are valid and that the system calculates growth accurately, avoiding growth rates based solely on potential outliers. Replace consistent gaps with a no-growth rate or a meaningful zero.
12. **Exclusion of Vendors With No Sales**
The vendor metrics query is driven by the `vendor_sales` CTE, which aggregates data only for vendors that have orders in the past 12 months.
- **Impact:** Vendors that have purchase activity (or simply exist in vendor_details) but no recent sales won't show up in vendor_metrics. This could cause the frontend to miss metrics for vendors that might still be important.
- **Fix:** Consider adding a UNION or changing the driving set so that all vendors (for example, from vendor_details) are included—even if they have zero sales.
13. **Identical Formulas for On-Time Delivery and Order Fill Rates**
Both metrics are calculated as `(received_orders / total_orders) * 100`.
- **Impact:** If the business expects these to be distinct (for example, one might factor in on-time receipt versus mere receipt), then showing identical values on the frontend could be misleading.
- **Fix:** Verify and adjust the formulas if on-time delivery and order fill rates should be computed differently.
14. **Handling Nulls and Defaults in Aggregations**
The query uses COALESCE in most places, but be sure that every aggregated value (like average lead time) correctly defaults when no data is present.
- **Impact:** Incorrect defaults might cause odd or missing numbers on the production interface.
- **Fix:** Double-check that all numeric aggregates reliably default to 0 where needed.
15. **Inconsistent Stock Filtering Conditions**
In the main brand metrics query the CTE filters products with the condition
`p.stock_quantity <= 5000 AND p.stock_quantity >= 0`
whereas in the brand time-based metrics query the condition is only `p.stock_quantity <= 5000`.
- **Impact:** This discrepancy may lead to inconsistent numbers (for example, if any products have negative stock, which might be due to data issues) between overall brand metrics and time-based metrics on the frontend.
- **Fix:** Standardize the filtering criteria so that both queries treat out-of-range stock values in the same way.
16. **Growth Rate Calculation Periods**
The growth rate is computed by comparing revenue from the last 3 months ("current") against a period from 1512 months ago ("previous").
- **Impact:** This narrow window may not reflect typical year-over-year performance and could lead to volatile or unexpected growth percentages on the frontend.
- **Fix:** Revisit the business logic for growth—if a longer or different comparison period is preferred, adjust the date intervals accordingly.
17. **Potential NULLs in Aggregated Time-Based Metrics**
In the brand time-based metrics query, aggregate expressions such as `SUM(o.quantity * o.price)` aren't wrapped with COALESCE.
- **Impact:** If there are no orders for a given brand/month, these sums might return NULL rather than 0, which could propagate into the frontend display.
- **Fix:** Wrap such aggregates in COALESCE (e.g. `COALESCE(SUM(o.quantity * o.price), 0)`) to ensure a default numeric value.
18. **Grouping by Category Status in Base Metrics Insert**
- **Problem:** The INSERT for base category metrics groups by both `c.cat_id` and `c.status` even though the table's primary key is just `category_id`.
- **Effect:** If a category's status changes over time, the grouping may produce unexpected updates (or even multiple groups before the duplicate key update kicks in), possibly causing the wrong status or aggregated figures to be stored.
- **Example:** A category that toggles between "active" and "inactive" might have its metrics calculated differently on different runs.
- **Fix:** Ensure that the grouping keys match the primary key (or that the status update logic is exactly as intended) so that a single row per category is maintained.
19. **Potential Null Handling in Margin Calculations**
- **Problem:** In the query for category time metrics, the calculation of average margin uses expressions such as `SUM(o.quantity * (o.price - GREATEST(p.cost_price, 0)))` without using `COALESCE` on `p.cost_price`.
- **Effect:** If any product's `cost_price` is `NULL`, then `GREATEST(p.cost_price, 0)` returns `NULL` and the resulting sum (and thus the margin) could become `NULL` rather than defaulting to 0. This might lead to missing or misleading margin figures on the frontend.
- **Example:** A product with a missing cost price would make the entire margin expression evaluate to `NULL` even when sales exist.
- **Fix:** Replace `GREATEST(p.cost_price, 0)` with `GREATEST(COALESCE(p.cost_price, 0), 0)` (or simply use `COALESCE(p.cost_price, 0)`) to ensure that missing values are handled.
20. **Data Coverage in Growth Rate Calculation**
- **Problem:** The growth rate update depends on multiple CTEs (current period, previous period, and trend analysis) that require a minimum amount of data (for instance, `HAVING COUNT(*) >= 6` in the trend_stats CTE).
- **Effect:** Categories with insufficient historical data will fall into the "ELSE" branch (or may even be skipped if no revenue is present), which might result in a growth rate of 0.0 or an unexpected value.
- **Example:** A newly created category that has only two months of data won't have trend analysis, so its growth rate will be calculated solely by the simple difference, which might not reflect true performance.
- **Fix:** Confirm that this fallback behavior is acceptable for production; if not, adjust the logic so that every category receives a consistent growth rate even with sparse data.
21. **Omission of Forecasts for ZeroSales Categories**
- **Observation:** The categorysales metrics query uses a `HAVING AVG(cs.daily_quantity) > 0` clause.
- **Effect:** Categories without any average daily sales will not receive a forecast record in `category_sales_metrics`. If the frontend expects a row (even with zeros) for every category, this will lead to missing data.
- **Fix:** Verify that it's acceptable for categories with no sales to have no forecast entry. If not, adjust the query so that a default forecast (with zeros) is inserted.
22. **Randomness in Category-Level Forecast Revenue Calculation**
- **Problem:** In the category-level forecasts query, the forecast revenue is multiplied by a factor of `(0.95 + (RAND() * 0.1))`.
- **Effect:** This introduces randomness into the forecast figures so that repeated runs could yield slightly different values. If deterministic forecasts are expected on the production frontend, this could lead to inconsistent displays.
- **Example:** The same category might show a 5% higher forecast on one run and 3% on another because of the random multiplier.
- **Fix:** Confirm that this randomness is intentional for your forecasting model; if forecasts are meant to be reproducible, remove or replace the `RAND()` factor with a fixed multiplier.
23. **Multi-Statement Cleanup of Temporary Tables**
- **Problem:** The cleanup query drops multiple temporary tables in one call (separated by semicolons).
- **Effect:** If your Node.js MySQL driver isn't configured to allow multi-statement execution, this query may fail, leaving temporary tables behind. Leftover temporary tables might eventually cause conflicts or resource issues.
- **Example:** Running the cleanup query could produce an error like "multi-statement queries not enabled," preventing proper cleanup.
- **Fix:** Either configure your database connection to allow multi-statements or issue separate queries for each temporary table drop to ensure that the cleanup runs successfully.
24. **Handling Products with No Sales Data**
- **Problem:** In the product-level forecast calculation, the CTE `daily_stats` includes a `HAVING AVG(ds.daily_quantity) > 0` clause.
- **Effect:** Products that have no sales (or a zero average daily quantity) will be excluded from the forecasts. This means the frontend won't show forecasts for nonselling products, which might be acceptable but could also be a completeness issue.
- **Example:** A product that has never sold will not appear in the `sales_forecasts` table.
- **Fix:** Confirm that it is intended for forecasts to be generated only for products with some sales activity. If forecasts are required for all products, adjust the query to insert default forecast records for products with zero sales.
25. **Complexity of the Forecast Formula Involving the Seasonality Factor**
- **Issue:**
The sales forecast calculations incorporate an adjustment factor using `COALESCE(sf.seasonality_factor, 0)` to modify forecast units and revenue. This means that if the seasonality data is missing (or not populated), the factor defaults to 0.
- **Potential Problem:**
A default value of 0 will drastically alter the forecast calculations—often leading to a forecast of 0 or an overly dampened forecast—when in reality the intended behavior might be to use a neutral multiplier (typically 1.0). This could result in forecasts that are not reflective of the actual seasonal impact, thereby skewing the figures that reach the frontend.
- **Fix:**
Review your data source for seasonality (the `sales_seasonality` table) and ensure it's consistently populated. Alternatively, if missing seasonality data is possible, consider using a more neutral default (such as 1.0) in your COALESCE. This change would prevent the forecast formulas from over-simplifying (or even nullifying) the forecast output due to missing seasonality factors.
26. **Group By with Seasonality Factor Variability**
- **Observation:** In the forecast insertion query, the GROUP BY clause includes `sf.seasonality_factor` along with other fields.
- **Effect:** If the seasonality factor differs (or is `NULL` versus a value) for different forecast dates, this might result in multiple rows for the same product and forecast date. However, the `ON DUPLICATE KEY UPDATE` clause will merge them—but only if the primary key (pid, forecast_date) is truly unique.
- **Fix:** Verify that the grouping produces exactly one row per product per forecast date. If there's potential for multiple rows due to seasonality variability, consider applying a COALESCE or an aggregation on the seasonality factor so that it does not affect grouping.
27. **Memory Management for Temporary Tables** [RESOLVED - calculate-metrics.js]
- **Problem:** In metrics calculations, temporary tables aren't always properly cleaned up if the process fails between creation and the DROP statement.
- **Effect:** If a process fails after creating temporary tables but before dropping them, these tables remain in memory until the connection is closed. In a production environment with multiple calculation runs, this could lead to memory leaks or table name conflicts.
- **Example:** The `temp_revenue_ranks` table creation in ABC classification could remain if the process fails before reaching the DROP statement.
- **Fix:** Implement proper cleanup in a finally block or use transaction management that ensures temporary tables are always cleaned up, even in failure scenarios.

72
docs/fix-multi-select.md Normal file
View File

@@ -0,0 +1,72 @@
# Solution: Keeping Dropdowns Open During Multiple Selections
## The Problem
When implementing a multi-select dropdown in React, a common issue occurs:
1. You select an item in the dropdown
2. The `onChange` handler is called, updating the data
3. This triggers a re-render of the parent component (in this case, the entire table)
4. During the re-render, the dropdown is unmounted and remounted
5. This causes the dropdown to close before you can make multiple selections
## The Solution: Deferred State Updates
The key insight is to **separate local state management from parent state updates**:
```typescript
// Step 1: Add local state to track selections
const [internalValue, setInternalValue] = useState<string[]>(value)
// Step 2: Handle popover open state changes
const handleOpenChange = useCallback((newOpen: boolean) => {
if (open && !newOpen) {
// Only update parent state when dropdown closes
if (JSON.stringify(internalValue) !== JSON.stringify(value)) {
onChange(internalValue);
}
}
setOpen(newOpen);
if (newOpen) {
// Sync internal state with external state when opening
setInternalValue(value);
}
}, [open, internalValue, value, onChange]);
// Step 3: Toggle selection only updates internal state
const toggleSelection = useCallback((selectedValue: string) => {
setInternalValue(prev => {
if (prev.includes(selectedValue)) {
return prev.filter(v => v !== selectedValue);
} else {
return [...prev, selectedValue];
}
});
}, []);
```
## Why This Works
1. **No parent re-renders during selection**: Since we're only updating local state, the parent component doesn't re-render during selection.
2. **Consistent UI**: The dropdown shows accurate selected states using the internal value.
3. **Data integrity**: The final selections are properly synchronized back to the parent when done.
4. **Resilient to external changes**: Initial state is synchronized when opening the dropdown.
## Implementation Steps
1. Create a local state variable to track selections inside the component
2. Only make selections against this local state while the dropdown is open
3. Defer updating the parent until the dropdown is explicitly closed
4. When opening, synchronize the internal state with the external value
## Benefits
This pattern:
- Avoids re-render cycles that would unmount the dropdown
- Maintains UI consistency during multi-selection
- Simplifies the component's interaction with parent components
- Works with existing component lifecycles rather than fighting against them
This solution is much simpler than trying to prevent event propagation or manipulating DOM events, and addresses the root cause of the issue: premature re-rendering.

View File

@@ -0,0 +1,342 @@
# MySQL to PostgreSQL Import Process Documentation
This document outlines the data import process from the production MySQL database to the local PostgreSQL database, focusing on column mappings, data transformations, and the overall import architecture.
## Table of Contents
1. [Overview](#overview)
2. [Import Architecture](#import-architecture)
3. [Column Mappings](#column-mappings)
- [Categories](#categories)
- [Products](#products)
- [Product Categories (Relationship)](#product-categories-relationship)
- [Orders](#orders)
- [Purchase Orders](#purchase-orders)
- [Metadata Tables](#metadata-tables)
4. [Special Calculations](#special-calculations)
5. [Implementation Notes](#implementation-notes)
## Overview
The import process extracts data from a MySQL 5.7 production database and imports it into a PostgreSQL database. It can operate in two modes:
- **Full Import**: Imports all data regardless of last sync time
- **Incremental Import**: Only imports data that has changed since the last import
The process handles four main data types:
- Categories (product categorization hierarchy)
- Products (inventory items)
- Orders (sales records)
- Purchase Orders (vendor orders)
## Import Architecture
The import process follows these steps:
1. **Establish Connection**: Creates a SSH tunnel to the production server and establishes database connections
2. **Setup Import History**: Creates a record of the current import operation
3. **Import Categories**: Processes product categories in hierarchical order
4. **Import Products**: Processes products with their attributes and category relationships
5. **Import Orders**: Processes customer orders with line items, taxes, and discounts
6. **Import Purchase Orders**: Processes vendor purchase orders with line items
7. **Record Results**: Updates the import history with results
8. **Close Connections**: Cleans up connections and resources
Each import step uses temporary tables for processing and wraps operations in transactions to ensure data consistency.
## Column Mappings
### Categories
| PostgreSQL Column | MySQL Source | Transformation |
|-------------------|---------------------------------|----------------------------------------------|
| cat_id | product_categories.cat_id | Direct mapping |
| name | product_categories.name | Direct mapping |
| type | product_categories.type | Direct mapping |
| parent_id | product_categories.master_cat_id| NULL for top-level categories (types 10, 20) |
| description | product_categories.combined_name| Direct mapping |
| status | N/A | Hard-coded 'active' |
| created_at | N/A | Current timestamp |
| updated_at | N/A | Current timestamp |
**Notes:**
- Categories are processed in hierarchical order by type: [10, 20, 11, 21, 12, 13]
- Type 10/20 are top-level categories with no parent
- Types 11/21/12/13 are child categories that reference parent categories
### Products
| PostgreSQL Column | MySQL Source | Transformation |
|----------------------|----------------------------------|---------------------------------------------------------------|
| pid | products.pid | Direct mapping |
| title | products.description | Direct mapping |
| description | products.notes | Direct mapping |
| sku | products.itemnumber | Fallback to 'NO-SKU' if empty |
| stock_quantity | shop_inventory.available_local | Capped at 5000, minimum 0 |
| preorder_count | current_inventory.onpreorder | Default 0 |
| notions_inv_count | product_notions_b2b.inventory | Default 0 |
| price | product_current_prices.price_each| Default 0, filtered on active=1 |
| regular_price | products.sellingprice | Default 0 |
| cost_price | product_inventory | Weighted average: SUM(costeach * count) / SUM(count) when count > 0, or latest costeach |
| vendor | suppliers.companyname | Via supplier_item_data.supplier_id |
| vendor_reference | supplier_item_data | supplier_itemnumber or notions_itemnumber based on vendor |
| notions_reference | supplier_item_data.notions_itemnumber | Direct mapping |
| brand | product_categories.name | Linked via products.company |
| line | product_categories.name | Linked via products.line |
| subline | product_categories.name | Linked via products.subline |
| artist | product_categories.name | Linked via products.artist |
| categories | product_category_index | Comma-separated list of category IDs |
| created_at | products.date_created | Validated date, NULL if invalid |
| first_received | products.datein | Validated date, NULL if invalid |
| landing_cost_price | NULL | Not set |
| barcode | products.upc | Direct mapping |
| harmonized_tariff_code| products.harmonized_tariff_code | Direct mapping |
| updated_at | products.stamp | Validated date, NULL if invalid |
| visible | shop_inventory | Calculated from show + buyable > 0 |
| managing_stock | N/A | Hard-coded true |
| replenishable | Multiple fields | Complex calculation based on reorder, dates, etc. |
| permalink | N/A | Constructed URL with product ID |
| moq | supplier_item_data | notions_qty_per_unit or supplier_qty_per_unit, minimum 1 |
| uom | N/A | Hard-coded 1 |
| rating | products.rating | Direct mapping |
| reviews | products.rating_votes | Direct mapping |
| weight | products.weight | Direct mapping |
| length | products.length | Direct mapping |
| width | products.width | Direct mapping |
| height | products.height | Direct mapping |
| country_of_origin | products.country_of_origin | Direct mapping |
| location | products.location | Direct mapping |
| total_sold | order_items | SUM(qty_ordered) for all order_items where prod_pid = pid |
| baskets | mybasket | COUNT of records where mb.item = pid and qty > 0 |
| notifies | product_notify | COUNT of records where pn.pid = pid |
| date_last_sold | product_last_sold.date_sold | Validated date, NULL if invalid |
| image | N/A | Constructed from pid and image URL pattern |
| image_175 | N/A | Constructed from pid and image URL pattern |
| image_full | N/A | Constructed from pid and image URL pattern |
| options | NULL | Not set |
| tags | NULL | Not set |
**Notes:**
- Replenishable calculation:
```javascript
CASE
WHEN p.reorder < 0 THEN 0
WHEN (
(COALESCE(pls.date_sold, '0000-00-00') = '0000-00-00' OR pls.date_sold <= DATE_SUB(CURRENT_DATE, INTERVAL 5 YEAR))
AND (p.datein = '0000-00-00 00:00:00' OR p.datein <= DATE_SUB(CURRENT_TIMESTAMP, INTERVAL 5 YEAR))
AND (p.date_refill = '0000-00-00 00:00:00' OR p.date_refill <= DATE_SUB(CURRENT_TIMESTAMP, INTERVAL 5 YEAR))
) THEN 0
ELSE 1
END
```
In business terms, a product is considered NOT replenishable only if:
- It was manually flagged as not replenishable (negative reorder value)
- OR it shows no activity across ALL metrics (no sales AND no receipts AND no refills in the past 5 years)
- Image URLs are constructed using this pattern:
```javascript
const paddedPid = pid.toString().padStart(6, '0');
const prefix = paddedPid.slice(0, 3);
const basePath = `${imageUrlBase}${prefix}/${pid}`;
return {
image: `${basePath}-t-${iid}.jpg`,
image_175: `${basePath}-175x175-${iid}.jpg`,
image_full: `${basePath}-o-${iid}.jpg`
};
```
### Product Categories (Relationship)
| PostgreSQL Column | MySQL Source | Transformation |
|-------------------|-----------------------------------|---------------------------------------------------------------|
| pid | products.pid | Direct mapping |
| cat_id | product_category_index.cat_id | Direct mapping, filtered by category types |
**Notes:**
- Only categories of types 10, 20, 11, 21, 12, 13 are imported
- Categories 16 and 17 are explicitly excluded
### Orders
| PostgreSQL Column | MySQL Source | Transformation |
|-------------------|-----------------------------------|---------------------------------------------------------------|
| order_number | order_items.order_id | Direct mapping |
| pid | order_items.prod_pid | Direct mapping |
| sku | order_items.prod_itemnumber | Fallback to 'NO-SKU' if empty |
| date | _order.date_placed_onlydate | Via join to _order table |
| price | order_items.prod_price | Direct mapping |
| quantity | order_items.qty_ordered | Direct mapping |
| discount | Multiple sources | Complex calculation (see notes) |
| tax | order_tax_info_products.item_taxes_to_collect | Via latest order_tax_info record |
| tax_included | N/A | Hard-coded false |
| shipping | N/A | Hard-coded 0 |
| customer | _order.order_cid | Direct mapping |
| customer_name | users | CONCAT(users.firstname, ' ', users.lastname) |
| status | _order.order_status | Direct mapping |
| canceled | _order.date_cancelled | Boolean: true if date_cancelled is not '0000-00-00 00:00:00' |
| costeach | order_costs | From latest record or fallback to price * 0.5 |
**Notes:**
- Only orders with order_status >= 15 and with a valid date_placed are processed
- For incremental imports, only orders modified since last sync are processed
- Discount calculation combines three sources:
1. Base discount: order_items.prod_price_reg - order_items.prod_price
2. Promo discount: SUM of order_discount_items.amount
3. Proportional order discount: Calculation based on order subtotal proportion
```javascript
(oi.base_discount +
COALESCE(ot.promo_discount, 0) +
CASE
WHEN om.summary_discount > 0 AND om.summary_subtotal > 0 THEN
ROUND((om.summary_discount * (oi.price * oi.quantity)) / NULLIF(om.summary_subtotal, 0), 2)
ELSE 0
END)::DECIMAL(10,2)
```
- Taxes are taken from the latest tax record for an order
- Cost data is taken from the latest non-pending cost record
### Purchase Orders
| PostgreSQL Column | MySQL Source | Transformation |
|-------------------|-----------------------------------|---------------------------------------------------------------|
| po_id | po.po_id | Default 0 if NULL |
| pid | po_products.pid | Direct mapping |
| sku | products.itemnumber | Fallback to 'NO-SKU' if empty |
| name | products.description | Fallback to 'Unknown Product' |
| cost_price | po_products.cost_each | Direct mapping |
| po_cost_price | po_products.cost_each | Duplicate of cost_price |
| vendor | suppliers.companyname | Fallback to 'Unknown Vendor' if empty |
| date | po.date_ordered | Fallback to po.date_created if NULL |
| expected_date | po.date_estin | Direct mapping |
| status | po.status | Default 1 if NULL |
| notes | po.short_note | Fallback to po.notes if NULL |
| ordered | po_products.qty_each | Direct mapping |
| received | N/A | Hard-coded 0 |
| receiving_status | N/A | Hard-coded 1 |
**Notes:**
- Only POs created within last 1 year (incremental) or 5 years (full) are processed
- For incremental imports, only POs modified since last sync are processed
### Metadata Tables
#### import_history
| PostgreSQL Column | Source | Notes |
|-------------------|-----------------------------------|---------------------------------------------------------------|
| id | Auto-increment | Primary key |
| table_name | Code | 'all_tables' for overall import |
| start_time | NOW() | Import start time |
| end_time | NOW() | Import completion time |
| duration_seconds | Calculation | Elapsed seconds |
| is_incremental | INCREMENTAL_UPDATE | Flag from config |
| records_added | Calculation | Sum from all imports |
| records_updated | Calculation | Sum from all imports |
| status | Code | 'running', 'completed', 'failed', or 'cancelled' |
| error_message | Exception | Error message if failed |
| additional_info | JSON | Configuration and results |
#### sync_status
| PostgreSQL Column | Source | Notes |
|----------------------|--------------------------------|---------------------------------------------------------------|
| table_name | Code | Name of imported table |
| last_sync_timestamp | NOW() | Timestamp of successful sync |
| last_sync_id | NULL | Not used currently |
## Special Calculations
### Date Validation
MySQL dates are validated before insertion into PostgreSQL:
```javascript
function validateDate(mysqlDate) {
if (!mysqlDate || mysqlDate === '0000-00-00' || mysqlDate === '0000-00-00 00:00:00') {
return null;
}
// Check if the date is valid
const date = new Date(mysqlDate);
return isNaN(date.getTime()) ? null : mysqlDate;
}
```
### Retry Mechanism
Operations that might fail temporarily are retried with exponential backoff:
```javascript
async function withRetry(operation, errorMessage) {
let lastError;
for (let attempt = 1; attempt <= MAX_RETRIES; attempt++) {
try {
return await operation();
} catch (error) {
lastError = error;
console.error(`${errorMessage} (Attempt ${attempt}/${MAX_RETRIES}):`, error);
if (attempt < MAX_RETRIES) {
const backoffTime = RETRY_DELAY * Math.pow(2, attempt - 1);
await new Promise(resolve => setTimeout(resolve, backoffTime));
}
}
}
throw lastError;
}
```
### Progress Tracking
Progress is tracked with estimated time remaining:
```javascript
function estimateRemaining(startTime, current, total) {
if (current === 0) return "Calculating...";
const elapsedSeconds = (Date.now() - startTime) / 1000;
const itemsPerSecond = current / elapsedSeconds;
const remainingItems = total - current;
const remainingSeconds = remainingItems / itemsPerSecond;
return formatElapsedTime(remainingSeconds);
}
```
## Implementation Notes
### Transaction Management
All imports use transactions to ensure data consistency:
- **Categories**: Uses savepoints for each category type
- **Products**: Uses a single transaction for the entire import
- **Orders**: Uses a single transaction with temporary tables
- **Purchase Orders**: Uses a single transaction with temporary tables
### Memory Usage Optimization
To minimize memory usage when processing large datasets:
1. Data is processed in batches (100-5000 records per batch)
2. Temporary tables are used for intermediate data
3. Some queries use cursors to avoid loading all results at once
### MySQL vs PostgreSQL Compatibility
The scripts handle differences between MySQL and PostgreSQL:
1. MySQL-specific syntax like `USE INDEX` is removed for PostgreSQL
2. `GROUP_CONCAT` in MySQL becomes string operations in PostgreSQL
3. Transaction syntax differences are abstracted in the connection wrapper
4. PostgreSQL's `ON CONFLICT` replaces MySQL's `ON DUPLICATE KEY UPDATE`
### SSH Tunnel
Database connections go through an SSH tunnel for security:
```javascript
ssh.forwardOut(
"127.0.0.1",
0,
sshConfig.prodDbConfig.host,
sshConfig.prodDbConfig.port,
async (err, stream) => {
if (err) reject(err);
resolve({ ssh, stream });
}
);
```

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

271
docs/routes-cleanup.md Normal file
View File

@@ -0,0 +1,271 @@
**Analysis of Potential Issues**
1. **Obsolete Functionality:**
* **`config.js` Legacy Endpoints:** The endpoints `GET /config/`, `PUT /config/stock-thresholds/:id`, `PUT /config/lead-time-thresholds/:id`, `PUT /config/sales-velocity/:id`, `PUT /config/abc-classification/:id`, `PUT /config/safety-stock/:id`, and `PUT /config/turnover/:id` appear **highly likely to be obsolete**. They reference older, single-row config tables (`stock_thresholds`, etc.) while newer endpoints (`/config/global`, `/config/products`, `/config/vendors`) manage settings in more structured tables (`settings_global`, `settings_product`, `settings_vendor`). Unless specifically required for backward compatibility, these legacy endpoints should be removed to avoid confusion and potential data conflicts.
* **`analytics.js` Forecast Endpoint (`GET /analytics/forecast`):** This endpoint uses **MySQL syntax** (`DATEDIFF`, `DATE_FORMAT`, `JSON_OBJECT`, `?` placeholders) but seems intended to run within the analytics module which otherwise uses PostgreSQL (`req.app.locals.pool`, `date_trunc`, `::text`, `$1` placeholders). This endpoint is likely **obsolete or misplaced** and will not function correctly against the PostgreSQL database.
* **`csv.js` Redundant Actions:**
* `POST /csv/update` seems redundant with `POST /csv/full-update`. The latter uses the `runScript` helper and dedicated state (`activeFullUpdate`), appearing more robust. `/csv/update` might be older or incomplete.
* `POST /csv/reset` seems redundant with `POST /csv/full-reset`. Similar reasoning applies; `/csv/full-reset` appears preferred.
* **`products.js` Import Endpoint (`POST /products/import`):** This is **dangerous duplication**. The `/csv` module handles imports (`/csv/import`, `/csv/import-from-prod`) with locking (`activeImport`) to prevent concurrent operations. This endpoint lacks such locking and could corrupt data if run simultaneously with other CSV/reset operations. It should likely be removed.
* **`products.js` Metrics Endpoint (`GET /products/:id/metrics`):** This is redundant. The `/metrics/:pid` endpoint provides the same, possibly more comprehensive, data directly from the `product_metrics` table. Clients should use `/metrics/:pid` instead.
2. **Overlap or Inappropriate Duplication of Effort:**
* **AI Prompt Getters:** `GET /ai-prompts/type/general` and `GET /ai-prompts/type/system` could potentially be handled by adding a query parameter filter to `GET /ai-prompts/` (e.g., `GET /ai-prompts?prompt_type=general`). However, dedicated endpoints for single, specific items can sometimes be simpler. This is more of a design choice than a major issue.
* **Vendor Performance/Metrics:** There are multiple ways to get vendor performance data:
* `GET /analytics/vendors` (uses `vendor_metrics`)
* `GET /dashboard/vendor/performance` (uses `purchase_orders`)
* `GET /purchase-orders/vendor-metrics` (uses `purchase_orders`)
* `GET /vendors-aggregate/` (uses `vendor_metrics`, augmented with `purchase_orders`)
This suggests significant overlap. The `/vendors-aggregate` endpoint seems the most comprehensive, combining pre-aggregated data with some real-time info. The others, especially `/dashboard/vendor/performance` and `/purchase-orders/vendor-metrics` which calculate directly from `purchase_orders`, might be redundant or less performant.
* **Product Listing:**
* `GET /products/` lists products joining `products`, `product_metrics`, and `categories`.
* `GET /metrics/` lists products primarily from `product_metrics`.
They offer similar filtering/sorting. If `product_metrics` contains all necessary display fields, `GET /products/` might be partly redundant for simple listing views, although it does provide aggregated category names. Evaluate if both full list endpoints are necessary.
* **Image Uploads/Management:** Image handling is split:
* `products-import.js`: Uploads temporary images for product import to `/uploads/products/`, schedules deletion.
* `reusable-images.js`: Uploads persistent images to `/uploads/reusable/`, stores metadata in DB.
* `products-import.js` has `/check-file` and `/list-uploads` that can see *both* directories, while `reusable-images.js` has a `/check-file` that only sees its own. This separation could be confusing. Clarify the purpose and lifecycle of images in each directory.
* **Background Task Management (`csv.js`):** The use of `activeImport` for multiple unrelated tasks (import, reset, metrics calc) prevents concurrency, which might be too restrictive. The cancellation logic (`/cancel`) only targets `full-update`/`full-reset`, not tasks locked by `activeImport`. This needs unification.
* **Analytics/Dashboard Base Table Queries:** Several endpoints in `analytics.js` (`/pricing`, `/categories`) and `dashboard.js` (`/best-sellers`, `/sales/metrics`, `/trending/products`, `/key-metrics`, `/inventory-health`, `/sales-overview`) query base tables (`orders`, `products`, `purchase_orders`) directly, while many others leverage pre-aggregated `_metrics` tables. This inconsistency can lead to performance differences and suggests potential for optimization by using aggregates where possible.
3. **Obvious Mistakes / Data Issues:**
* **AI Prompt Fetching:** `GET /ai-prompts/company/:companyId`, `/type/general`, `/type/system` return `result.rows[0]`. This assumes uniqueness. If the underlying DB constraints (`unique_company_prompt`, etc.) fail or aren't present, this could silently hide data if multiple rows match. The use of unique constraint handling in POST/PUT suggests this is likely intended and safe *if* DB constraints are solid.
* **Mixed Databases & SSH Tunnels:** The heavy reliance in `ai_validation.js` and `products-import.js` on connecting to a production MySQL DB via SSH tunnel while also using a local PostgreSQL DB adds significant architectural complexity.
* **Inefficiency:** In `ai_validation.js` (`generateDebugResponse`), an SSH tunnel and MySQL connection (`promptTunnel`, `promptConnection`) are established but seem unused when fetching prompts (which correctly come from the PG pool `res.app.locals.pool`). This is wasted effort.
* **Improvement:** The `getDbConnection` function in `products-import.js` implements caching/pooling for the SSH/MySQL connection this is much better and should ideally be used consistently wherever the production DB is accessed (e.g., in `ai_validation.js`).
* **`products.js` Brand Filtering:** `GET /products/brands` filters brands based on having associated purchase orders with a cost >= 500. This seems arbitrary for a general list of brands and might return incomplete results depending on the use case.
* **Type Handling:** Ensure `parseValue` handles all required types and edge cases correctly, especially for filtering complex queries in `*-aggregate` and `metrics` routes. Explicit type casting in SQL (`::numeric`, `::text`, etc.) is generally good practice in PostgreSQL.
* **Dummy Data:** Several `dashboard.js` endpoints return hardcoded dummy data on errors or when no data is found. While this prevents UI crashes, it can mask real issues. Ensure logging is robust when fallbacks are used.
**Summary of Endpoints**
Here's a summary of the available endpoints, grouped by their likely file/module:
**1. AI Prompts (`ai_prompts.js`)**
* `GET /`: Get all AI prompts.
* `GET /:id`: Get a specific AI prompt by its ID.
* `GET /company/:companyId`: Get the AI prompt for a specific company (expects one). **(Deprecated)**
* `GET /type/general`: Get the general AI prompt (expects one). **(Deprecated)**
* `GET /type/system`: Get the system AI prompt (expects one). **(Deprecated)**
* `GET /by-type`: Get AI prompt by type (general, system, company_specific) with optional company parameter. **(New Consolidated Endpoint)**
* `POST /`: Create a new AI prompt.
* `PUT /:id`: Update an existing AI prompt.
* `DELETE /:id`: Delete an AI prompt.
**2. AI Validation (`ai_validation.js`)**
* `POST /debug`: Generate and view the structure of prompts and taxonomy data (for debugging, doesn't call OpenAI). Connects to Prod MySQL (taxonomy) and Local PG (prompts, performance).
* `POST /validate`: Validate product data using OpenAI. Connects to Prod MySQL (taxonomy) and Local PG (prompts, performance).
* `GET /test-taxonomy`: Test endpoint to query sample taxonomy data from Prod MySQL.
**3. Analytics (`analytics.js`)**
* `GET /stats`: Get overall business statistics from metrics tables.
* `GET /profit`: Get profit analysis data (by category, over time, top products) from metrics tables.
* `GET /vendors`: Get vendor performance analysis from `vendor_metrics`.
* `GET /stock`: Get stock analysis data (turnover, levels, critical items) from metrics tables.
* `GET /pricing`: Get pricing analysis (price points, elasticity, recommendations) - **uses `orders` table**.
* `GET /categories`: Get category performance analysis (revenue, profit, growth, distribution, trends) - **uses `orders` and `products` tables**.
* `GET /forecast`: (**Likely Obsolete/Broken**) Attempts to get forecast data using MySQL syntax.
**4. Brands Aggregate (`brands-aggregate.js`)**
* `GET /filter-options`: Get distinct brand names and statuses for UI filters (from `brand_metrics`).
* `GET /stats`: Get overall statistics related to brands (from `brand_metrics`).
* `GET /`: List brands with aggregated metrics, supporting filtering, sorting, pagination (from `brand_metrics`).
**5. Categories Aggregate (`categories-aggregate.js`)**
* `GET /filter-options`: Get distinct category types, statuses, and counts for UI filters (from `category_metrics` & `categories`).
* `GET /stats`: Get overall statistics related to categories (from `category_metrics` & `categories`).
* `GET /`: List categories with aggregated metrics, supporting filtering, sorting (incl. hierarchy), pagination (from `category_metrics` & `categories`).
**6. Configuration (`config.js`)**
* **(New)** `GET /global`: Get all global settings.
* **(New)** `PUT /global`: Update global settings.
* **(New)** `GET /products`: List product-specific settings with pagination/search.
* **(New)** `PUT /products/:pid`: Update/Create product-specific settings.
* **(New)** `POST /products/:pid/reset`: Reset product settings to defaults.
* **(New)** `GET /vendors`: List vendor-specific settings with pagination/search.
* **(New)** `PUT /vendors/:vendor`: Update/Create vendor-specific settings.
* **(New)** `POST /vendors/:vendor/reset`: Reset vendor settings to defaults.
* **(Legacy/Obsolete)** `GET /`: Get all config from old single-row tables.
* **(Legacy/Obsolete)** `PUT /stock-thresholds/:id`: Update old stock thresholds.
* **(Legacy/Obsolete)** `PUT /lead-time-thresholds/:id`: Update old lead time thresholds.
* **(Legacy/Obsolete)** `PUT /sales-velocity/:id`: Update old sales velocity config.
* **(Legacy/Obsolete)** `PUT /abc-classification/:id`: Update old ABC config.
* **(Legacy/Obsolete)** `PUT /safety-stock/:id`: Update old safety stock config.
* **(Legacy/Obsolete)** `PUT /turnover/:id`: Update old turnover config.
**7. CSV Operations & Background Tasks (`csv.js`)**
* `GET /:type/progress`: SSE endpoint for full update/reset progress.
* `GET /test`: Simple test endpoint.
* `GET /status`: Check status of the generic background task lock (`activeImport`).
* `GET /calculate-metrics/status`: Check status of metrics calculation.
* `GET /history/import`: Get recent import history.
* `GET /history/calculate`: Get recent metrics calculation history.
* `GET /status/modules`: Get last calculation time per module.
* `GET /status/tables`: Get last sync time per table.
* `GET /status/table-counts`: Get record counts for key tables.
* `POST /update`: (**Potentially Obsolete**) Trigger `update-csv.js` script.
* `POST /import`: Trigger `import-csv.js` script.
* `POST /cancel`: Cancel `/full-update` or `/full-reset` task.
* `POST /reset`: (**Potentially Obsolete**) Trigger `reset-db.js` script.
* `POST /reset-metrics`: Trigger `reset-metrics.js` script.
* `POST /calculate-metrics`: Trigger `calculate-metrics.js` script.
* `POST /import-from-prod`: Trigger `import-from-prod.js` script.
* `POST /full-update`: Trigger `full-update.js` script (preferred update).
* `POST /full-reset`: Trigger `full-reset.js` script (preferred reset).
**8. Dashboard (`dashboard.js`)**
* `GET /stock/metrics`: Get dashboard stock summary metrics & brand breakdown.
* `GET /purchase/metrics`: Get dashboard purchase order summary metrics & vendor breakdown.
* `GET /replenishment/metrics`: Get dashboard replenishment summary & top variants.
* `GET /forecast/metrics`: Get dashboard forecast summary, daily, and category breakdown.
* `GET /overstock/metrics`: Get dashboard overstock summary & category breakdown.
* `GET /overstock/products`: Get list of top overstocked products.
* `GET /best-sellers`: Get dashboard best-selling products, brands, categories - **uses `orders`, `products`**.
* `GET /sales/metrics`: Get dashboard sales summary for a period - **uses `orders`**.
* `GET /low-stock/products`: Get list of top low stock/critical products.
* `GET /trending/products`: Get list of trending products - **uses `orders`, `products`**.
* `GET /vendor/performance`: Get dashboard vendor performance details - **uses `purchase_orders`**.
* `GET /key-metrics`: Get dashboard summary KPIs - **uses multiple base tables**.
* `GET /inventory-health`: Get dashboard inventory health overview - **uses `products`, `product_metrics`**.
* `GET /replenish/products`: Get list of products needing replenishment (overlaps `/low-stock/products`).
* `GET /sales-overview`: Get daily sales totals for chart - **uses `orders`**.
**9. Product Import Utilities (`products-import.js`)**
* `POST /upload-image`: Upload temporary product image, schedule deletion.
* `DELETE /delete-image`: Delete temporary product image.
* `GET /field-options`: Get dropdown options for product fields from Prod MySQL (cached).
* `GET /product-lines/:companyId`: Get product lines for a company from Prod MySQL (cached).
* `GET /sublines/:lineId`: Get sublines for a line from Prod MySQL (cached).
* `GET /check-file/:filename`: Check existence/permissions of uploaded file (temp or reusable).
* `GET /list-uploads`: List files in upload directories.
* `GET /search-products`: Search products in Prod MySQL DB.
* `GET /check-upc-and-generate-sku`: Check UPC existence and generate SKU suggestion based on Prod MySQL data.
* `GET /product-categories/:pid`: Get assigned categories for a product from Prod MySQL.
**10. Product Metrics (`product-metrics.js`)**
* `GET /filter-options`: Get distinct filter values (vendor, brand, abcClass) from `product_metrics`.
* `GET /`: List detailed product metrics with filtering, sorting, pagination (primary data access).
* `GET /:pid`: Get full metrics record for a single product.
**11. Orders (`orders.js`)**
* `GET /`: List orders with summary info, filtering, sorting, pagination, and stats.
* `GET /:orderNumber`: Get details for a single order, including items.
**12. Products (`products.js`)**
* `GET /brands`: Get distinct brands (filtered by PO value).
* `GET /`: List products with core data + metrics, filtering, sorting, pagination.
* `GET /trending`: Get trending products based on `product_metrics`.
* `GET /:id`: Get details for a single product (core data + metrics).
* `POST /import`: (**Likely Obsolete/Dangerous**) Import products from CSV.
* `PUT /:id`: Update core product data.
* `GET /:id/metrics`: (**Redundant**) Get metrics for a single product.
* `GET /:id/time-series`: Get sales/PO history for a single product.
**13. Purchase Orders (`purchase-orders.js`)**
* `GET /`: List purchase orders with summary info, filtering, sorting, pagination, and summary stats.
* `GET /vendor-metrics`: Calculate vendor performance metrics from `purchase_orders`.
* `GET /cost-analysis`: Calculate cost analysis by category from `purchase_orders`.
* `GET /receiving-status`: Get summary counts based on PO receiving status.
* `GET /order-vs-received`: List product ordered vs. received quantities.
**14. Reusable Images (`reusable-images.js`)**
* `GET /`: List all reusable images.
* `GET /by-company/:companyId`: List global and company-specific images.
* `GET /global`: List only global images.
* `GET /:id`: Get a single reusable image record.
* `POST /upload`: Upload a new reusable image and create DB record.
* `PUT /:id`: Update reusable image metadata (name, global, company).
* `DELETE /:id`: Delete reusable image record and file.
* `GET /check-file/:filename`: Check existence/permissions of a reusable image file.
**15. Templates (`templates.js`)**
* `GET /`: List all product data templates.
* `GET /:company/:productType`: Get a specific template.
* `POST /`: Create a new template.
* `PUT /:id`: Update an existing template.
* `DELETE /:id`: Delete a template.
**16. Vendors Aggregate (`vendors-aggregate.js`)**
* `GET /filter-options`: Get distinct vendor names and statuses for UI filters (from `vendor_metrics`).
* `GET /stats`: Get overall statistics related to vendors (from `vendor_metrics` & `purchase_orders`).
* `GET /`: List vendors with aggregated metrics, supporting filtering, sorting, pagination (from `vendor_metrics` & `purchase_orders`).
**Recommendations:**
1. **Address Obsolete Endpoints:** Prioritize removing or confirming the necessity of the endpoints marked as obsolete/redundant (legacy config, `/analytics/forecast`, `/csv/update`, `/csv/reset`, `/products/import`, `/products/:id/metrics`).
2. **Consolidate Overlapping Functionality:** Review the multiple vendor performance and product listing endpoints. Decide on the primary method (e.g., using aggregate tables via `/vendors-aggregate` and `/metrics`) and refactor or remove the others. Clarify the image upload strategies.
3. **Standardize Data Access:** Decide whether `dashboard` and `analytics` endpoints should primarily use aggregate tables (like `/metrics`, `/brands-aggregate`, etc.) or if direct access to base tables is sometimes necessary. Aim for consistency and document the reasoning. Optimize queries hitting base tables if they must remain.
4. **Improve Background Task Management:** Refactor `csv.js` to use a unified locking mechanism (maybe separate locks per task type?) and a consistent cancellation strategy for all spawned/managed processes. Clarify the purpose of `update` vs `full-update` and `reset` vs `full-reset`.
5. **Optimize DB Connections:** Ensure the `getDbConnection` pooling/caching helper from `products-import.js` is used *consistently* across all modules interacting with the production MySQL database (especially `ai_validation.js`). Remove unnecessary tunnel creations.
6. **Review Data Integrity:** Double-check the assumptions made (e.g., uniqueness of AI prompts) and ensure database constraints enforce them. Review the `GET /products/brands` filtering logic.
## Changes Made
1. **Removed Obsolete Legacy Endpoints in `config.js`**:
- Removed `GET /config/` endpoint
- Removed `PUT /config/stock-thresholds/:id` endpoint
- Removed `PUT /config/lead-time-thresholds/:id` endpoint
- Removed `PUT /config/sales-velocity/:id` endpoint
- Removed `PUT /config/abc-classification/:id` endpoint
- Removed `PUT /config/safety-stock/:id` endpoint
- Removed `PUT /config/turnover/:id` endpoint
These endpoints were obsolete as they referenced older, single-row config tables that have been replaced by newer endpoints using the structured tables `settings_global`, `settings_product`, and `settings_vendor`.
2. **Removed MySQL Syntax `/forecast` Endpoint in `analytics.js`**:
- Removed `GET /analytics/forecast` endpoint that was using MySQL-specific syntax incompatible with the PostgreSQL database used elsewhere in the application.
3. **Renamed and Removed Redundant Endpoints**:
- Renamed `csv.js` to `data-management.js` while maintaining the same `/csv/*` endpoint paths for consistency
- Removed deprecated `/csv/update` endpoint (now fully replaced by `/csv/full-update`)
- Removed deprecated `/csv/reset` endpoint (now fully replaced by `/csv/full-reset`)
- Removed deprecated `/products/import` endpoint (now handled by `/csv/import`)
- Removed deprecated `/products/:id/metrics` endpoint (now handled by `/metrics/:pid`)
4. **Fixed Data Integrity Issues**:
- Improved `GET /products/brands` endpoint by removing the arbitrary filtering logic that was only showing brands with purchase orders that had a total cost of at least $500
- The updated endpoint now returns all distinct brands from visible products, providing more complete data
5. **Optimized Database Connections**:
- Created a new `dbConnection.js` utility file that encapsulates the optimized database connection management logic
- Improved the `ai-validation.js` file to use this shared connection management, eliminating unnecessary repeated tunnel creation
- Added proper connection pooling with timeout-based connection reuse, reducing the overhead of repeatedly creating SSH tunnels
- Added query result caching for frequently accessed data to improve performance
These changes improve maintainability by removing duplicate code, enhance consistency by standardizing on the newer endpoint patterns, and optimize performance by reducing redundant database connections.
## Additional Improvements
1. **Further Database Connection Optimizations**:
- Extended the use of the optimized database connection utility to additional endpoints in `ai-validation.js`
- Updated the `/validate` endpoint and `/test-taxonomy` endpoint to use `getDbConnection`
- Ensured consistent connection management across all routes that access the production database
2. **AI Prompts Data Integrity Verification**:
- Confirmed proper uniqueness constraints are in place in the database schema for AI prompts
- The schema includes:
- `unique_company_prompt` constraint ensuring only one prompt per company
- `idx_unique_general_prompt` index ensuring only one general prompt in the system
- `idx_unique_system_prompt` index ensuring only one system prompt in the system
- Endpoint handlers properly handle uniqueness constraint violations with appropriate 409 Conflict responses
- Validation ensures company-specific prompts have company IDs, while general/system prompts do not
3. **AI Prompts Endpoint Consolidation**:
- Added a new consolidated `/by-type` endpoint that handles all types of prompts (general, system, company_specific)
- Marked the existing separate endpoints as deprecated with console warnings
- Maintained backward compatibility while providing a cleaner API moving forward
## Completed Items
✅ Removed obsolete legacy endpoints in `config.js`
✅ Removed MySQL syntax `/forecast` endpoint in `analytics.js`
✅ Fixed `GET /products/brands` endpoint filtering logic
✅ Created reusable database connection utility (`dbConnection.js`)
✅ Optimized database connections in `ai-validation.js`
✅ Verified data integrity in AI prompts handling
✅ Consolidated AI prompts endpoints with a unified `/by-type` endpoint
## Remaining Items
- Consider adding additional error handling and logging for database connections
- Perform load testing on the optimized database connections to ensure they handle high traffic properly

112
docs/split-up-pos.md Normal file
View File

@@ -0,0 +1,112 @@
Okay, I understand completely now. The core issue is that the previous approaches tried too hard to reconcile every receipt back to a specific PO line within the `purchase_orders` table structure, which doesn't reflect the reality where receipts can be independent events. Your downstream scripts, especially `daily_snapshots` and `product_metrics`, rely on having a complete picture of *all* receivings.
Let's pivot to a model that respects both distinct data streams: **Orders (Intent)** and **Receivings (Actuals)**.
**Proposed Solution: Separate `purchase_orders` and `receivings` Tables**
This is the cleanest way to model the reality you've described.
1. **`purchase_orders` Table:**
* **Purpose:** Tracks the status and details of purchase *orders* placed. Represents the *intent* to receive goods.
* **Key Columns:** `po_id`, `pid`, `ordered` (quantity ordered), `po_cost_price`, `date` (order/created date), `expected_date`, `status` (PO lifecycle: 'ordered', 'canceled', 'done'), `vendor`, `notes`, etc.
* **Crucially:** This table *does not* need a `received` column or a `receiving_history` column derived from complex allocations. It focuses solely on the PO itself.
2. **`receivings` Table (New or Refined):**
* **Purpose:** Tracks every single line item received, regardless of whether it was linked to a PO during the receiving process. Represents the *actual* goods that arrived.
* **Key Columns:**
* `receiving_id` (Identifier for the overall receiving document/batch)
* `pid` (Product ID received)
* `received_qty` (Quantity received for this specific line)
* `cost_each` (Actual cost paid for this item on this receiving)
* `received_date` (Actual date the item was received)
* `received_by` (Employee ID/Name)
* `source_po_id` (The `po_id` entered on the receiving screen, *nullable*. Stores the original link attempt, even if it was wrong or missing)
* `source_receiving_status` (The status from the source `receivings` table: 'partial_received', 'full_received', 'paid', 'canceled')
**How the Import Script Changes:**
1. **Fetch POs:** Fetch data from `po` and `po_products`.
2. **Populate `purchase_orders`:**
* Insert/Update rows into `purchase_orders` based directly on the fetched PO data.
* Set `po_id`, `pid`, `ordered`, `po_cost_price`, `date` (`COALESCE(date_ordered, date_created)`), `expected_date`.
* Set `status` by mapping the source `po.status` code directly ('ordered', 'canceled', 'done', etc.).
* **No complex allocation needed here.**
3. **Fetch Receivings:** Fetch data from `receivings` and `receivings_products`.
4. **Populate `receivings`:**
* For *every* line item fetched from `receivings_products`:
* Perform necessary data validation (dates, numbers).
* Insert a new row into `receivings` with all the relevant details (`receiving_id`, `pid`, `received_qty`, `cost_each`, `received_date`, `received_by`, `source_po_id`, `source_receiving_status`).
* Use `ON CONFLICT (receiving_id, pid)` (or similar unique key based on your source data) `DO UPDATE SET ...` for incremental updates if necessary, or simply delete/re-insert based on `receiving_id` for simplicity if performance allows.
**Impact on Downstream Scripts (and how to adapt):**
* **Initial Query (Active POs):**
* `SELECT ... FROM purchase_orders po WHERE po.status NOT IN ('canceled', 'done', 'paid_equivalent_status?') AND po.date >= ...`
* `active_pos`: `COUNT(DISTINCT po.po_id)` based on the filtered POs.
* `overdue_pos`: Add `AND po.expected_date < CURRENT_DATE`.
* `total_units`: `SUM(po.ordered)`. Represents total units *ordered* on active POs.
* `total_cost`: `SUM(po.ordered * po.po_cost_price)`. Cost of units *ordered*.
* `total_retail`: `SUM(po.ordered * pm.current_price)`. Retail value of units *ordered*.
* **Result:** This query now cleanly reports on the status of *orders* placed, which seems closer to its original intent. The filter `po.receiving_status NOT IN ('partial_received', 'full_received', 'paid')` is replaced by `po.status NOT IN ('canceled', 'done', 'paid_equivalent?')`. The 90% received check is removed as `received` is not reliably tracked *on the PO* anymore.
* **`daily_product_snapshots`:**
* **`SalesData` CTE:** No change needed.
* **`ReceivingData` CTE:** **Must be changed.** Query the **`receivings`** table instead of `purchase_orders`.
```sql
ReceivingData AS (
SELECT
rl.pid,
COUNT(DISTINCT rl.receiving_id) as receiving_doc_count,
SUM(rl.received_qty) AS units_received,
SUM(rl.received_qty * rl.cost_each) AS cost_received
FROM public.receivings rl
WHERE rl.received_date::date = _date
-- Optional: Filter out canceled receivings if needed
-- AND rl.source_receiving_status <> 'canceled'
GROUP BY rl.pid
),
```
* **Result:** This now accurately reflects *all* units received on a given day from the definitive source.
* **`update_product_metrics`:**
* **`CurrentInfo` CTE:** No change needed (pulls from `products`).
* **`OnOrderInfo` CTE:** Needs re-evaluation. How do you want to define "On Order"?
* **Option A (Strict PO View):** `SUM(po.ordered)` from `purchase_orders po WHERE po.status NOT IN ('canceled', 'done', 'paid_equivalent?')`. This is quantity on *open orders*, ignoring fulfillment state. Simple, but might overestimate if items arrived unlinked.
* **Option B (Approximate Fulfillment):** `SUM(po.ordered)` from open POs MINUS `SUM(rl.received_qty)` from `receivings rl` where `rl.source_po_id = po.po_id` (summing only directly linked receivings). Better, but still misses fulfillment via unlinked receivings.
* **Option C (Heuristic):** `SUM(po.ordered)` from open POs MINUS `SUM(rl.received_qty)` from `receivings rl` where `rl.pid = po.pid` and `rl.received_date >= po.date`. This *tries* to account for unlinked receivings but is imprecise.
* **Recommendation:** Start with **Option A** for simplicity, clearly labeling it "Quantity on Open POs". You might need a separate process or metric for a more nuanced view of expected vs. actual pipeline.
```sql
-- Example for Option A
OnOrderInfo AS (
SELECT
pid,
SUM(ordered) AS on_order_qty, -- Total qty on open POs
SUM(ordered * po_cost_price) AS on_order_cost -- Cost of qty on open POs
FROM public.purchase_orders
WHERE status NOT IN ('canceled', 'done', 'paid_equivalent?') -- Define your open statuses
GROUP BY pid
),
```
* **`HistoricalDates` CTE:**
* `date_first_sold`, `max_order_date`: No change (queries `orders`).
* `date_first_received_calc`, `date_last_received_calc`: **Must be changed.** Query `MIN(rl.received_date)` and `MAX(rl.received_date)` from the **`receivings`** table grouped by `pid`.
* **`SnapshotAggregates` CTE:**
* `received_qty_30d`, `received_cost_30d`: These are calculated from `daily_product_snapshots`, which are now correctly sourced from `receivings`, so this part is fine.
* **Forecasting Calculations:** Will use the chosen definition of `on_order_qty`. Be aware of the implications of Option A (potentially inflated if unlinked receivings fulfill orders).
* **Result:** Metrics are calculated based on distinct order data and complete receiving data. The definition of "on order" needs careful consideration.
**Summary of this Approach:**
* **Pros:**
* Accurately models distinct order and receiving events.
* Provides a definitive source (`receivings`) for all received inventory.
* Simplifies the `purchase_orders` table and its import logic.
* Avoids complex/potentially inaccurate allocation logic for unlinked receivings within the main tables.
* Avoids synthetic records.
* Fixes downstream reporting (`daily_snapshots` receiving data).
* **Cons:**
* Requires creating/managing the `receivings` table.
* Requires modifying downstream queries (`ReceivingData`, `OnOrderInfo`, `HistoricalDates`).
* Calculating a precise "net quantity still expected to arrive" (true on-order minus all relevant fulfillment) becomes more complex and may require specific business rules or heuristics outside the basic table structure if Option A for `OnOrderInfo` isn't sufficient.
This two-table approach (`purchase_orders` + `receivings`) seems the most robust and accurate way to handle your requirement for complete receiving records independent of potentially flawed PO linking. It directly addresses the shortcomings of the previous attempts.

View File

@@ -0,0 +1,239 @@
# Validation Display Issue Implementation
## Issue Being Addressed
**Validation Display Issue**: Validation isn't happening beyond checking if a cell is required or not. All validation rules defined in import.tsx need to be respected.
* Required fields correctly show a red border when empty (✅ ALREADY WORKING)
* Non-empty fields with validation errors (regex, unique, etc.) should show a red border AND an alert circle icon with tooltip explaining the error (❌ NOT WORKING)
## Implementation Attempts
!!!!**NOTE** All previous attempts have been reverted and are no longer part of the code, please take this into account when trying a new solution. !!!!
### Attempt 1: Fix Validation Display Logic
**Approach**: Modified `processErrors` function to separate required errors from validation errors and show alert icons only for non-empty fields with validation errors.
**Changes Made**:
```typescript
function processErrors(value: any, errors: ErrorObject[]) {
// ...existing code...
// Separate required errors from other validation errors
const requiredErrors = errors.filter(error =>
error.message?.toLowerCase().includes('required')
);
const validationErrors = errors.filter(error =>
!error.message?.toLowerCase().includes('required')
);
const isRequiredButEmpty = valueIsEmpty && requiredErrors.length > 0;
const hasValidationErrors = validationErrors.length > 0;
const shouldShowErrorIcon = hasValidationErrors && !valueIsEmpty;
// ...more code...
}
```
**Result**: Non-empty fields with validation errors still aren't displaying the alert icon with tooltip.
### Attempt 2: Comprehensive Fix for Validation Display
**Approach**: Completely rewrote `processErrors` function with consistent empty value detection, clear error separation, and improved error message extraction.
**Changes Made**:
```typescript
function processErrors(value: any, errors: ErrorObject[]) {
if (!errors || errors.length === 0) {
return { filteredErrors: [], hasError: false, isRequiredButEmpty: false,
shouldShowErrorIcon: false, errorMessages: '' };
}
const valueIsEmpty = isEmpty(value);
const requiredErrors = errors.filter(error =>
error.message?.toLowerCase().includes('required')
);
const validationErrors = errors.filter(error =>
!error.message?.toLowerCase().includes('required')
);
let filteredErrors = valueIsEmpty ? requiredErrors : validationErrors;
const isRequiredButEmpty = valueIsEmpty && requiredErrors.length > 0;
const hasValidationErrors = validationErrors.length > 0;
const hasError = isRequiredButEmpty || hasValidationErrors;
const shouldShowErrorIcon = hasValidationErrors && !valueIsEmpty;
let errorMessages = '';
if (shouldShowErrorIcon) {
errorMessages = validationErrors.map(getErrorMessage).join('\n');
}
return { filteredErrors, hasError, isRequiredButEmpty, shouldShowErrorIcon, errorMessages };
}
```
**Result**: Non-empty fields with validation errors still aren't displaying the alert icon with tooltip.
### Attempt 3: Simplified Error Processing Logic
**Approach**: Refactored `processErrors` to use shared `isEmpty` function, simplified error icon logic, and made error message extraction more direct.
**Changes Made**:
```typescript
function processErrors(value: any, errors: ErrorObject[]) {
if (!errors || errors.length === 0) {
return { filteredErrors: [], hasError: false, isRequiredButEmpty: false,
shouldShowErrorIcon: false, errorMessages: '' };
}
const valueIsEmpty = isEmpty(value);
const requiredErrors = errors.filter(error =>
error.message?.toLowerCase().includes('required')
);
const validationErrors = errors.filter(error =>
!error.message?.toLowerCase().includes('required')
);
let filteredErrors = valueIsEmpty ? requiredErrors : validationErrors;
const isRequiredButEmpty = valueIsEmpty && requiredErrors.length > 0;
const hasValidationErrors = !valueIsEmpty && validationErrors.length > 0;
const hasError = isRequiredButEmpty || hasValidationErrors;
const shouldShowErrorIcon = hasValidationErrors;
let errorMessages = '';
if (shouldShowErrorIcon) {
errorMessages = validationErrors.map(getErrorMessage).join('\n');
}
return { filteredErrors, hasError, isRequiredButEmpty, shouldShowErrorIcon, errorMessages };
}
```
**Result**: Non-empty fields with validation errors still aren't displaying the alert icon with tooltip.
### Attempt 4: Consistent Error Processing Across Components
**Approach**: Updated both `processErrors` function and `ValidationCell` component to ensure consistent error handling between components.
**Changes Made**:
```typescript
// In processErrors function
function processErrors(value: any, errors: ErrorObject[]) {
// Similar to Attempt 3 with consistent error handling
}
// In ValidationCell component
const ValidationCell = ({ field, value, onChange, errors, /* other props */ }) => {
// ...existing code...
// Use the processErrors function to handle validation errors
const { hasError, isRequiredButEmpty, shouldShowErrorIcon, errorMessages } =
React.useMemo(() => processErrors(value, errors), [value, errors]);
// ...rest of the component...
}
```
**Result**: Non-empty fields with validation errors still aren't displaying the alert icon with tooltip.
### Attempt 5: Unified Error Processing with ItemNumberCell
**Approach**: Replaced custom error processing in `ValidationCell` with the same `processErrors` utility used by `ItemNumberCell`.
**Changes Made**:
```typescript
const ValidationCell = ({ field, value, onChange, errors, /* other props */ }) => {
// State and context setup...
// For item_number fields, use the specialized component
if (fieldKey === 'item_number') {
return <ItemNumberCell {...props} />;
}
// Use the same processErrors utility function that ItemNumberCell uses
const { hasError, isRequiredButEmpty, shouldShowErrorIcon, errorMessages } =
React.useMemo(() => processErrors(value, errors), [value, errors]);
// Rest of component...
}
```
**Result**: Non-empty fields with validation errors still aren't displaying the alert icon with tooltip.
### Attempt 6: Standardize Error Processing Across Cell Types
**Approach**: Standardized error handling across all cell types using the shared `processErrors` utility function.
**Changes Made**: Similar to Attempt 5, with focus on standardizing the approach for determining when to show validation error icons.
**Result**: Non-empty fields with validation errors still aren't displaying the alert icon with tooltip.
### Attempt 7: Replace Custom Error Processing with Shared Utility
**Approach**: Ensured consistent error handling between `ItemNumberCell` and regular `ValidationCell` components.
**Changes Made**: Similar to Attempts 5 and 6, with focus on using the shared utility function consistently.
**Result**: Non-empty fields with validation errors still aren't displaying the alert icon with tooltip.
### Attempt 8: Improved Error Normalization and Deep Comparison
**Approach**: Modified `MemoizedCell` in `ValidationTable.tsx` to use deep comparison for error objects and improved error normalization.
**Changes Made**:
```typescript
// Create a memoized cell component
const MemoizedCell = React.memo(({ field, value, onChange, errors, /* other props */ }) => {
return <ValidationCell {...props} />;
}, (prev, next) => {
// Basic prop comparison
if (prev.value !== next.value) return false;
if (prev.isValidating !== next.isValidating) return false;
if (prev.itemNumber !== next.itemNumber) return false;
// Deep compare errors - critical for validation display
if (!prev.errors && next.errors) return false;
if (prev.errors && !next.errors) return false;
if (prev.errors && next.errors) {
if (prev.errors.length !== next.errors.length) return false;
// Compare each error object
for (let i = 0; i < prev.errors.length; i++) {
if (prev.errors[i].message !== next.errors[i].message) return false;
if (prev.errors[i].level !== next.errors[i].level) return false;
if (prev.errors[i].source !== next.errors[i].source) return false;
}
}
// Compare options...
return true;
});
// In the field columns definition:
cell: ({ row }) => {
const rowErrors = validationErrors.get(row.index);
const cellErrors = rowErrors?.[fieldKey] || [];
// Ensure cellErrors is always an array
const normalizedErrors = Array.isArray(cellErrors) ? cellErrors : [cellErrors];
return <MemoizedCell {...props} errors={normalizedErrors} />;
}
```
**Result**: Non-empty fields with validation errors still aren't displaying the alert icon with tooltip.
## Root Causes (Revised Hypothesis)
After multiple attempts, the issue appears more complex than initially thought. Possible root causes:
1. **Error Object Structure**: Error objects might not have the expected structure or properties
2. **Error Propagation**: Errors might be getting filtered out before reaching cell components
3. **Validation Rules Configuration**: Validation rules in import.tsx might be incorrectly configured
4. **Error State Management**: Error state might not be properly updated or might be reset incorrectly
5. **Component Rendering Logic**: Components might not re-render when validation state changes
6. **CSS/Styling Issues**: Validation icons might be rendered but hidden due to styling issues
7. **Validation Timing**: Validation might be happening at the wrong time or getting overridden

View File

@@ -0,0 +1,138 @@
# Multiple Cell Edit Issue Implementation
## Issue Being Addressed
**Multiple Cell Edit Issue**: When you enter values in 2+ cells before validation finishes, contents from all edited cells get erased when validation finishes.
## Implementation Attempts
### Attempt 1: Fix Multiple Cell Edit Issue (First Approach)
**Approach**:
- Added a tracking mechanism using a Set to keep track of cells that are currently being edited
- Modified the `flushPendingUpdates` function to preserve values of cells being edited
- Added cleanup of editing state after validation completes
**Changes Made**:
```typescript
// Add ref to track cells currently being edited
const currentlyEditingCellsRef = useRef(new Set<string>());
// Update a row's field value
const updateRow = useCallback((rowIndex: number, key: T, value: any) => {
// Add this cell to currently editing cells
const cellKey = `${rowIndex}-${key}`;
currentlyEditingCellsRef.current.add(cellKey);
// ...existing code...
// After validation completes, remove this cell from currently editing list
setTimeout(() => {
currentlyEditingCellsRef.current.delete(cellKey);
}, 100);
}, []);
// Modify flushPendingUpdates to respect currently editing cells
const flushPendingUpdates = useCallback(() => {
// ...existing code...
if (dataUpdates.length > 0) {
setData(prev => {
// ...existing code...
dataUpdates.forEach((row, index) => {
if (index < newData.length) {
const updatedRow = { ...row };
// Check if any fields in this row are currently being edited
// If so, preserve their current values in the previous data
Object.keys(prev[index] || {}).forEach(key => {
const cellKey = `${index}-${key}`;
if (currentlyEditingCellsRef.current.has(cellKey)) {
// Keep the value from the previous state for this field
updatedRow[key] = prev[index][key];
}
});
newData[index] = updatedRow;
}
});
return newData;
});
}
}, []);
```
**Result**:
- Slight improvement - the first value entered was saved, but any subsequent values still got erased
### Attempt 2: Fix Multiple Cell Edit Issue (Second Approach)
**Approach**:
- Completely revised the cell editing tracking system
- Used a Map with timestamps to track editing cells more accurately
- Added proper Promise-based tracking for cell validation
- Increased timeout from 100ms to 1000ms
- Made cleanup more robust by checking if it's still the same editing session
**Changes Made**:
```typescript
// Add ref to track cells currently being edited with timestamps
const currentlyEditingCellsRef = useRef(new Map<string, number>());
// Add ref to track validation promises
const validationPromisesRef = useRef<Map<string, Promise<void>>>(new Map());
// Update a row's field value
const updateRow = useCallback((rowIndex: number, key: T, value: any) => {
// Mark this cell as being edited with the current timestamp
const cellKey = `${rowIndex}-${key}`;
currentlyEditingCellsRef.current.set(cellKey, Date.now());
// ...existing code...
// Create a validation promise
const validationPromise = new Promise<void>((resolve) => {
setTimeout(() => {
try {
validateRow(rowIndex);
} finally {
resolve();
}
}, 0);
});
validationPromisesRef.current.set(cellKey, validationPromise);
// When validation is complete, remove from validating cells
validationPromise.then(() => {
// ...existing code...
// Keep this cell in the editing state for a longer time
setTimeout(() => {
if (currentlyEditingCellsRef.current.has(cellKey)) {
currentlyEditingCellsRef.current.delete(cellKey);
}
}, 1000); // Keep as "editing" for 1 second
});
}, []);
```
**Result**:
- Worse than the first approach - now all values get erased, including the first one
## Root Causes (Hypothesized)
- The validation process might be updating the entire data state, causing race conditions with cell edits
- The timing of validation completions might be problematic
- State updates might be happening in a way that overwrites user changes
- The cell state tracking system is not robust enough to prevent overwrites
## Next Steps
The issue requires a more fundamental approach than just tweaking the editing logic. We need to:
1. Implement a more robust state management system for cell edits that can survive validation cycles
2. Consider disabling validation during active editing
3. Implement a proper "dirty state" tracking system for cells

View File

@@ -0,0 +1,305 @@
# Current Issues to Address
4. Validation isn't happening beyond checking if a cell is required or not - needs to respect rules in import.tsx
* Red cell outline if cell is required and it's empty
* Red outline + alert circle icon with tooltip if cell is NOT empty and isn't valid
8. When you enter a value in 2+ cells before validation finishes, contents from all edited cells get erased when validation finishes
## Do NOT change or edit
* Anything related to AI validation
* Anything about how templates or UPC validation work (only focus on specific issues described above)
* Anything outside of the ValidationStepNew folder
## Issues already fixed - do not work on these
✅FIXED 1. The red row background should go away when all cells in the row are valid and all required cells are populated
✅FIXED 2. Columns alignment with header is slightly off, gets worse the further right you go
✅FIXED 3. The copy down button is in the way of the validation error icon and the select open trigger - all three need to be in unique locations
✅FIXED 5. Description column needs to have an expanded view of some sort, maybe a popover to allow for easier editing
* Don't distort table to make it happen
✅FIXED 6. Need to ensure all cell's contents don't overflow the input (truncate). COO does this currently, probably more
✅FIXED 7. The template select cell is expanding, needs to be fixed size and truncate
✅FIXED 9. Import dialog state not fully reset when closing? (validate data step appears scrolled to the middle of the table where I left it)
✅FIXED 10. UPC column doesn't need to show loading state when Item Number is being processed, only show on item number column
✅FIXED 11. Copy down needs to show a loading state on the cells that it will copy to
✅FIXED 12. Shipping restrictions/tax category should default to ID 0 if we didn't get it elsewhere
✅FIXED 13. Header row should be sticky (both up/down and left/right)
✅FIXED 14. Need a way to scroll around table if user doesn't have mouse wheel for left/right
✅FIXED 15. Enhance copy down feature by allowing user to choose the last cell to copy to, instead of going all the way to the bottom
---------
# Validation Step Components Overview
## Core Components
### ValidationContainer
`inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/ValidationContainer.tsx`
- Main wrapper component for the validation step
- Manages global state and coordinates between subcomponents
- Handles navigation events (next, back)
- Manages template application and validation state
- Coordinates UPC validation and product line loading
- Manages row selection and filtering
- Contains cache management for UPC validation results
- Maintains item number references separate from main data
### ValidationTable
`inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/ValidationTable.tsx`
- Handles data display and column configuration
- Uses TanStack Table for core functionality
- Features:
- Sticky header (both vertical and horizontal) - currently doesn't work properly
- Row selection with checkboxes
- Template selection column
- Dynamic column widths based on field types - specified in import.tsx component
- Copy down functionality for cell values
- Error highlighting for rows and cells
- Loading states for cells being validated
### ValidationCell
`inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/ValidationCell.tsx`
- Base cell component that renders different cell types based on field configuration
- Handles error display with tooltips
- Manages copy down button visibility
- Supports loading states during validation
- Cell Types:
1. InputCell: For single-value text input
2. SelectCell: For dropdown selection
3. MultiInputCell: For multiple value inputs
4. Template selection cells with SearchableTemplateSelect component
### SearchableTemplateSelect
`inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/SearchableTemplateSelect.tsx`
- Advanced template selection component with search functionality
- Features:
- Real-time search filtering of templates
- Customizable display text for templates
- Support for default brand selection
- Accessible popover interface
- Keyboard navigation support
- Custom styling through className props
- Scroll event handling for nested scrollable areas
### TemplateManager
`inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/TemplateManager.tsx`
- Comprehensive template management interface
- Features:
- Template selection with search functionality
- Save template dialog with name and type inputs
- Batch template application to selected rows
- Template count tracking
- Toast notifications for user feedback
- Dialog-based interface for template operations
### AiValidationDialogs
`inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/AiValidationDialogs.tsx`
- Manages AI-assisted validation dialogs and interactions
### SaveTemplateDialog
`inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/SaveTemplateDialog.tsx`
- Dialog component for saving new templates
## Cell Components
### InputCell
`inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/cells/InputCell.tsx`
- Handles single value text input
- Features:
- Inline/edit mode switching
- Multiline support
- Price formatting
- Error state display
- Loading state during validation
- Width constraints
- Automated cleanPriceFields processing for "$" formatting
### SelectCell
`inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/cells/SelectCell.tsx`
- Handles dropdown selection
- Features:
- Searchable dropdown
- Custom option rendering
- Error state display
- Loading state during validation
- Width constraints
- Disabled state support
- Deferred search query handling for performance
### MultiInputCell
`inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/cells/MultiInputCell.tsx`
- Handles multiple value inputs
- Features:
- Comma-separated input support
- Multi-select dropdown for predefined options
- Custom separators
- Badge display for selected count
- Truncation for long values
- Width constraints
- Price formatting support
- Internal state management to avoid excessive re-renders
## Validation System
### useValidation Hook
`inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useValidation.tsx`
- Provides core validation logic
- Validates at multiple levels:
1. Field-level validation (required, regex, unique)
2. Row-level validation (supplier, company fields)
3. Table-level validation
4. Custom validation hooks support
- Error object structure includes message, level, and source properties
- Handles debounced validation updates to avoid UI freezing
### useAiValidation Hook
`inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useAiValidation.tsx`
- Manages AI-assisted validation logic and state
- Features:
- Tracks detailed changes per product
- Manages validation progress with estimated completion time
- Handles warnings and change suggestions
- Supports diff generation for changes
- Progress tracking with step indicators
- Prompt management for AI interactions
- Timer management for long-running operations
### useTemplates Hook
`inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useTemplates.tsx`
- Comprehensive template management system
- Features:
- Template CRUD operations
- Template application logic
- Default value handling
- Template search and filtering
- Batch template operations
- Template validation
### useUpcValidation Hook
`inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useUpcValidation.tsx`
- Dedicated UPC validation management
- Features:
- UPC format validation
- Supplier data validation
- Cache management for validation results
- Batch processing of UPC validations
- Item number generation logic
- Loading state management
### useFilters Hook
`inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useFilters.tsx`
- Advanced filtering system for table data
- Features:
- Multiple filter criteria support
- Dynamic filter updates
- Filter persistence
- Filter combination logic
- Performance optimized filtering
### useValidationState Hook
`inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useValidationState.tsx`
- Manages global validation state
- Handles:
- Data updates
- Template management
- Error tracking using Map objects
- Row selection
- Filtering
- UPC validation with caching to prevent duplicate API calls
- Product line loading
- Batch processing of updates
- Default value application for tax_cat and ship_restrictions (defaulting to "0")
- Price field auto-formatting to remove "$" symbols
### Utility Files
`inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/utils/validationUtils.ts`
- Core validation utility functions
- Includes:
- Field validation logic
- Error message formatting
- Validation rule processing
- Type checking utilities
`inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/utils/errorUtils.ts`
- Error handling and formatting utilities
- Includes:
- Error object creation
- Error message formatting
- Error source tracking
- Error level management
`inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/utils/dataMutations.ts`
- Data transformation and mutation utilities
- Includes:
- Row data updates
- Batch data processing
- Data structure conversions
- Change tracking
`inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/utils/validation-helper.js`
- Helper functions for validation
- Includes:
- Common validation patterns
- Validation state management
- Validation result processing
`inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/utils/upcValidation.ts`
- UPC-specific validation utilities
- Includes:
- UPC format checking
- Checksum validation
- Supplier data matching
- Cache management
### Types
`inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/types.ts`
- Core type definitions for the validation step
### Validation Types
1. Required field validation
2. Regex pattern validation
3. Unique value validation
4. Custom field validation
5. Row-level validation
6. Table-level validation
## State Management
### useValidationState Hook
`inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useValidationState.tsx`
- Manages global validation state
- Handles:
- Data updates
- Template management
- Error tracking using Map objects
- Row selection
- Filtering
- UPC validation with caching to prevent duplicate API calls
- Product line loading
- Batch processing of updates
- Default value application for tax_cat and ship_restrictions (defaulting to "0")
- Price field auto-formatting to remove "$" symbols
## UPC Validation System
### UPC Processing
- Validates UPCs against supplier data
- Cache system for UPC validation results
- Batch processing of UPC validation requests
- Auto-generation of item numbers based on UPC
- Special loading states for UPC/item number fields
- Separate state tracking to avoid unnecessary data structure updates
## Template System
### Template Management
- Supports saving and loading templates
- Template application to single/multiple rows
- Default template values
- Template search and filtering
## Performance Optimizations
1. Memoized components to prevent unnecessary renders
2. Virtualized table for large datasets
3. Deferred value updates for search inputs
4. Efficient error state management
5. Optimized cell update handling

View File

@@ -0,0 +1,131 @@
# Refactoring Plan for Validation Code
## Current Structure Analysis
- **useValidationState.tsx**: ~1650 lines - Core validation state management
- **useValidation.tsx**: ~425 lines - Field/data validation utility
- **useUpcValidation.tsx**: ~410 lines - UPC-specific validation
## Proposed New Structure
### 1. Core Types & Utilities (150-200 lines)
**File: `validation/types.ts`**
- All interfaces and types (RowData, ValidationError, FilterState, Template, etc.)
- Shared utility functions (isEmpty, getCellKey, etc.)
**File: `validation/utils.ts`**
- Generic validation utility functions
- Caching mechanism and cache clearing helpers
- API URL helpers
### 2. Field Validation (300-350 lines)
**File: `validation/hooks/useFieldValidation.ts`**
- `validateField` function
- Field-level validation logic
- Required, regex, and other field validations
### 3. Uniqueness Validation (250-300 lines)
**File: `validation/hooks/useUniquenessValidation.ts`**
- `validateUniqueField` function
- `validateUniqueItemNumbers` function
- All uniqueness checking logic
### 4. UPC Validation (300-350 lines)
**File: `validation/hooks/useUpcValidation.ts`**
- `fetchProductByUpc` function
- `validateUpc` function
- `applyItemNumbersToData` function
- UPC validation state management
### 5. Validation Status Management (300-350 lines)
**File: `validation/hooks/useValidationStatus.ts`**
- Error state management
- Row validation status tracking
- Validation indicators and refs
- Batch validation processing
### 6. Data Management (300-350 lines)
**File: `validation/hooks/useValidationData.ts`**
- Data state management
- Row updates
- Data filtering
- Initial data processing
### 7. Template Management (250-300 lines)
**File: `validation/hooks/useTemplateManagement.ts`**
- Template saving
- Template application
- Template loading
- Template display helpers
### 8. Main Validation Hook (300-350 lines)
**File: `validation/hooks/useValidation.ts`**
- Main hook that composes all other hooks
- Public API export
- Initialization logic
- Core validation flow
## Function Distribution
### Core Types & Utilities
- All interfaces (InfoWithSource, ValidationState, etc.)
- `isEmpty` utility
- `getApiUrl` helper
### Field Validation
- `validateField`
- `validateRow`
- `validateData` (partial)
- All validation result caching
### Uniqueness Validation
- `validateUniqueField`
- `validateUniqueItemNumbers`
- Uniqueness caching mechanisms
### UPC Validation
- `fetchProductByUpc`
- `validateUpc`
- `validateAllUPCs`
- `applyItemNumbersToData`
- UPC validation state tracking (cells, rows)
### Validation Status Management
- `startValidatingCell`/`stopValidatingCell`
- `startValidatingRow`/`stopValidatingRow`
- `isValidatingCell`/`isRowValidatingUpc`
- Error state management
- `revalidateRows`
### Data Management
- Initial data cleaning/processing
- `updateRow`
- `copyDown`
- Search/filter functionality
- `filteredData` calculation
### Template Management
- `saveTemplate`
- `applyTemplate`
- `applyTemplateToSelected`
- `getTemplateDisplayText`
- `loadTemplates`/`refreshTemplates`
### Main Validation Hook
- Composition of all other hooks
- Initialization logic
- Button/navigation handling
- Field options management
## Implementation Approach
1. **Start with Types**: Create the types file first, as all other files will depend on it
2. **Create Utility Functions**: Move shared utilities next
3. **Build Core Validation**: Extract the field validation and uniqueness validation
4. **Separate UPC Logic**: Move all UPC-specific code to its own module
5. **Extract State Management**: Move data and status management to separate files
6. **Move Template Logic**: Extract template functionality
7. **Create Composition Hook**: Build the main hook that uses all other hooks
This approach will give you more maintainable code with clearer separation of concerns, making it easier to understand, test, and modify each component independently.

View File

@@ -0,0 +1,354 @@
## 1. ✅ Error Filtering Logic Inconsistency (RESOLVED)
> **Note: This issue has been resolved by implementing a type-based error system.**
The filtering logic in `ValidationCell.tsx` previously relied on string matching, which was fragile:
```typescript
// Old implementation (string-based matching)
const filteredErrors = React.useMemo(() => {
return !isEmpty(value)
? errors.filter(error => !error.message?.toLowerCase().includes('required'))
: errors;
}, [value, errors]);
// New implementation (type-based filtering)
const filteredErrors = React.useMemo(() => {
return !isEmpty(value)
? errors.filter(error => error.type !== ErrorType.Required)
: errors;
}, [value, errors]);
```
The solution implemented:
- Added an `ErrorType` enum in `types.ts` to standardize error categorization
- Updated all error creation to include the appropriate error type
- Modified error filtering to use the type property instead of string matching
- Ensured consistent error handling across the application
**Guidelines for future development:**
- Always use the `ErrorType` enum when creating errors
- Never rely on string matching for error filtering
- Ensure all error objects include the `type` property
- Use the appropriate error type for each validation rule:
- `ErrorType.Required` for required field validations
- `ErrorType.Regex` for regex validations
- `ErrorType.Unique` for uniqueness validations
- `ErrorType.Custom` for custom validations
- `ErrorType.Api` for API-based validations
## 2. ⚠️ Redundant Error Processing (PARTIALLY RESOLVED)
> **Note: This issue has been partially resolved by the re-rendering optimizations.**
The system still processes errors in multiple places:
- In `ValidationCell.tsx`, errors are filtered by the optimized `processErrors` function
- In `useValidation.tsx`, errors are generated at the field level
- In `ValidationContainer.tsx`, errors are manipulated at the container level
While the error processing has been optimized to be more efficient, there is still some redundancy in how errors are handled across components. However, the current implementation has mitigated the performance impact.
**Improvements made:**
- Created a central `processErrors` function in ValidationCell that efficiently handles error filtering
- Implemented a batched update system to reduce redundant error processing
- Added better memoization to avoid reprocessing errors when not needed
**Future improvement opportunities:**
- Further consolidate error processing logic into a single location
- Create a dedicated error handling service or hook
- Implement a more declarative approach to error handling
## 3. Race Conditions in Async Validation
async validations could create race conditions:
- If a user types quickly, multiple validation requests might be in flight
- Later responses could overwrite more recent ones if they complete out of order
- The debouncing helps but doesn't fully solve this issue
## 4. Memory Leaks in Timeout Management
The validation timeouts are stored in refs:
```typescript
const validationTimeoutsRef = useRef<Record<number, NodeJS.Timeout>>({});
```
While there is cleanup on unmount, if rows are added/removed dynamically, timeouts for deleted rows might not be properly cleared.
## 5. ✅ Inefficient Error Storage (RESOLVED)
**Status: RESOLVED**
### Problem
Previously, validation errors were stored in multiple locations:
- In the `validationErrors` Map in `useValidationState`
- In the row data itself as `__errors`
This redundancy caused several issues:
- Inconsistent error states between the two storage locations
- Increased memory usage by storing the same information twice
- Complex state management to keep both sources in sync
- Difficulty reasoning about where errors should be accessed from
### Solution
We've implemented a unified error storage approach by:
- Making the `validationErrors` Map in `useValidationState` the single source of truth for all validation errors
- Removed the `__errors` property from row data
- Updated all validation functions to interact with the central error store instead of modifying row data
- Modified UPC validation to use the central error store
- Updated all components to read errors from the `validationErrors` Map instead of row data
### Key Changes
1. Modified `dataMutations.ts` to stop storing errors in row data
2. Updated the `Meta` type to remove the `__errors` property
3. Modified the `RowData` type to remove the `__errors` property
4. Updated the `useValidation` hook to return errors separately from row data
5. Modified the `useAiValidation` hook to work with the central error store
6. Updated the `useFilters` hook to check for errors in the `validationErrors` Map
7. Modified the `ValidationTable` and `ValidationCell` components to read errors from the `validationErrors` Map
### Benefits
- **Single Source of Truth**: All validation errors are now stored in one place
- **Reduced Memory Usage**: No duplicate storage of error information
- **Simplified State Management**: Only one state to update when errors change
- **Cleaner Data Structure**: Row data no longer contains validation metadata
- **More Maintainable Code**: Clearer separation of concerns between data and validation
### Future Improvements
While this refactoring addresses the core issue of inefficient error storage, there are still opportunities for further optimization:
1.**Redundant Error Processing**: ~~The validation process still performs some redundant calculations that could be optimized.~~ This has been largely addressed by the re-rendering optimizations.
2. **Race Conditions**: Async validation can lead to race conditions when multiple validations are triggered in quick succession.
3. **Memory Leaks**: The timeout management for validation could be improved to prevent potential memory leaks.
4. **Tight Coupling**: Components are still tightly coupled to the validation state structure.
5. **Error Prioritization**: The system doesn't prioritize errors well, showing all errors at once rather than focusing on the most critical ones first.
### Validation Flow
The validation process now works as follows:
1. **Error Generation**:
- Field-level validations generate errors based on validation rules
- Row-level hooks add custom validation errors
- Table-level validations (like uniqueness checks) add errors across rows
2. **Error Storage**:
- All errors are stored in the `validationErrors` Map in `useValidationState`
- The Map uses row indices as keys and objects of field errors as values
3. **Error Display**:
- The `ValidationTable` component checks the `validationErrors` Map to highlight rows with errors
- The `ValidationCell` component receives errors for specific fields from the `validationErrors` Map
- Errors are filtered in the UI to avoid showing "required" errors for fields with values
This focused refactoring approach has successfully addressed a critical issue while keeping changes manageable and targeted.
## 6. ✅ Excessive Re-rendering (RESOLVED)
**Status: RESOLVED**
### Problem
The validation system was suffering from excessive re-renders due to several key issues:
- **Inefficient Error Filtering**: The ValidationCell component was filtering errors on every render
- **Redundant Error Processing**: The same validation work was repeated in multiple components
- **Poor Memoization**: Components were inadequately memoized, causing unnecessary re-renders
- **Inefficient Batch Updates**: The state update system wasn't optimally batching changes
These issues led to performance problems, especially with large datasets, and affected the user experience.
### Solution
We've implemented a comprehensive optimization approach:
- **Optimized Error Processing**: Created an efficient `processErrors` function in ValidationCell that calculates all derived state in one pass
- **Enhanced Memoization**: Improved memo comparison functions to avoid unnecessary rerenders
- **Improved Batch Updates**: Redesigned the batching system to aggregate multiple changes before state updates
- **Single Update Pattern**: Implemented a queue-based update mechanism that applies multiple state changes at once
### Key Changes
1. Added a more efficient error processing function in ValidationCell
2. Created an enhanced error comparison function to properly compare error arrays
3. Improved the memo comparison function in ValidationCell
4. Added a batch update system in useValidationState
5. Implemented a queue-based update mechanism for row modifications
### Benefits
- **Improved Performance**: Reduced render cycles = faster UI response
- **Better User Experience**: Less lag when editing large datasets
- **Reduced Memory Usage**: Fewer component instantiations and temporary objects
- **Increased Scalability**: The application can now handle larger datasets without slowdown
- **Maintainable Code**: More predictable update flow that's easier to debug and extend
### Guidelines for future development
- Use the `processErrors` function for error filtering and processing
- Ensure React.memo components have proper comparison functions
- Use the batched update system for state changes
- Maintain stable references to objects and functions
- Use appropriate React hooks (useMemo, useCallback) with correct dependencies
- Avoid unnecessary recreations of arrays, objects, and functions
## 7. Complex Error Merging Logic
When merging errors from different sources, the logic is complex and potentially error-prone:
```typescript
// Merge field errors and row hook errors
const mergedErrors: Record<string, InfoWithSource> = {}
// Convert field errors to InfoWithSource
Object.entries(fieldErrors).forEach(([key, errors]) => {
if (errors.length > 0) {
mergedErrors[key] = {
message: errors[0].message,
level: errors[0].level,
source: ErrorSources.Row,
type: errors[0].type || ErrorType.Custom
}
}
})
```
This only takes the first error for each field, potentially hiding important validation issues.
## 8. ✅ Inconsistent Error Handling for Empty Values (PARTIALLY RESOLVED)
> **Note: This issue has been partially resolved by standardizing the isEmpty function and error type system.**
The system previously had different approaches to handling empty values:
- Some validations skipped empty values unless they're required
- Others processed empty values differently
- The `isEmpty` function was defined multiple times with slight variations
The solution implemented:
- Standardized the `isEmpty` function implementation
- Ensured consistent error type usage for required field validations
- Made error filtering consistent across the application
**Guidelines for future development:**
- Always use the shared `isEmpty` function for checking empty values
- Ensure consistent handling of empty values across all validation rules
- Use the `ErrorType.Required` type for all required field validations
## 9. Tight Coupling Between Components
The validation system is tightly coupled across components:
- `ValidationCell` needs to understand the structure of errors
- `ValidationTable` needs to extract and pass the right errors
- `ValidationContainer` directly manipulates the error structure
This makes it harder to refactor or reuse components independently.
## 10. Limited Error Prioritization
There's no clear prioritization of errors:
- When multiple errors exist for a field, which one should be shown first?
- Are some errors more important than others?
- The current system mostly shows the first error it finds
A more robust approach would be to have a consistent error source identification system and a clear prioritization strategy for displaying errors.
------------
Let me explain how these hooks fit together to create the validation errors that eventually get filtered in the `ValidationCell` component:
## The Validation Flow
1. **useValidationState Hook**:
This is the main state management hook used by the `ValidationContainer` component. It:
- Manages the core data state (`data`)
- Tracks validation errors in a Map (`validationErrors`)
- Provides functions to update and validate rows
2. **useValidation Hook**:
This is a utility hook that provides the core validation logic:
- `validateField`: Validates a single field against its validation rules
- `validateRow`: Validates an entire row, field by field
- `validateTable`: Runs table-level validations
- `validateUnique`: Checks for uniqueness constraints
- `validateData`: Orchestrates the complete validation process
## How Errors Are Generated
Validation errors come from multiple sources:
1. **Field-Level Validations**:
In `useValidation.tsx`, the `validateField` function checks individual fields against rules like:
- `required`: Field must have a value
- `regex`: Value must match a pattern
- `min`/`max`: Numeric constraints
2. **Row-Level Validations**:
The `validateRow` function in `useValidation.tsx` runs:
- Field validations for each field in the row
- Special validations for required fields like supplier and company
- Custom row hooks provided by the application
3. **Table-Level Validations**:
- `validateUnique` checks for duplicate values in fields marked as unique
- `validateTable` runs custom table hooks for cross-row validations
4. **API-Based Validations**:
In `useValidationState.tsx` and `ValidationContainer.tsx`:
- UPC validation via API calls
- Item number uniqueness checks
## The Error Flow
1. Errors are collected in the `validationErrors` Map in `useValidationState`
2. This Map is passed to `ValidationTable` as a prop
3. `ValidationTable` extracts the relevant errors for each cell and passes them to `ValidationCell`
4. In `ValidationCell`, the errors are filtered based on whether the cell has a value:
```typescript
// Updated implementation using type-based filtering
const filteredErrors = React.useMemo(() => {
return !isEmpty(value)
? errors.filter(error => error.type !== ErrorType.Required)
: errors;
}, [value, errors]);
```
## Key Insights
1. **Error Structure**:
Errors now have a consistent structure with type information:
```typescript
type ErrorObject = {
message: string;
level: string; // 'error', 'warning', etc.
source?: ErrorSources; // Where the error came from
type: ErrorType; // The type of error (Required, Regex, Unique, etc.)
}
```
2. **Error Sources**:
Errors can come from:
- Field validations (required, regex, etc.)
- Row validations (custom business logic)
- Table validations (uniqueness checks)
- API validations (UPC checks)
3. **Error Types**:
Errors are now categorized by type:
- `ErrorType.Required`: Field is required but empty
- `ErrorType.Regex`: Value doesn't match the regex pattern
- `ErrorType.Unique`: Value must be unique across rows
- `ErrorType.Custom`: Custom validation errors
- `ErrorType.Api`: Errors from API calls
4. **Error Filtering**:
The filtering in `ValidationCell` is now more robust:
- When a field has a value, errors of type `ErrorType.Required` are filtered out
- When a field is empty, all errors are shown
5. **Performance Optimizations**:
- Batch processing of validations
- Debounced updates to avoid excessive re-renders
- Memoization of computed values

View File

@@ -0,0 +1,538 @@
# ValidationTable Scroll Position Issue
## Problem Description
The `ValidationTable` component in the inventory application suffers from a persistent scroll position issue. When the table content updates or re-renders, the scroll position resets to the top left corner. This creates a poor user experience, especially when users are working with large datasets and need to maintain their position while making edits or filtering data.
Specific behaviors:
- Scroll position resets to the top left corner during re-renders
- User loses their place in the table when data is updated
- The table does not preserve vertical or horizontal scroll position
## Relevant Files
- **`inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/ValidationTable.tsx`**
- Main component that renders the validation table
- Handles scroll position management
- **`inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/ValidationContainer.tsx`**
- Parent component that wraps ValidationTable
- Creates an EnhancedValidationTable wrapper component
- Manages data and state for the validation table
- **`inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/hooks/useValidationState.tsx`**
- Provides state management and data manipulation functions
- Contains scroll-related code in the `updateRow` function
- **`inventory/src/lib/react-spreadsheet-import/src/steps/ValidationStepNew/components/ValidationCell.tsx`**
- Renders individual cells in the table
- May influence re-renders that affect scroll position
## Failed Attempts
We've tried multiple approaches to fix the scroll position issue, none of which have been successful:
### 1. Using Refs for Scroll Position
```typescript
const scrollPosition = useRef({
left: 0,
top: 0
});
// Capture position on scroll
const handleScroll = useCallback(() => {
if (tableContainerRef.current) {
scrollPosition.current = {
left: tableContainerRef.current.scrollLeft,
top: tableContainerRef.current.scrollTop
};
}
}, []);
// Restore in useLayoutEffect
useLayoutEffect(() => {
const container = tableContainerRef.current;
if (container) {
const { left, top } = scrollPosition.current;
if (left || top) {
container.scrollLeft = left;
container.scrollTop = top;
}
}
});
```
Result: Scroll position was still lost during updates.
### 2. Multiple Restoration Attempts with Timeouts
```typescript
// Multiple timeouts at different intervals
setTimeout(() => {
if (tableContainerRef.current) {
tableContainerRef.current.scrollTop = savedPosition.top;
tableContainerRef.current.scrollLeft = savedPosition.left;
}
}, 0);
setTimeout(() => {
if (tableContainerRef.current) {
tableContainerRef.current.scrollTop = savedPosition.top;
tableContainerRef.current.scrollLeft = savedPosition.left;
}
}, 50);
// Additional timeouts at 100ms, 300ms
```
Result: Still not reliable, scroll position would reset between timeouts or after all timeouts completed.
### 3. Using MutationObserver and ResizeObserver
```typescript
// Create a mutation observer to detect DOM changes
const mutationObserver = new MutationObserver(() => {
if (shouldPreserveScroll) {
restoreScrollPosition();
}
});
// Start observing the table for DOM changes
mutationObserver.observe(scrollableContainer, {
childList: true,
subtree: true,
attributes: true,
attributeFilter: ['style', 'class']
});
// Create a resize observer
const resizeObserver = new ResizeObserver(() => {
if (shouldPreserveScroll) {
restoreScrollPosition();
}
});
// Observe the table container
resizeObserver.observe(scrollableContainer);
```
Result: Did not reliably maintain scroll position, and sometimes caused other rendering issues.
### 4. Recursive Restoration Approach
```typescript
let attempts = 0;
const maxAttempts = 5;
const restore = () => {
if (tableContainerRef.current) {
tableContainerRef.current.scrollTop = y;
tableContainerRef.current.scrollLeft = x;
attempts++;
if (attempts < maxAttempts) {
setTimeout(restore, 50 * attempts);
}
}
};
restore();
```
Result: No improvement, scroll position still reset.
### 5. Using React State for Scroll Position
```typescript
const [scrollPos, setScrollPos] = useState<{top: number; left: number}>({top: 0, left: 0});
// Track the scroll event
useEffect(() => {
const handleScroll = () => {
if (scrollContainerRef.current) {
setScrollPos({
top: scrollContainerRef.current.scrollTop,
left: scrollContainerRef.current.scrollLeft
});
}
};
// Add scroll listener...
}, []);
// Restore scroll position
useLayoutEffect(() => {
const container = scrollContainerRef.current;
const { top, left } = scrollPos;
if (top > 0 || left > 0) {
requestAnimationFrame(() => {
if (container) {
container.scrollTop = top;
container.scrollLeft = left;
}
});
}
}, [scrollPos, data]);
```
Result: Caused the screen to shake violently when scrolling and did not preserve position.
### 6. Using Key Attribute for Stability
```typescript
return (
<div
key="validation-table-container"
ref={scrollContainerRef}
className="overflow-auto max-h-[calc(100vh-300px)]"
>
{/* Table content */}
</div>
);
```
Result: Did not resolve the issue and may have contributed to rendering instability.
### 7. Removing Scroll Management from Other Components
We removed scroll position management code from:
- `useValidationState.tsx` (in the updateRow function)
- `ValidationContainer.tsx` (in the enhancedUpdateRow function)
Result: This did not fix the issue either.
### 8. Simple Scroll Position Management with Event Listeners
```typescript
// Create a ref to store scroll position
const scrollPosition = useRef({ left: 0, top: 0 });
const tableContainerRef = useRef<HTMLDivElement>(null);
// Save scroll position when scrolling
const handleScroll = useCallback(() => {
if (tableContainerRef.current) {
scrollPosition.current = {
left: tableContainerRef.current.scrollLeft,
top: tableContainerRef.current.scrollTop
};
}
}, []);
// Add scroll listener
useEffect(() => {
const container = tableContainerRef.current;
if (container) {
container.addEventListener('scroll', handleScroll);
return () => container.removeEventListener('scroll', handleScroll);
}
}, [handleScroll]);
// Restore scroll position after data changes
useLayoutEffect(() => {
const container = tableContainerRef.current;
if (container) {
const { left, top } = scrollPosition.current;
if (left > 0 || top > 0) {
container.scrollLeft = left;
container.scrollTop = top;
}
}
}, [data]);
```
Result: Still did not maintain scroll position during updates.
### 9. Memoized Scroll Container Component
```typescript
// Create a stable scroll container that won't re-render with the table
const ScrollContainer = React.memo(({ children }: { children: React.ReactNode }) => {
const containerRef = useRef<HTMLDivElement>(null);
const scrollPosition = useRef({ left: 0, top: 0 });
const handleScroll = useCallback(() => {
if (containerRef.current) {
scrollPosition.current = {
left: containerRef.current.scrollLeft,
top: containerRef.current.scrollTop
};
}
}, []);
useEffect(() => {
const container = containerRef.current;
if (container) {
// Set initial scroll position if it exists
if (scrollPosition.current.left > 0 || scrollPosition.current.top > 0) {
container.scrollLeft = scrollPosition.current.left;
container.scrollTop = scrollPosition.current.top;
}
container.addEventListener('scroll', handleScroll);
return () => container.removeEventListener('scroll', handleScroll);
}
}, [handleScroll]);
return (
<div ref={containerRef} className="overflow-auto max-h-[calc(100vh-300px)]">
{children}
</div>
);
});
```
Result: Still did not maintain scroll position during updates, even with a memoized container.
### 10. Using TanStack Table State Management
```typescript
// Track scroll state in the table instance
const [scrollState, setScrollState] = useState({ scrollLeft: 0, scrollTop: 0 });
const table = useReactTable({
data,
columns,
getCoreRowModel: getCoreRowModel(),
state: {
rowSelection,
// Include scroll position in table state
scrollLeft: scrollState.scrollLeft,
scrollTop: scrollState.scrollTop
},
onStateChange: (updater) => {
if (typeof updater === 'function') {
const newState = updater({
rowSelection,
scrollLeft: scrollState.scrollLeft,
scrollTop: scrollState.scrollTop
});
if ('scrollLeft' in newState || 'scrollTop' in newState) {
setScrollState({
scrollLeft: newState.scrollLeft ?? scrollState.scrollLeft,
scrollTop: newState.scrollTop ?? scrollState.scrollTop
});
}
}
}
});
// Handle scroll events
const handleScroll = useCallback((event: React.UIEvent<HTMLDivElement>) => {
const target = event.target as HTMLDivElement;
setScrollState({
scrollLeft: target.scrollLeft,
scrollTop: target.scrollTop
});
}, []);
// Restore scroll position after updates
useLayoutEffect(() => {
if (tableContainerRef.current) {
tableContainerRef.current.scrollLeft = scrollState.scrollLeft;
tableContainerRef.current.scrollTop = scrollState.scrollTop;
}
}, [data, scrollState]);
```
Result: Still did not maintain scroll position during updates, even with table state management.
### 11. Using CSS Sticky Positioning
```typescript
return (
<div className="relative max-h-[calc(100vh-300px)] overflow-auto">
<Table>
<TableHeader className="sticky top-0 z-10 bg-background">
<TableRow>
{table.getFlatHeaders().map((header) => (
<TableHead
key={header.id}
style={{
width: `${header.getSize()}px`,
minWidth: `${header.getSize()}px`,
position: 'sticky',
top: 0,
backgroundColor: 'inherit'
}}
>
{/* Header content */}
</TableHead>
))}
</TableRow>
</TableHeader>
<TableBody>
{/* Table body content */}
</TableBody>
</Table>
</div>
);
```
Result: Still did not maintain scroll position during updates, even with native CSS scrolling.
### 12. Optimized Memoization with Object.is
```typescript
// Memoize data structures to prevent unnecessary re-renders
const memoizedData = useMemo(() => data, [data]);
const memoizedValidationErrors = useMemo(() => validationErrors, [validationErrors]);
const memoizedValidatingCells = useMemo(() => validatingCells, [validatingCells]);
const memoizedItemNumbers = useMemo(() => itemNumbers, [itemNumbers]);
// Use Object.is for more efficient comparisons
export default React.memo(ValidationTable, (prev, next) => {
if (!Object.is(prev.data.length, next.data.length)) return false;
if (prev.validationErrors.size !== next.validationErrors.size) return false;
for (const [key, value] of prev.validationErrors) {
if (!next.validationErrors.has(key)) return false;
if (!Object.is(value, next.validationErrors.get(key))) return false;
}
// ... more optimized comparisons ...
});
```
Result: Caused the page to crash with "TypeError: undefined has no properties" in the MemoizedCell component.
### 13. Simplified Component Structure
```typescript
const ValidationTable = <T extends string>({
data,
fields,
rowSelection,
setRowSelection,
updateRow,
validationErrors,
// ... other props
}) => {
const tableContainerRef = useRef<HTMLDivElement>(null);
const lastScrollPosition = useRef({ left: 0, top: 0 });
// Simple scroll position management
const handleScroll = useCallback(() => {
if (tableContainerRef.current) {
lastScrollPosition.current = {
left: tableContainerRef.current.scrollLeft,
top: tableContainerRef.current.scrollTop
};
}
}, []);
useEffect(() => {
const container = tableContainerRef.current;
if (container) {
container.addEventListener('scroll', handleScroll);
return () => container.removeEventListener('scroll', handleScroll);
}
}, [handleScroll]);
useLayoutEffect(() => {
const container = tableContainerRef.current;
if (container) {
const { left, top } = lastScrollPosition.current;
if (left > 0 || top > 0) {
requestAnimationFrame(() => {
if (container) {
container.scrollLeft = left;
container.scrollTop = top;
}
});
}
}
}, [data]);
return (
<div ref={tableContainerRef} className="overflow-auto max-h-[calc(100vh-300px)]">
<Table>
{/* ... table content ... */}
<TableBody>
{table.getRowModel().rows.map((row) => (
<TableRow
key={row.id}
className={cn(
"hover:bg-muted/50",
row.getIsSelected() ? "bg-muted/50" : "",
validationErrors.get(data.indexOf(row.original)) ? "bg-red-50/40" : ""
)}
>
{/* ... row content ... */}
</TableRow>
))}
</TableBody>
</Table>
</div>
);
};
```
Result: Still did not maintain scroll position during updates. However, this implementation restored the subtle red highlight on rows with validation errors, which is a useful visual indicator that should be preserved in future attempts.
### 14. Portal-Based Scroll Container
```typescript
// Create a stable container outside of React's control
const createStableContainer = () => {
const containerId = 'validation-table-container';
let container = document.getElementById(containerId);
if (!container) {
container = document.createElement('div');
container.id = containerId;
container.className = 'overflow-auto';
container.style.maxHeight = 'calc(100vh - 300px)';
document.body.appendChild(container);
}
return container;
};
const ValidationTable = <T extends string>({...props}) => {
const [container] = useState(createStableContainer);
const [mounted, setMounted] = useState(false);
useEffect(() => {
setMounted(true);
return () => {
if (container && container.parentNode) {
container.parentNode.removeChild(container);
}
};
}, [container]);
// ... table configuration ...
return createPortal(content, container);
};
```
Result: The table contents failed to render at all. The portal-based approach to maintain scroll position by moving the scroll container outside of React's control was unsuccessful.
## Current Understanding
The scroll position issue appears to be complex and likely stems from multiple factors:
1. React's virtual DOM reconciliation may be replacing the scroll container element during updates
2. The table uses complex memo patterns with custom equality checks that may not be working as expected
3. The data structure may be changing in ways that cause complete re-renders
4. The component hierarchy (with EnhancedValidationTable wrapper) may be affecting DOM stability
## Next Steps to Consider
At this point, we have tried multiple approaches without success:
1. Various scroll position management techniques
2. Memoization and optimization strategies
3. Different component structures
4. Portal-based rendering
Given that none of these approaches have fully resolved the issue, it may be worth:
1. Investigating if there are any parent component updates forcing re-renders
2. Profiling the application to identify the exact timing of scroll position resets
3. Considering if the current table implementation could be simplified
4. Exploring if the data update patterns could be optimized to reduce re-renders
## Conclusion
The scroll position issue has proven resistant to multiple solution attempts. Each approach has either failed to maintain scroll position, introduced new issues, or in some cases (like the portal-based approach) prevented the table from rendering entirely. A deeper investigation into the component lifecycle and data flow may be necessary to identify the root cause.

View File

@@ -1,5 +1,209 @@
// ecosystem.config.js
const path = require('path');
const dotenv = require('dotenv');
// Load environment variables safely with error handling
const loadEnvFile = (envPath) => {
try {
console.log('Loading env from:', envPath);
const result = dotenv.config({ path: envPath });
if (result.error) {
console.warn(`Warning: .env file not found or invalid at ${envPath}:`, result.error.message);
return {};
}
console.log('Env variables loaded from', envPath, ':', Object.keys(result.parsed || {}));
return result.parsed || {};
} catch (error) {
console.warn(`Warning: Error loading .env file at ${envPath}:`, error.message);
return {};
}
}
// Load environment variables for each server
const authEnv = loadEnvFile(path.resolve(__dirname, 'dashboard/auth-server/.env'));
const aircallEnv = loadEnvFile(path.resolve(__dirname, 'dashboard/aircall-server/.env'));
const klaviyoEnv = loadEnvFile(path.resolve(__dirname, 'dashboard/klaviyo-server/.env'));
const metaEnv = loadEnvFile(path.resolve(__dirname, 'dashboard/meta-server/.env'));
const googleAnalyticsEnv = require('dotenv').config({
path: path.resolve(__dirname, 'dashboard/google-server/.env')
}).parsed || {};
const typeformEnv = loadEnvFile(path.resolve(__dirname, 'dashboard/typeform-server/.env'));
const inventoryEnv = loadEnvFile(path.resolve(__dirname, 'inventory/.env'));
// Common log settings for all apps
const logSettings = {
log_rotate: true,
max_size: '10M',
retain: '10',
log_date_format: 'YYYY-MM-DD HH:mm:ss'
};
// Common app settings
const commonSettings = {
instances: 1,
exec_mode: 'fork',
autorestart: true,
watch: false,
max_memory_restart: '1G',
time: true,
...logSettings,
ignore_watch: [
'node_modules',
'logs',
'.git',
'*.log'
],
min_uptime: 5000,
max_restarts: 5,
restart_delay: 4000,
listen_timeout: 50000,
kill_timeout: 5000,
node_args: '--max-old-space-size=1536'
};
module.exports = {
apps: [
{
...commonSettings,
name: 'auth-server',
script: './dashboard/auth-server/index.js',
env: {
NODE_ENV: 'production',
PORT: 3003,
...authEnv
},
error_file: 'dashboard/auth-server/logs/pm2/err.log',
out_file: 'dashboard/auth-server/logs/pm2/out.log',
log_file: 'dashboard/auth-server/logs/pm2/combined.log',
env_production: {
NODE_ENV: 'production',
PORT: 3003
},
env_development: {
NODE_ENV: 'development',
PORT: 3003
}
},
{
...commonSettings,
name: 'aircall-server',
script: './dashboard/aircall-server/server.js',
env: {
NODE_ENV: 'production',
AIRCALL_PORT: 3002,
...aircallEnv
},
error_file: 'dashboard/aircall-server/logs/pm2/err.log',
out_file: 'dashboard/aircall-server/logs/pm2/out.log',
log_file: 'dashboard/aircall-server/logs/pm2/combined.log',
env_production: {
NODE_ENV: 'production',
AIRCALL_PORT: 3002
}
},
{
...commonSettings,
name: 'klaviyo-server',
script: './dashboard/klaviyo-server/server.js',
env: {
NODE_ENV: 'production',
KLAVIYO_PORT: 3004,
...klaviyoEnv
},
error_file: 'dashboard/klaviyo-server/logs/pm2/err.log',
out_file: 'dashboard/klaviyo-server/logs/pm2/out.log',
log_file: 'dashboard/klaviyo-server/logs/pm2/combined.log',
env_production: {
NODE_ENV: 'production',
KLAVIYO_PORT: 3004
}
},
{
...commonSettings,
name: 'meta-server',
script: './dashboard/meta-server/server.js',
env: {
NODE_ENV: 'production',
PORT: 3005,
...metaEnv
},
error_file: 'dashboard/meta-server/logs/pm2/err.log',
out_file: 'dashboard/meta-server/logs/pm2/out.log',
log_file: 'dashboard/meta-server/logs/pm2/combined.log',
env_production: {
NODE_ENV: 'production',
PORT: 3005
}
},
{
name: "gorgias-server",
script: "./dashboard/gorgias-server/server.js",
env: {
NODE_ENV: "development",
PORT: 3006
},
env_production: {
NODE_ENV: "production",
PORT: 3006
},
error_file: "dashboard/logs/gorgias-server-error.log",
out_file: "dashboard/logs/gorgias-server-out.log",
log_file: "dashboard/logs/gorgias-server-combined.log",
time: true
},
{
...commonSettings,
name: 'google-server',
script: path.resolve(__dirname, 'dashboard/google-server/server.js'),
watch: false,
env: {
NODE_ENV: 'production',
GOOGLE_ANALYTICS_PORT: 3007,
...googleAnalyticsEnv
},
error_file: path.resolve(__dirname, 'dashboard/google-server/logs/pm2/err.log'),
out_file: path.resolve(__dirname, 'dashboard/google-server/logs/pm2/out.log'),
log_file: path.resolve(__dirname, 'dashboard/google-server/logs/pm2/combined.log'),
env_production: {
NODE_ENV: 'production',
GOOGLE_ANALYTICS_PORT: 3007
}
},
{
...commonSettings,
name: 'typeform-server',
script: './dashboard/typeform-server/server.js',
env: {
NODE_ENV: 'production',
TYPEFORM_PORT: 3008,
...typeformEnv
},
error_file: 'dashboard/typeform-server/logs/pm2/err.log',
out_file: 'dashboard/typeform-server/logs/pm2/out.log',
log_file: 'dashboard/typeform-server/logs/pm2/combined.log',
env_production: {
NODE_ENV: 'production',
TYPEFORM_PORT: 3008
}
},
{
...commonSettings,
name: 'inventory-server',
script: './inventory/src/server.js',
env: {
NODE_ENV: 'production',
PORT: 3010,
...inventoryEnv
},
error_file: 'inventory/logs/pm2/err.log',
out_file: 'inventory/logs/pm2/out.log',
log_file: 'inventory/logs/pm2/combined.log',
env_production: {
NODE_ENV: 'production',
PORT: 3010,
...inventoryEnv
}
},
{
...commonSettings,
name: 'new-auth-server',
@@ -7,16 +211,12 @@ module.exports = {
env: {
NODE_ENV: 'production',
AUTH_PORT: 3011,
...inventoryEnv,
JWT_SECRET: process.env.JWT_SECRET
},
error_file: 'inventory-server/auth/logs/pm2/err.log',
out_file: 'inventory-server/auth/logs/pm2/out.log',
log_file: 'inventory-server/auth/logs/pm2/combined.log',
env_production: {
NODE_ENV: 'production',
AUTH_PORT: 3011,
JWT_SECRET: process.env.JWT_SECRET
}
log_file: 'inventory-server/auth/logs/pm2/combined.log'
}
]
};
};

View File

@@ -0,0 +1,103 @@
require('dotenv').config({ path: '../.env' });
const bcrypt = require('bcrypt');
const { Pool } = require('pg');
const inquirer = require('inquirer');
// Log connection details for debugging (remove in production)
console.log('Attempting to connect with:', {
host: process.env.DB_HOST,
user: process.env.DB_USER,
database: process.env.DB_NAME,
port: process.env.DB_PORT
});
const pool = new Pool({
host: process.env.DB_HOST,
user: process.env.DB_USER,
password: process.env.DB_PASSWORD,
database: process.env.DB_NAME,
port: process.env.DB_PORT,
});
async function promptUser() {
const questions = [
{
type: 'input',
name: 'username',
message: 'Enter username:',
validate: (input) => {
if (input.length < 3) {
return 'Username must be at least 3 characters long';
}
return true;
}
},
{
type: 'password',
name: 'password',
message: 'Enter password:',
mask: '*',
validate: (input) => {
if (input.length < 8) {
return 'Password must be at least 8 characters long';
}
return true;
}
},
{
type: 'password',
name: 'confirmPassword',
message: 'Confirm password:',
mask: '*',
validate: (input, answers) => {
if (input !== answers.password) {
return 'Passwords do not match';
}
return true;
}
}
];
return inquirer.prompt(questions);
}
async function addUser() {
try {
// Get user input
const answers = await promptUser();
const { username, password } = answers;
// Hash password
const saltRounds = 10;
const hashedPassword = await bcrypt.hash(password, saltRounds);
// Check if user already exists
const checkResult = await pool.query(
'SELECT id FROM users WHERE username = $1',
[username]
);
if (checkResult.rows.length > 0) {
console.error('Error: Username already exists');
process.exit(1);
}
// Insert new user
const result = await pool.query(
'INSERT INTO users (username, password) VALUES ($1, $2) RETURNING id',
[username, hashedPassword]
);
console.log(`User ${username} created successfully with id ${result.rows[0].id}`);
} catch (error) {
console.error('Error creating user:', error);
console.error('Error details:', error.message);
if (error.code) {
console.error('Error code:', error.code);
}
} finally {
await pool.end();
}
}
addUser();

View File

@@ -1,41 +0,0 @@
const bcrypt = require('bcrypt');
const mysql = require('mysql2/promise');
const readline = require('readline').createInterface({
input: process.stdin,
output: process.stdout,
});
require('dotenv').config({ path: '../.env' });
const dbConfig = {
host: process.env.DB_HOST,
user: process.env.DB_USER,
password: process.env.DB_PASSWORD,
database: process.env.DB_NAME,
};
async function addUser() {
const username = await askQuestion('Enter username: ');
const password = await askQuestion('Enter password: ');
const hashedPassword = await bcrypt.hash(password, 10);
const connection = await mysql.createConnection(dbConfig);
try {
await connection.query('INSERT INTO users (username, password) VALUES (?, ?)', [username, hashedPassword]);
console.log(`User ${username} added successfully.`);
} catch (error) {
console.error('Error adding user:', error);
} finally {
connection.end();
readline.close();
}
}
function askQuestion(query) {
return new Promise(resolve => readline.question(query, ans => {
resolve(ans);
}));
}
addUser();

File diff suppressed because it is too large Load Diff

View File

@@ -1,21 +1,19 @@
{
"name": "auth-server",
"name": "inventory-auth-server",
"version": "1.0.0",
"description": "Authentication server for inventory management",
"description": "Authentication server for inventory management system",
"main": "server.js",
"scripts": {
"start": "node server.js",
"dev": "nodemon server.js",
"add_user": "node add_user.js"
"start": "node server.js"
},
"dependencies": {
"bcrypt": "^5.1.1",
"cors": "^2.8.5",
"dotenv": "^16.4.5",
"dotenv": "^16.4.7",
"express": "^4.18.2",
"jsonwebtoken": "^9.0.2"
},
"devDependencies": {
"nodemon": "^3.1.0"
"inquirer": "^8.2.6",
"jsonwebtoken": "^9.0.2",
"morgan": "^1.10.0",
"pg": "^8.11.3"
}
}
}

View File

@@ -0,0 +1,128 @@
// Get pool from global or create a new one if not available
let pool;
if (typeof global.pool !== 'undefined') {
pool = global.pool;
} else {
// If global pool is not available, create a new connection
const { Pool } = require('pg');
pool = new Pool({
host: process.env.DB_HOST,
user: process.env.DB_USER,
password: process.env.DB_PASSWORD,
database: process.env.DB_NAME,
port: process.env.DB_PORT,
});
console.log('Created new database pool in permissions.js');
}
/**
* Check if a user has a specific permission
* @param {number} userId - The user ID to check
* @param {string} permissionCode - The permission code to check
* @returns {Promise<boolean>} - Whether the user has the permission
*/
async function checkPermission(userId, permissionCode) {
try {
// First check if the user is an admin
const adminResult = await pool.query(
'SELECT is_admin FROM users WHERE id = $1',
[userId]
);
// If user is admin, automatically grant permission
if (adminResult.rows.length > 0 && adminResult.rows[0].is_admin) {
return true;
}
// Otherwise check for specific permission
const result = await pool.query(
`SELECT COUNT(*) AS has_permission
FROM user_permissions up
JOIN permissions p ON up.permission_id = p.id
WHERE up.user_id = $1 AND p.code = $2`,
[userId, permissionCode]
);
return result.rows[0].has_permission > 0;
} catch (error) {
console.error('Error checking permission:', error);
return false;
}
}
/**
* Middleware to require a specific permission
* @param {string} permissionCode - The permission code required
* @returns {Function} - Express middleware function
*/
function requirePermission(permissionCode) {
return async (req, res, next) => {
try {
// Check if user is authenticated
if (!req.user || !req.user.id) {
return res.status(401).json({ error: 'Authentication required' });
}
const hasPermission = await checkPermission(req.user.id, permissionCode);
if (!hasPermission) {
return res.status(403).json({
error: 'Insufficient permissions',
requiredPermission: permissionCode
});
}
next();
} catch (error) {
console.error('Permission middleware error:', error);
res.status(500).json({ error: 'Server error checking permissions' });
}
};
}
/**
* Get all permissions for a user
* @param {number} userId - The user ID
* @returns {Promise<string[]>} - Array of permission codes
*/
async function getUserPermissions(userId) {
try {
// Check if user is admin
const adminResult = await pool.query(
'SELECT is_admin FROM users WHERE id = $1',
[userId]
);
if (adminResult.rows.length === 0) {
return [];
}
const isAdmin = adminResult.rows[0].is_admin;
if (isAdmin) {
// Admin gets all permissions
const allPermissions = await pool.query('SELECT code FROM permissions');
return allPermissions.rows.map(p => p.code);
} else {
// Get assigned permissions
const permissions = await pool.query(
`SELECT p.code
FROM permissions p
JOIN user_permissions up ON p.id = up.permission_id
WHERE up.user_id = $1`,
[userId]
);
return permissions.rows.map(p => p.code);
}
} catch (error) {
console.error('Error getting user permissions:', error);
return [];
}
}
module.exports = {
checkPermission,
requirePermission,
getUserPermissions
};

View File

@@ -0,0 +1,513 @@
const express = require('express');
const router = express.Router();
const bcrypt = require('bcrypt');
const jwt = require('jsonwebtoken');
const { requirePermission, getUserPermissions } = require('./permissions');
// Get pool from global or create a new one if not available
let pool;
if (typeof global.pool !== 'undefined') {
pool = global.pool;
} else {
// If global pool is not available, create a new connection
const { Pool } = require('pg');
pool = new Pool({
host: process.env.DB_HOST,
user: process.env.DB_USER,
password: process.env.DB_PASSWORD,
database: process.env.DB_NAME,
port: process.env.DB_PORT,
});
console.log('Created new database pool in routes.js');
}
// Authentication middleware
const authenticate = async (req, res, next) => {
try {
const authHeader = req.headers.authorization;
if (!authHeader || !authHeader.startsWith('Bearer ')) {
return res.status(401).json({ error: 'Authentication required' });
}
const token = authHeader.split(' ')[1];
const decoded = jwt.verify(token, process.env.JWT_SECRET);
// Get user from database
const result = await pool.query(
'SELECT id, username, is_admin FROM users WHERE id = $1',
[decoded.userId]
);
if (result.rows.length === 0) {
return res.status(401).json({ error: 'User not found' });
}
// Attach user to request
req.user = result.rows[0];
next();
} catch (error) {
console.error('Authentication error:', error);
res.status(401).json({ error: 'Invalid token' });
}
};
// Login route
router.post('/login', async (req, res) => {
try {
const { username, password } = req.body;
// Get user from database
const result = await pool.query(
'SELECT id, username, password, is_admin, is_active FROM users WHERE username = $1',
[username]
);
if (result.rows.length === 0) {
return res.status(401).json({ error: 'Invalid username or password' });
}
const user = result.rows[0];
// Check if user is active
if (!user.is_active) {
return res.status(403).json({ error: 'Account is inactive' });
}
// Verify password
const validPassword = await bcrypt.compare(password, user.password);
if (!validPassword) {
return res.status(401).json({ error: 'Invalid username or password' });
}
// Update last login
await pool.query(
'UPDATE users SET last_login = CURRENT_TIMESTAMP WHERE id = $1',
[user.id]
);
// Generate JWT
const token = jwt.sign(
{ userId: user.id, username: user.username },
process.env.JWT_SECRET,
{ expiresIn: '8h' }
);
// Get user permissions
const permissions = await getUserPermissions(user.id);
res.json({
token,
user: {
id: user.id,
username: user.username,
is_admin: user.is_admin,
permissions
}
});
} catch (error) {
console.error('Login error:', error);
res.status(500).json({ error: 'Server error' });
}
});
// Get current user
router.get('/me', authenticate, async (req, res) => {
try {
// Get user permissions
const permissions = await getUserPermissions(req.user.id);
res.json({
id: req.user.id,
username: req.user.username,
is_admin: req.user.is_admin,
permissions
});
} catch (error) {
console.error('Error getting current user:', error);
res.status(500).json({ error: 'Server error' });
}
});
// Get all users
router.get('/users', authenticate, requirePermission('view:users'), async (req, res) => {
try {
const result = await pool.query(`
SELECT id, username, email, is_admin, is_active, created_at, last_login
FROM users
ORDER BY username
`);
res.json(result.rows);
} catch (error) {
console.error('Error getting users:', error);
res.status(500).json({ error: 'Server error' });
}
});
// Get user with permissions
router.get('/users/:id', authenticate, requirePermission('view:users'), async (req, res) => {
try {
const userId = req.params.id;
// Get user details
const userResult = await pool.query(`
SELECT id, username, email, is_admin, is_active, created_at, last_login
FROM users
WHERE id = $1
`, [userId]);
if (userResult.rows.length === 0) {
return res.status(404).json({ error: 'User not found' });
}
// Get user permissions
const permissionsResult = await pool.query(`
SELECT p.id, p.name, p.code, p.category, p.description
FROM permissions p
JOIN user_permissions up ON p.id = up.permission_id
WHERE up.user_id = $1
ORDER BY p.category, p.name
`, [userId]);
// Combine user and permissions
const user = {
...userResult.rows[0],
permissions: permissionsResult.rows
};
res.json(user);
} catch (error) {
console.error('Error getting user:', error);
res.status(500).json({ error: 'Server error' });
}
});
// Create new user
router.post('/users', authenticate, requirePermission('create:users'), async (req, res) => {
const client = await pool.connect();
try {
const { username, email, password, is_admin, is_active, permissions } = req.body;
console.log("Create user request:", {
username,
email,
is_admin,
is_active,
permissions: permissions || []
});
// Validate required fields
if (!username || !password) {
return res.status(400).json({ error: 'Username and password are required' });
}
// Check if username is taken
const existingUser = await client.query(
'SELECT id FROM users WHERE username = $1',
[username]
);
if (existingUser.rows.length > 0) {
return res.status(400).json({ error: 'Username already exists' });
}
// Start transaction
await client.query('BEGIN');
// Hash password
const saltRounds = 10;
const hashedPassword = await bcrypt.hash(password, saltRounds);
// Insert new user
const userResult = await client.query(`
INSERT INTO users (username, email, password, is_admin, is_active, created_at)
VALUES ($1, $2, $3, $4, $5, CURRENT_TIMESTAMP)
RETURNING id
`, [username, email || null, hashedPassword, !!is_admin, is_active !== false]);
const userId = userResult.rows[0].id;
// Assign permissions if provided and not admin
if (!is_admin && Array.isArray(permissions) && permissions.length > 0) {
console.log("Adding permissions for new user:", userId);
console.log("Permissions received:", permissions);
// Check permission format
const permissionIds = permissions.map(p => {
if (typeof p === 'object' && p.id) {
console.log("Permission is an object with ID:", p.id);
return parseInt(p.id, 10);
} else if (typeof p === 'number') {
console.log("Permission is a number:", p);
return p;
} else if (typeof p === 'string' && !isNaN(parseInt(p, 10))) {
console.log("Permission is a string that can be parsed as a number:", p);
return parseInt(p, 10);
} else {
console.log("Unknown permission format:", typeof p, p);
// If it's a permission code, we need to look up the ID
return null;
}
}).filter(id => id !== null);
console.log("Filtered permission IDs:", permissionIds);
if (permissionIds.length > 0) {
const permissionValues = permissionIds
.map(permId => `(${userId}, ${permId})`)
.join(',');
console.log("Inserting permission values:", permissionValues);
try {
await client.query(`
INSERT INTO user_permissions (user_id, permission_id)
VALUES ${permissionValues}
ON CONFLICT DO NOTHING
`);
console.log("Successfully inserted permissions for new user:", userId);
} catch (err) {
console.error("Error inserting permissions for new user:", err);
throw err;
}
} else {
console.log("No valid permission IDs found to insert for new user");
}
} else {
console.log("Not adding permissions: is_admin =", is_admin, "permissions array:", Array.isArray(permissions), "length:", permissions ? permissions.length : 0);
}
await client.query('COMMIT');
res.status(201).json({
id: userId,
message: 'User created successfully'
});
} catch (error) {
await client.query('ROLLBACK');
console.error('Error creating user:', error);
res.status(500).json({ error: 'Server error' });
} finally {
client.release();
}
});
// Update user
router.put('/users/:id', authenticate, requirePermission('edit:users'), async (req, res) => {
const client = await pool.connect();
try {
const userId = req.params.id;
const { username, email, password, is_admin, is_active, permissions } = req.body;
console.log("Update user request:", {
userId,
username,
email,
is_admin,
is_active,
permissions: permissions || []
});
// Check if user exists
const userExists = await client.query(
'SELECT id FROM users WHERE id = $1',
[userId]
);
if (userExists.rows.length === 0) {
return res.status(404).json({ error: 'User not found' });
}
// Start transaction
await client.query('BEGIN');
// Build update fields
const updateFields = [];
const updateValues = [userId]; // First parameter is the user ID
let paramIndex = 2;
if (username !== undefined) {
updateFields.push(`username = $${paramIndex++}`);
updateValues.push(username);
}
if (email !== undefined) {
updateFields.push(`email = $${paramIndex++}`);
updateValues.push(email || null);
}
if (is_admin !== undefined) {
updateFields.push(`is_admin = $${paramIndex++}`);
updateValues.push(!!is_admin);
}
if (is_active !== undefined) {
updateFields.push(`is_active = $${paramIndex++}`);
updateValues.push(!!is_active);
}
// Update password if provided
if (password) {
const saltRounds = 10;
const hashedPassword = await bcrypt.hash(password, saltRounds);
updateFields.push(`password = $${paramIndex++}`);
updateValues.push(hashedPassword);
}
// Update user if there are fields to update
if (updateFields.length > 0) {
updateFields.push(`updated_at = CURRENT_TIMESTAMP`);
await client.query(`
UPDATE users
SET ${updateFields.join(', ')}
WHERE id = $1
`, updateValues);
}
// Update permissions if provided
if (Array.isArray(permissions)) {
console.log("Updating permissions for user:", userId);
console.log("Permissions received:", permissions);
// First remove existing permissions
await client.query(
'DELETE FROM user_permissions WHERE user_id = $1',
[userId]
);
console.log("Deleted existing permissions for user:", userId);
// Add new permissions if any and not admin
const newIsAdmin = is_admin !== undefined ? is_admin : (await client.query('SELECT is_admin FROM users WHERE id = $1', [userId])).rows[0].is_admin;
console.log("User is admin:", newIsAdmin);
if (!newIsAdmin && permissions.length > 0) {
console.log("Adding permissions:", permissions);
// Check permission format
const permissionIds = permissions.map(p => {
if (typeof p === 'object' && p.id) {
console.log("Permission is an object with ID:", p.id);
return parseInt(p.id, 10);
} else if (typeof p === 'number') {
console.log("Permission is a number:", p);
return p;
} else if (typeof p === 'string' && !isNaN(parseInt(p, 10))) {
console.log("Permission is a string that can be parsed as a number:", p);
return parseInt(p, 10);
} else {
console.log("Unknown permission format:", typeof p, p);
// If it's a permission code, we need to look up the ID
return null;
}
}).filter(id => id !== null);
console.log("Filtered permission IDs:", permissionIds);
if (permissionIds.length > 0) {
const permissionValues = permissionIds
.map(permId => `(${userId}, ${permId})`)
.join(',');
console.log("Inserting permission values:", permissionValues);
try {
await client.query(`
INSERT INTO user_permissions (user_id, permission_id)
VALUES ${permissionValues}
ON CONFLICT DO NOTHING
`);
console.log("Successfully inserted permissions for user:", userId);
} catch (err) {
console.error("Error inserting permissions:", err);
throw err;
}
} else {
console.log("No valid permission IDs found to insert");
}
}
}
await client.query('COMMIT');
res.json({ message: 'User updated successfully' });
} catch (error) {
await client.query('ROLLBACK');
console.error('Error updating user:', error);
res.status(500).json({ error: 'Server error' });
} finally {
client.release();
}
});
// Delete user
router.delete('/users/:id', authenticate, requirePermission('delete:users'), async (req, res) => {
try {
const userId = req.params.id;
// Check that user is not deleting themselves
if (req.user.id === parseInt(userId, 10)) {
return res.status(400).json({ error: 'Cannot delete your own account' });
}
// Delete user (this will cascade to user_permissions due to FK constraints)
const result = await pool.query(
'DELETE FROM users WHERE id = $1 RETURNING id',
[userId]
);
if (result.rows.length === 0) {
return res.status(404).json({ error: 'User not found' });
}
res.json({ message: 'User deleted successfully' });
} catch (error) {
console.error('Error deleting user:', error);
res.status(500).json({ error: 'Server error' });
}
});
// Get all permissions grouped by category
router.get('/permissions/categories', authenticate, requirePermission('view:users'), async (req, res) => {
try {
const result = await pool.query(`
SELECT category, json_agg(
json_build_object(
'id', id,
'name', name,
'code', code,
'description', description
) ORDER BY name
) as permissions
FROM permissions
GROUP BY category
ORDER BY category
`);
res.json(result.rows);
} catch (error) {
console.error('Error getting permissions:', error);
res.status(500).json({ error: 'Server error' });
}
});
// Get all permissions
router.get('/permissions', authenticate, requirePermission('view:users'), async (req, res) => {
try {
const result = await pool.query(`
SELECT *
FROM permissions
ORDER BY category, name
`);
res.json(result.rows);
} catch (error) {
console.error('Error getting permissions:', error);
res.status(500).json({ error: 'Server error' });
}
});
module.exports = router;

View File

@@ -1,6 +1,89 @@
CREATE TABLE `users` (
`id` INT AUTO_INCREMENT PRIMARY KEY,
`username` VARCHAR(255) NOT NULL UNIQUE,
`password` VARCHAR(255) NOT NULL,
`created_at` TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);
CREATE TABLE users (
id SERIAL PRIMARY KEY,
username VARCHAR(255) NOT NULL UNIQUE,
password VARCHAR(255) NOT NULL,
email VARCHAR UNIQUE,
is_admin BOOLEAN DEFAULT FALSE,
is_active BOOLEAN DEFAULT TRUE,
last_login TIMESTAMP WITH TIME ZONE,
updated_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);
-- Function to update the updated_at timestamp
CREATE OR REPLACE FUNCTION update_updated_at_column()
RETURNS TRIGGER AS $$
BEGIN
NEW.updated_at = CURRENT_TIMESTAMP;
RETURN NEW;
END;
$$ language 'plpgsql';
-- Sequence and defined type for users table if not exists
CREATE SEQUENCE IF NOT EXISTS users_id_seq;
-- Create permissions table
CREATE TABLE IF NOT EXISTS "public"."permissions" (
"id" SERIAL PRIMARY KEY,
"name" varchar NOT NULL UNIQUE,
"code" varchar NOT NULL UNIQUE,
"description" text,
"category" varchar NOT NULL,
"created_at" timestamp with time zone DEFAULT CURRENT_TIMESTAMP,
"updated_at" timestamp with time zone DEFAULT CURRENT_TIMESTAMP
);
-- Create user_permissions junction table
CREATE TABLE IF NOT EXISTS "public"."user_permissions" (
"user_id" int4 NOT NULL REFERENCES "public"."users"("id") ON DELETE CASCADE,
"permission_id" int4 NOT NULL REFERENCES "public"."permissions"("id") ON DELETE CASCADE,
"created_at" timestamp with time zone DEFAULT CURRENT_TIMESTAMP,
PRIMARY KEY ("user_id", "permission_id")
);
-- Add triggers for updated_at on users and permissions
DROP TRIGGER IF EXISTS update_users_updated_at ON users;
CREATE TRIGGER update_users_updated_at
BEFORE UPDATE ON users
FOR EACH ROW
EXECUTE FUNCTION update_updated_at_column();
DROP TRIGGER IF EXISTS update_permissions_updated_at ON permissions;
CREATE TRIGGER update_permissions_updated_at
BEFORE UPDATE ON permissions
FOR EACH ROW
EXECUTE FUNCTION update_updated_at_column();
-- Insert default permissions by page - only the ones used in application
INSERT INTO permissions (name, code, description, category) VALUES
('Dashboard Access', 'access:dashboard', 'Can access the Dashboard page', 'Pages'),
('Products Access', 'access:products', 'Can access the Products page', 'Pages'),
('Categories Access', 'access:categories', 'Can access the Categories page', 'Pages'),
('Vendors Access', 'access:vendors', 'Can access the Vendors page', 'Pages'),
('Analytics Access', 'access:analytics', 'Can access the Analytics page', 'Pages'),
('Forecasting Access', 'access:forecasting', 'Can access the Forecasting page', 'Pages'),
('Purchase Orders Access', 'access:purchase_orders', 'Can access the Purchase Orders page', 'Pages'),
('Import Access', 'access:import', 'Can access the Import page', 'Pages'),
('Settings Access', 'access:settings', 'Can access the Settings page', 'Pages'),
('AI Validation Debug Access', 'access:ai_validation_debug', 'Can access the AI Validation Debug page', 'Pages')
ON CONFLICT (code) DO NOTHING;
-- Settings section permissions
INSERT INTO permissions (name, code, description, category) VALUES
('Data Management', 'settings:data_management', 'Access to the Data Management settings section', 'Settings'),
('Stock Management', 'settings:stock_management', 'Access to the Stock Management settings section', 'Settings'),
('Performance Metrics', 'settings:performance_metrics', 'Access to the Performance Metrics settings section', 'Settings'),
('Calculation Settings', 'settings:calculation_settings', 'Access to the Calculation Settings section', 'Settings'),
('Template Management', 'settings:templates', 'Access to the Template Management settings section', 'Settings'),
('User Management', 'settings:user_management', 'Access to the User Management settings section', 'Settings')
ON CONFLICT (code) DO NOTHING;
-- Set any existing users as admin
UPDATE users SET is_admin = TRUE WHERE is_admin IS NULL;
-- Grant all permissions to admin users
INSERT INTO user_permissions (user_id, permission_id)
SELECT u.id, p.id
FROM users u, permissions p
WHERE u.is_admin = TRUE
ON CONFLICT DO NOTHING;

View File

@@ -1,135 +1,164 @@
require('dotenv').config({ path: '../.env' });
const express = require('express');
const cors = require('cors');
const bcrypt = require('bcrypt');
const jwt = require('jsonwebtoken');
const cors = require('cors');
const mysql = require('mysql2/promise');
require('dotenv').config({ path: '../.env' });
const { Pool } = require('pg');
const morgan = require('morgan');
const authRoutes = require('./routes');
// Log startup configuration
console.log('Starting auth server with config:', {
host: process.env.DB_HOST,
user: process.env.DB_USER,
database: process.env.DB_NAME,
port: process.env.DB_PORT,
auth_port: process.env.AUTH_PORT
});
const app = express();
const PORT = process.env.AUTH_PORT || 3011;
const port = process.env.AUTH_PORT || 3011;
// Database configuration
const dbConfig = {
const pool = new Pool({
host: process.env.DB_HOST,
user: process.env.DB_USER,
password: process.env.DB_PASSWORD,
database: process.env.DB_NAME,
};
port: process.env.DB_PORT,
});
// Create a connection pool
const pool = mysql.createPool(dbConfig);
// Make pool available globally
global.pool = pool;
app.use(cors({
origin: [
'https://inventory.kent.pw',
'http://localhost:5173',
'http://127.0.0.1:5173',
/^http:\/\/192\.168\.\d+\.\d+(:\d+)?$/,
/^http:\/\/10\.\d+\.\d+\.\d+(:\d+)?$/
],
methods: ['GET', 'POST', 'OPTIONS'],
allowedHeaders: ['Content-Type', 'Authorization', 'X-Requested-With'],
credentials: true,
exposedHeaders: ['set-cookie']
}));
// Middleware
app.use(express.json());
// Debug middleware to log request details
app.use((req, res, next) => {
console.log('Request details:', {
method: req.method,
url: req.url,
origin: req.get('Origin'),
headers: req.headers,
body: req.body,
});
next();
});
// Registration endpoint
app.post('/register', async (req, res) => {
try {
const { username, password } = req.body;
const hashedPassword = await bcrypt.hash(password, 10);
const connection = await pool.getConnection();
await connection.query('INSERT INTO users (username, password) VALUES (?, ?)', [username, hashedPassword]);
connection.release();
res.status(201).json({ message: 'User registered successfully' });
} catch (error) {
console.error('Registration error:', error);
res.status(500).json({ error: 'Registration failed' });
}
});
app.use(morgan('combined'));
app.use(cors({
origin: ['http://localhost:5173', 'http://localhost:5174', 'https://inventory.kent.pw'],
credentials: true
}));
// Login endpoint
app.post('/login', async (req, res) => {
const { username, password } = req.body;
try {
const { username, password } = req.body;
console.log(`Login attempt for user: ${username}`);
const connection = await pool.getConnection();
const [rows] = await connection.query(
'SELECT * FROM users WHERE username = ?',
[username],
// Get user from database
const result = await pool.query(
'SELECT id, username, password, is_admin, is_active FROM users WHERE username = $1',
[username]
);
connection.release();
if (rows.length === 1) {
const user = rows[0];
const passwordMatch = await bcrypt.compare(password, user.password);
const user = result.rows[0];
if (passwordMatch) {
console.log(`User ${username} authenticated successfully`);
const token = jwt.sign(
{ username: user.username },
process.env.JWT_SECRET,
{ expiresIn: '1h' },
);
res.json({ token });
} else {
console.error(`Invalid password for user: ${username}`);
res.status(401).json({ error: 'Invalid credentials' });
}
} else {
console.error(`User not found: ${username}`);
res.status(401).json({ error: 'Invalid credentials' });
// Check if user exists and password is correct
if (!user || !(await bcrypt.compare(password, user.password))) {
return res.status(401).json({ error: 'Invalid username or password' });
}
// Check if user is active
if (!user.is_active) {
return res.status(403).json({ error: 'Account is inactive' });
}
// Generate JWT token
const token = jwt.sign(
{ userId: user.id, username: user.username },
process.env.JWT_SECRET,
{ expiresIn: '24h' }
);
// Get user permissions for the response
const permissionsResult = await pool.query(`
SELECT code
FROM permissions p
JOIN user_permissions up ON p.id = up.permission_id
WHERE up.user_id = $1
`, [user.id]);
const permissions = permissionsResult.rows.map(row => row.code);
res.json({
token,
user: {
id: user.id,
username: user.username,
is_admin: user.is_admin,
permissions: user.is_admin ? [] : permissions
}
});
} catch (error) {
console.error('Login error:', error);
res.status(500).json({ error: 'Login failed' });
res.status(500).json({ error: 'Internal server error' });
}
});
// Protected endpoint example
app.get('/protected', async (req, res) => {
// User info endpoint
app.get('/me', async (req, res) => {
const authHeader = req.headers.authorization;
if (!authHeader) {
return res.status(401).json({ error: 'Unauthorized' });
if (!authHeader || !authHeader.startsWith('Bearer ')) {
return res.status(401).json({ error: 'No token provided' });
}
const token = authHeader.split(' ')[1];
try {
const token = authHeader.split(' ')[1];
const decoded = jwt.verify(token, process.env.JWT_SECRET);
// Optionally, you can fetch the user from the database here
// to verify that the user still exists or to get more user information
const connection = await pool.getConnection();
const [rows] = await connection.query('SELECT * FROM users WHERE username = ?', [decoded.username]);
connection.release();
if (rows.length === 0) {
return res.status(401).json({ error: 'User not found' });
// Get user details from database
const userResult = await pool.query(
'SELECT id, username, email, is_admin, is_active FROM users WHERE id = $1',
[decoded.userId]
);
if (userResult.rows.length === 0) {
return res.status(404).json({ error: 'User not found' });
}
res.json({ message: 'Protected resource accessed', user: decoded });
const user = userResult.rows[0];
// Get user permissions
let permissions = [];
if (!user.is_admin) {
const permissionsResult = await pool.query(`
SELECT code
FROM permissions p
JOIN user_permissions up ON p.id = up.permission_id
WHERE up.user_id = $1
`, [user.id]);
permissions = permissionsResult.rows.map(row => row.code);
}
res.json({
id: user.id,
username: user.username,
email: user.email,
is_admin: user.is_admin,
permissions: permissions
});
} catch (error) {
console.error('Protected endpoint error:', error);
res.status(403).json({ error: 'Invalid token' });
console.error('Token verification error:', error);
res.status(401).json({ error: 'Invalid token' });
}
});
app.listen(PORT, "0.0.0.0", () => {
console.log(`Auth server running on port ${PORT}`);
});
// Mount all routes from routes.js
app.use('/', authRoutes);
// Health check endpoint
app.get('/health', (req, res) => {
res.json({ status: 'healthy' });
});
// Error handling middleware
app.use((err, req, res, next) => {
console.error(err.stack);
res.status(500).json({ error: 'Something broke!' });
});
// Start server
app.listen(port, () => {
console.log(`Auth server running on port ${port}`);
});

View File

@@ -0,0 +1,181 @@
-- Create function for updating timestamps if it doesn't exist
CREATE OR REPLACE FUNCTION update_updated_column()
RETURNS TRIGGER AS $$
BEGIN
NEW.updated = CURRENT_TIMESTAMP;
RETURN NEW;
END;
$$ language 'plpgsql';
-- Create function for updating updated_at timestamps
CREATE OR REPLACE FUNCTION update_updated_at_column()
RETURNS TRIGGER AS $$
BEGIN
NEW.updated_at = CURRENT_TIMESTAMP;
RETURN NEW;
END;
$$ language 'plpgsql';
-- Drop tables in reverse order of dependency
DROP TABLE IF EXISTS public.settings_product CASCADE;
DROP TABLE IF EXISTS public.settings_vendor CASCADE;
DROP TABLE IF EXISTS public.settings_global CASCADE;
-- Table Definition: settings_global
CREATE TABLE public.settings_global (
setting_key VARCHAR PRIMARY KEY,
setting_value VARCHAR NOT NULL,
description TEXT,
updated_at TIMESTAMPTZ NOT NULL DEFAULT CURRENT_TIMESTAMP
);
-- Table Definition: settings_vendor
CREATE TABLE public.settings_vendor (
vendor VARCHAR PRIMARY KEY, -- Matches products.vendor
default_lead_time_days INT,
default_days_of_stock INT,
updated_at TIMESTAMPTZ NOT NULL DEFAULT CURRENT_TIMESTAMP
);
-- Index for faster lookups if needed (PK usually sufficient)
-- CREATE INDEX idx_settings_vendor_vendor ON public.settings_vendor(vendor);
-- Table Definition: settings_product
CREATE TABLE public.settings_product (
pid INT8 PRIMARY KEY,
lead_time_days INT, -- Overrides vendor/global
days_of_stock INT, -- Overrides vendor/global
safety_stock INT DEFAULT 0, -- Minimum desired stock level
forecast_method VARCHAR DEFAULT 'standard', -- e.g., 'standard', 'seasonal'
exclude_from_forecast BOOLEAN DEFAULT FALSE,
updated_at TIMESTAMPTZ NOT NULL DEFAULT CURRENT_TIMESTAMP,
CONSTRAINT fk_settings_product_pid FOREIGN KEY (pid) REFERENCES public.products(pid) ON DELETE CASCADE ON UPDATE CASCADE
);
-- Description: Inserts or updates standard default global settings.
-- Safe to rerun; will update existing keys with these default values.
-- Dependencies: `settings_global` table must exist.
-- Frequency: Run once initially, or rerun if you want to reset global defaults.
INSERT INTO public.settings_global (setting_key, setting_value, description) VALUES
('abc_revenue_threshold_a', '0.80', 'Revenue percentage for Class A (cumulative)'),
('abc_revenue_threshold_b', '0.95', 'Revenue percentage for Class B (cumulative)'),
('abc_calculation_basis', 'revenue_30d', 'Metric for ABC calc (revenue_30d, sales_30d, lifetime_revenue)'),
('abc_calculation_period', '30', 'Days period for ABC calculation if not lifetime'),
('default_forecast_method', 'standard', 'Default forecast method (standard, seasonal)'),
('default_lead_time_days', '14', 'Global default lead time in days'),
('default_days_of_stock', '30', 'Global default days of stock coverage target'),
-- Set default safety stock to 0 units. Can be overridden per product.
-- If you wanted safety stock in days, you'd store 'days' here and calculate units later.
('default_safety_stock_units', '0', 'Global default safety stock in units')
ON CONFLICT (setting_key) DO UPDATE SET
setting_value = EXCLUDED.setting_value,
description = EXCLUDED.description,
updated_at = CURRENT_TIMESTAMP; -- Update timestamp if default value changes
-- Description: Creates placeholder rows in `settings_vendor` for each unique vendor
-- found in the `products` table. Does NOT set specific overrides.
-- Safe to rerun; will NOT overwrite existing vendor settings.
-- Dependencies: `settings_vendor` table must exist, `products` table populated.
-- Frequency: Run once after initial product load, or periodically if new vendors are added.
INSERT INTO public.settings_vendor (
vendor,
default_lead_time_days,
default_days_of_stock
-- updated_at will use its default CURRENT_TIMESTAMP on insert
)
SELECT
DISTINCT p.vendor,
-- Explicitly cast NULL to INTEGER to resolve type mismatch
CAST(NULL AS INTEGER),
CAST(NULL AS INTEGER)
FROM
public.products p
WHERE
p.vendor IS NOT NULL
AND p.vendor <> '' -- Exclude blank vendors if necessary
ON CONFLICT (vendor) DO NOTHING; -- IMPORTANT: Do not overwrite existing vendor settings
SELECT COUNT(*) FROM public.settings_vendor; -- Verify rows were inserted
-- Description: Creates placeholder rows in `settings_product` for each unique product
-- found in the `products` table. Sets basic defaults but no specific overrides.
-- Safe to rerun; will NOT overwrite existing product settings.
-- Dependencies: `settings_product` table must exist, `products` table populated.
-- Frequency: Run once after initial product load, or periodically if new products are added.
INSERT INTO public.settings_product (
pid,
lead_time_days, -- NULL = Inherit from Vendor/Global
days_of_stock, -- NULL = Inherit from Vendor/Global
safety_stock, -- Default to 0 units initially
forecast_method, -- NULL = Inherit from Global ('standard')
exclude_from_forecast -- Default to FALSE
-- updated_at will use its default CURRENT_TIMESTAMP on insert
)
SELECT
p.pid,
CAST(NULL AS INTEGER), -- Explicitly cast NULL to INTEGER
CAST(NULL AS INTEGER), -- Explicitly cast NULL to INTEGER
COALESCE((SELECT setting_value::int FROM settings_global WHERE setting_key = 'default_safety_stock_units'), 0), -- Use global default safety stock units
CAST(NULL AS VARCHAR), -- Cast NULL to VARCHAR for forecast_method (already varchar, but explicit)
FALSE -- Default: Include in forecast
FROM
public.products p
ON CONFLICT (pid) DO NOTHING; -- IMPORTANT: Do not overwrite existing product-specific settings
-- History and status tables
CREATE TABLE IF NOT EXISTS calculate_history (
id BIGSERIAL PRIMARY KEY,
start_time TIMESTAMP WITH TIME ZONE NOT NULL DEFAULT CURRENT_TIMESTAMP,
end_time TIMESTAMP WITH TIME ZONE NULL,
duration_seconds INTEGER,
duration_minutes DECIMAL(10,2) GENERATED ALWAYS AS (duration_seconds::decimal / 60.0) STORED,
total_products INTEGER DEFAULT 0,
total_orders INTEGER DEFAULT 0,
total_purchase_orders INTEGER DEFAULT 0,
processed_products INTEGER DEFAULT 0,
processed_orders INTEGER DEFAULT 0,
processed_purchase_orders INTEGER DEFAULT 0,
status calculation_status DEFAULT 'running',
error_message TEXT,
additional_info JSONB
);
CREATE TABLE IF NOT EXISTS calculate_status (
module_name text PRIMARY KEY,
last_calculation_timestamp TIMESTAMP WITH TIME ZONE NOT NULL DEFAULT CURRENT_TIMESTAMP
);
CREATE TABLE IF NOT EXISTS sync_status (
table_name TEXT PRIMARY KEY,
last_sync_timestamp TIMESTAMP WITH TIME ZONE NOT NULL DEFAULT CURRENT_TIMESTAMP,
last_sync_id BIGINT
);
CREATE TABLE IF NOT EXISTS import_history (
id BIGSERIAL PRIMARY KEY,
table_name VARCHAR(50) NOT NULL,
start_time TIMESTAMP WITH TIME ZONE NOT NULL DEFAULT CURRENT_TIMESTAMP,
end_time TIMESTAMP WITH TIME ZONE NULL,
duration_seconds INTEGER,
duration_minutes DECIMAL(10,2) GENERATED ALWAYS AS (duration_seconds::decimal / 60.0) STORED,
records_added INTEGER DEFAULT 0,
records_updated INTEGER DEFAULT 0,
is_incremental BOOLEAN DEFAULT FALSE,
status calculation_status DEFAULT 'running',
error_message TEXT,
additional_info JSONB
);
-- Create all indexes after tables are fully created
CREATE INDEX IF NOT EXISTS idx_last_calc ON calculate_status(last_calculation_timestamp);
CREATE INDEX IF NOT EXISTS idx_last_sync ON sync_status(last_sync_timestamp);
CREATE INDEX IF NOT EXISTS idx_table_time ON import_history(table_name, start_time);

View File

@@ -1,196 +0,0 @@
-- Configuration tables schema
-- Stock threshold configurations
CREATE TABLE IF NOT EXISTS stock_thresholds (
id INT NOT NULL,
category_id BIGINT, -- NULL means default/global threshold
vendor VARCHAR(100), -- NULL means applies to all vendors
critical_days INT NOT NULL DEFAULT 7,
reorder_days INT NOT NULL DEFAULT 14,
overstock_days INT NOT NULL DEFAULT 90,
low_stock_threshold INT NOT NULL DEFAULT 5,
min_reorder_quantity INT NOT NULL DEFAULT 1,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
PRIMARY KEY (id),
FOREIGN KEY (category_id) REFERENCES categories(cat_id) ON DELETE CASCADE,
UNIQUE KEY unique_category_vendor (category_id, vendor),
INDEX idx_st_metrics (category_id, vendor)
);
-- Lead time threshold configurations
CREATE TABLE IF NOT EXISTS lead_time_thresholds (
id INT NOT NULL,
category_id BIGINT, -- NULL means default/global threshold
vendor VARCHAR(100), -- NULL means applies to all vendors
target_days INT NOT NULL DEFAULT 14,
warning_days INT NOT NULL DEFAULT 21,
critical_days INT NOT NULL DEFAULT 30,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
PRIMARY KEY (id),
FOREIGN KEY (category_id) REFERENCES categories(cat_id) ON DELETE CASCADE,
UNIQUE KEY unique_category_vendor (category_id, vendor)
);
-- Sales velocity window configurations
CREATE TABLE IF NOT EXISTS sales_velocity_config (
id INT NOT NULL,
category_id BIGINT, -- NULL means default/global threshold
vendor VARCHAR(100), -- NULL means applies to all vendors
daily_window_days INT NOT NULL DEFAULT 30,
weekly_window_days INT NOT NULL DEFAULT 7,
monthly_window_days INT NOT NULL DEFAULT 90,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
PRIMARY KEY (id),
FOREIGN KEY (category_id) REFERENCES categories(cat_id) ON DELETE CASCADE,
UNIQUE KEY unique_category_vendor (category_id, vendor),
INDEX idx_sv_metrics (category_id, vendor)
);
-- ABC Classification configurations
CREATE TABLE IF NOT EXISTS abc_classification_config (
id INT NOT NULL PRIMARY KEY,
a_threshold DECIMAL(5,2) NOT NULL DEFAULT 20.0,
b_threshold DECIMAL(5,2) NOT NULL DEFAULT 50.0,
classification_period_days INT NOT NULL DEFAULT 90,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP
);
-- Safety stock configurations
CREATE TABLE IF NOT EXISTS safety_stock_config (
id INT NOT NULL,
category_id BIGINT, -- NULL means default/global threshold
vendor VARCHAR(100), -- NULL means applies to all vendors
coverage_days INT NOT NULL DEFAULT 14,
service_level DECIMAL(5,2) NOT NULL DEFAULT 95.0,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
PRIMARY KEY (id),
FOREIGN KEY (category_id) REFERENCES categories(cat_id) ON DELETE CASCADE,
UNIQUE KEY unique_category_vendor (category_id, vendor),
INDEX idx_ss_metrics (category_id, vendor)
);
-- Turnover rate configurations
CREATE TABLE IF NOT EXISTS turnover_config (
id INT NOT NULL,
category_id BIGINT, -- NULL means default/global threshold
vendor VARCHAR(100), -- NULL means applies to all vendors
calculation_period_days INT NOT NULL DEFAULT 30,
target_rate DECIMAL(10,2) NOT NULL DEFAULT 1.0,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
PRIMARY KEY (id),
FOREIGN KEY (category_id) REFERENCES categories(cat_id) ON DELETE CASCADE,
UNIQUE KEY unique_category_vendor (category_id, vendor)
);
-- Create table for sales seasonality factors
CREATE TABLE IF NOT EXISTS sales_seasonality (
month INT NOT NULL,
seasonality_factor DECIMAL(5,3) DEFAULT 0,
last_updated TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
PRIMARY KEY (month),
CHECK (month BETWEEN 1 AND 12),
CHECK (seasonality_factor BETWEEN -1.0 AND 1.0)
);
-- Insert default global thresholds if not exists
INSERT INTO stock_thresholds (id, category_id, vendor, critical_days, reorder_days, overstock_days)
VALUES (1, NULL, NULL, 7, 14, 90)
ON DUPLICATE KEY UPDATE
critical_days = VALUES(critical_days),
reorder_days = VALUES(reorder_days),
overstock_days = VALUES(overstock_days);
INSERT INTO lead_time_thresholds (id, category_id, vendor, target_days, warning_days, critical_days)
VALUES (1, NULL, NULL, 14, 21, 30)
ON DUPLICATE KEY UPDATE
target_days = VALUES(target_days),
warning_days = VALUES(warning_days),
critical_days = VALUES(critical_days);
INSERT INTO sales_velocity_config (id, category_id, vendor, daily_window_days, weekly_window_days, monthly_window_days)
VALUES (1, NULL, NULL, 30, 7, 90)
ON DUPLICATE KEY UPDATE
daily_window_days = VALUES(daily_window_days),
weekly_window_days = VALUES(weekly_window_days),
monthly_window_days = VALUES(monthly_window_days);
INSERT INTO abc_classification_config (id, a_threshold, b_threshold, classification_period_days)
VALUES (1, 20.0, 50.0, 90)
ON DUPLICATE KEY UPDATE
a_threshold = VALUES(a_threshold),
b_threshold = VALUES(b_threshold),
classification_period_days = VALUES(classification_period_days);
INSERT INTO safety_stock_config (id, category_id, vendor, coverage_days, service_level)
VALUES (1, NULL, NULL, 14, 95.0)
ON DUPLICATE KEY UPDATE
coverage_days = VALUES(coverage_days),
service_level = VALUES(service_level);
INSERT INTO turnover_config (id, category_id, vendor, calculation_period_days, target_rate)
VALUES (1, NULL, NULL, 30, 1.0)
ON DUPLICATE KEY UPDATE
calculation_period_days = VALUES(calculation_period_days),
target_rate = VALUES(target_rate);
-- Insert default seasonality factors (neutral)
INSERT INTO sales_seasonality (month, seasonality_factor)
VALUES
(1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 0),
(7, 0), (8, 0), (9, 0), (10, 0), (11, 0), (12, 0)
ON DUPLICATE KEY UPDATE last_updated = CURRENT_TIMESTAMP;
-- View to show thresholds with category names
CREATE OR REPLACE VIEW stock_thresholds_view AS
SELECT
st.*,
c.name as category_name,
CASE
WHEN st.category_id IS NULL AND st.vendor IS NULL THEN 'Global Default'
WHEN st.category_id IS NULL THEN CONCAT('Vendor: ', st.vendor)
WHEN st.vendor IS NULL THEN CONCAT('Category: ', c.name)
ELSE CONCAT('Category: ', c.name, ' / Vendor: ', st.vendor)
END as threshold_scope
FROM
stock_thresholds st
LEFT JOIN
categories c ON st.category_id = c.cat_id
ORDER BY
CASE
WHEN st.category_id IS NULL AND st.vendor IS NULL THEN 1
WHEN st.category_id IS NULL THEN 2
WHEN st.vendor IS NULL THEN 3
ELSE 4
END,
c.name,
st.vendor;
CREATE TABLE IF NOT EXISTS sync_status (
table_name VARCHAR(50) PRIMARY KEY,
last_sync_timestamp TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
last_sync_id BIGINT,
INDEX idx_last_sync (last_sync_timestamp)
);
CREATE TABLE IF NOT EXISTS import_history (
id BIGINT AUTO_INCREMENT PRIMARY KEY,
table_name VARCHAR(50) NOT NULL,
start_time TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
end_time TIMESTAMP NULL,
duration_seconds INT,
duration_minutes DECIMAL(10,2) GENERATED ALWAYS AS (duration_seconds / 60.0) STORED,
records_added INT DEFAULT 0,
records_updated INT DEFAULT 0,
is_incremental BOOLEAN DEFAULT FALSE,
status ENUM('running', 'completed', 'failed', 'cancelled') DEFAULT 'running',
error_message TEXT,
additional_info JSON,
INDEX idx_table_time (table_name, start_time),
INDEX idx_status (status)
);

View File

@@ -0,0 +1,315 @@
-- Drop tables in reverse order of dependency
DROP TABLE IF EXISTS public.product_metrics CASCADE;
DROP TABLE IF EXISTS public.daily_product_snapshots CASCADE;
-- Table Definition: daily_product_snapshots
CREATE TABLE public.daily_product_snapshots (
snapshot_date DATE NOT NULL,
pid INT8 NOT NULL,
sku VARCHAR, -- Copied for convenience
-- Inventory Metrics (End of Day / Last Snapshot of Day)
eod_stock_quantity INT NOT NULL DEFAULT 0,
eod_stock_cost NUMERIC(14, 4) NOT NULL DEFAULT 0.00, -- Increased precision
eod_stock_retail NUMERIC(14, 4) NOT NULL DEFAULT 0.00,
eod_stock_gross NUMERIC(14, 4) NOT NULL DEFAULT 0.00,
stockout_flag BOOLEAN NOT NULL DEFAULT FALSE,
-- Sales Metrics (Aggregated for the snapshot_date)
units_sold INT NOT NULL DEFAULT 0,
units_returned INT NOT NULL DEFAULT 0,
gross_revenue NUMERIC(14, 4) NOT NULL DEFAULT 0.00,
discounts NUMERIC(14, 4) NOT NULL DEFAULT 0.00,
returns_revenue NUMERIC(14, 4) NOT NULL DEFAULT 0.00,
net_revenue NUMERIC(14, 4) NOT NULL DEFAULT 0.00, -- gross_revenue - discounts
cogs NUMERIC(14, 4) NOT NULL DEFAULT 0.00,
gross_regular_revenue NUMERIC(14, 4) NOT NULL DEFAULT 0.00,
profit NUMERIC(14, 4) NOT NULL DEFAULT 0.00, -- net_revenue - cogs
-- Receiving Metrics (Aggregated for the snapshot_date)
units_received INT NOT NULL DEFAULT 0,
cost_received NUMERIC(14, 4) NOT NULL DEFAULT 0.00,
calculation_timestamp TIMESTAMPTZ NOT NULL DEFAULT CURRENT_TIMESTAMP,
PRIMARY KEY (snapshot_date, pid) -- Composite primary key
-- CONSTRAINT fk_daily_snapshot_pid FOREIGN KEY (pid) REFERENCES public.products(pid) ON DELETE CASCADE ON UPDATE CASCADE -- FK Optional on snapshot table
);
-- Add Indexes for daily_product_snapshots
CREATE INDEX idx_daily_snapshot_pid_date ON public.daily_product_snapshots(pid, snapshot_date); -- Useful for product-specific time series
-- Table Definition: product_metrics
CREATE TABLE public.product_metrics (
pid INT8 PRIMARY KEY,
last_calculated TIMESTAMPTZ NOT NULL DEFAULT CURRENT_TIMESTAMP,
-- Product Info (Copied for convenience/performance)
sku VARCHAR,
title VARCHAR,
brand VARCHAR,
vendor VARCHAR,
image_url VARCHAR, -- (e.g., products.image_175)
is_visible BOOLEAN,
is_replenishable BOOLEAN,
-- Additional product fields
barcode VARCHAR,
harmonized_tariff_code VARCHAR,
vendor_reference VARCHAR,
notions_reference VARCHAR,
line VARCHAR,
subline VARCHAR,
artist VARCHAR,
moq INT,
rating NUMERIC(10, 2),
reviews INT,
weight NUMERIC(14, 4),
length NUMERIC(14, 4),
width NUMERIC(14, 4),
height NUMERIC(14, 4),
country_of_origin VARCHAR,
location VARCHAR,
baskets INT,
notifies INT,
preorder_count INT,
notions_inv_count INT,
-- Current Status (Refreshed Hourly)
current_price NUMERIC(10, 2),
current_regular_price NUMERIC(10, 2),
current_cost_price NUMERIC(10, 4), -- Increased precision for cost
current_landing_cost_price NUMERIC(10, 4), -- Increased precision for cost
current_stock INT NOT NULL DEFAULT 0,
current_stock_cost NUMERIC(14, 4) NOT NULL DEFAULT 0.00,
current_stock_retail NUMERIC(14, 4) NOT NULL DEFAULT 0.00,
current_stock_gross NUMERIC(14, 4) NOT NULL DEFAULT 0.00,
on_order_qty INT NOT NULL DEFAULT 0,
on_order_cost NUMERIC(14, 4) NOT NULL DEFAULT 0.00,
on_order_retail NUMERIC(14, 4) NOT NULL DEFAULT 0.00,
earliest_expected_date DATE,
-- total_received_lifetime INT NOT NULL DEFAULT 0, -- Can calc if needed
-- Historical Dates (Calculated Once/Periodically)
date_created DATE,
date_first_received DATE,
date_last_received DATE,
date_first_sold DATE,
date_last_sold DATE,
age_days INT, -- Calculated based on LEAST(date_created, date_first_sold)
-- Rolling Period Metrics (Refreshed Hourly from daily_product_snapshots)
sales_7d INT, revenue_7d NUMERIC(14, 4),
sales_14d INT, revenue_14d NUMERIC(14, 4),
sales_30d INT, revenue_30d NUMERIC(14, 4),
cogs_30d NUMERIC(14, 4), profit_30d NUMERIC(14, 4),
returns_units_30d INT, returns_revenue_30d NUMERIC(14, 4),
discounts_30d NUMERIC(14, 4),
gross_revenue_30d NUMERIC(14, 4), gross_regular_revenue_30d NUMERIC(14, 4),
stockout_days_30d INT,
sales_365d INT, revenue_365d NUMERIC(14, 4),
avg_stock_units_30d NUMERIC(10, 2), avg_stock_cost_30d NUMERIC(14, 4),
avg_stock_retail_30d NUMERIC(14, 4), avg_stock_gross_30d NUMERIC(14, 4),
received_qty_30d INT, received_cost_30d NUMERIC(14, 4),
-- Lifetime Metrics (Recalculated Hourly/Daily from daily_product_snapshots)
lifetime_sales INT,
lifetime_revenue NUMERIC(16, 4),
-- First Period Metrics (Calculated Once/Periodically from daily_product_snapshots)
first_7_days_sales INT, first_7_days_revenue NUMERIC(14, 4),
first_30_days_sales INT, first_30_days_revenue NUMERIC(14, 4),
first_60_days_sales INT, first_60_days_revenue NUMERIC(14, 4),
first_90_days_sales INT, first_90_days_revenue NUMERIC(14, 4),
-- Calculated KPIs (Refreshed Hourly based on rolling metrics)
asp_30d NUMERIC(10, 2), -- revenue_30d / sales_30d
acp_30d NUMERIC(10, 4), -- cogs_30d / sales_30d
avg_ros_30d NUMERIC(10, 4), -- profit_30d / sales_30d
avg_sales_per_day_30d NUMERIC(10, 2), -- sales_30d / 30.0
avg_sales_per_month_30d NUMERIC(10, 2), -- sales_30d (assuming 30d = 1 month for this metric)
margin_30d NUMERIC(8, 2), -- (profit_30d / revenue_30d) * 100
markup_30d NUMERIC(8, 2), -- (profit_30d / cogs_30d) * 100
gmroi_30d NUMERIC(10, 2), -- profit_30d / avg_stock_cost_30d
stockturn_30d NUMERIC(10, 2), -- sales_30d / avg_stock_units_30d
return_rate_30d NUMERIC(8, 2), -- returns_units_30d / (sales_30d + returns_units_30d) * 100
discount_rate_30d NUMERIC(8, 2), -- discounts_30d / gross_revenue_30d * 100
stockout_rate_30d NUMERIC(8, 2), -- stockout_days_30d / 30.0 * 100
markdown_30d NUMERIC(14, 4), -- gross_regular_revenue_30d - gross_revenue_30d
markdown_rate_30d NUMERIC(8, 2), -- markdown_30d / gross_regular_revenue_30d * 100
sell_through_30d NUMERIC(8, 2), -- sales_30d / (current_stock + sales_30d) * 100
avg_lead_time_days INT, -- Calculated Periodically from purchase_orders
-- Forecasting & Replenishment (Refreshed Hourly)
abc_class CHAR(1), -- Updated Periodically (e.g., Weekly)
sales_velocity_daily NUMERIC(10, 4), -- sales_30d / (30.0 - stockout_days_30d)
config_lead_time INT, -- From settings tables
config_days_of_stock INT, -- From settings tables
config_safety_stock INT, -- From settings_product
planning_period_days INT, -- config_lead_time + config_days_of_stock
lead_time_forecast_units NUMERIC(10, 2), -- sales_velocity_daily * config_lead_time
days_of_stock_forecast_units NUMERIC(10, 2), -- sales_velocity_daily * config_days_of_stock
planning_period_forecast_units NUMERIC(10, 2), -- lead_time_forecast_units + days_of_stock_forecast_units
lead_time_closing_stock NUMERIC(10, 2), -- current_stock + on_order_qty - lead_time_forecast_units
days_of_stock_closing_stock NUMERIC(10, 2), -- lead_time_closing_stock - days_of_stock_forecast_units
replenishment_needed_raw NUMERIC(10, 2), -- planning_period_forecast_units + config_safety_stock - current_stock - on_order_qty
replenishment_units INT, -- CEILING(GREATEST(0, replenishment_needed_raw))
replenishment_cost NUMERIC(14, 4), -- replenishment_units * COALESCE(current_landing_cost_price, current_cost_price)
replenishment_retail NUMERIC(14, 4), -- replenishment_units * current_price
replenishment_profit NUMERIC(14, 4), -- replenishment_units * (current_price - COALESCE(current_landing_cost_price, current_cost_price))
to_order_units INT, -- Apply MOQ/UOM logic to replenishment_units
forecast_lost_sales_units NUMERIC(10, 2), -- GREATEST(0, -lead_time_closing_stock)
forecast_lost_revenue NUMERIC(14, 4), -- forecast_lost_sales_units * current_price
stock_cover_in_days NUMERIC(10, 1), -- current_stock / sales_velocity_daily
po_cover_in_days NUMERIC(10, 1), -- on_order_qty / sales_velocity_daily
sells_out_in_days NUMERIC(10, 1), -- (current_stock + on_order_qty) / sales_velocity_daily
replenish_date DATE, -- Calc based on when stock hits safety stock minus lead time
overstocked_units INT, -- GREATEST(0, current_stock - config_safety_stock - planning_period_forecast_units)
overstocked_cost NUMERIC(14, 4), -- overstocked_units * COALESCE(current_landing_cost_price, current_cost_price)
overstocked_retail NUMERIC(14, 4), -- overstocked_units * current_price
is_old_stock BOOLEAN, -- Based on age, last sold, last received, on_order status
-- Yesterday's Metrics (Refreshed Hourly from daily_product_snapshots)
yesterday_sales INT,
-- Product Status (Calculated from metrics)
status VARCHAR, -- Stores status values like: Critical, Reorder Soon, Healthy, Overstock, At Risk, New
CONSTRAINT fk_product_metrics_pid FOREIGN KEY (pid) REFERENCES public.products(pid) ON DELETE CASCADE ON UPDATE CASCADE
);
-- Add Indexes for product_metrics (adjust based on common filtering/sorting in frontend)
CREATE INDEX idx_product_metrics_brand ON public.product_metrics(brand);
CREATE INDEX idx_product_metrics_vendor ON public.product_metrics(vendor);
CREATE INDEX idx_product_metrics_sku ON public.product_metrics(sku);
CREATE INDEX idx_product_metrics_abc_class ON public.product_metrics(abc_class);
CREATE INDEX idx_product_metrics_revenue_30d ON public.product_metrics(revenue_30d DESC NULLS LAST); -- Example sorting index
CREATE INDEX idx_product_metrics_sales_30d ON public.product_metrics(sales_30d DESC NULLS LAST); -- Example sorting index
CREATE INDEX idx_product_metrics_current_stock ON public.product_metrics(current_stock);
CREATE INDEX idx_product_metrics_sells_out_in_days ON public.product_metrics(sells_out_in_days ASC NULLS LAST); -- Example sorting index
CREATE INDEX idx_product_metrics_status ON public.product_metrics(status); -- Index for status filtering
-- Add new vendor, category, and brand metrics tables
-- Drop tables in reverse order if they exist
DROP TABLE IF EXISTS public.brand_metrics CASCADE;
DROP TABLE IF EXISTS public.vendor_metrics CASCADE;
DROP TABLE IF EXISTS public.category_metrics CASCADE;
-- ========= Category Metrics =========
CREATE TABLE public.category_metrics (
category_id INT8 PRIMARY KEY, -- Foreign key to categories.cat_id
category_name VARCHAR, -- Denormalized for convenience
category_type INT2, -- Denormalized for convenience
parent_id INT8, -- Denormalized for convenience
last_calculated TIMESTAMPTZ NOT NULL DEFAULT NOW(),
-- ROLLED-UP METRICS (includes this category + all descendants)
-- Counts & Basic Info
product_count INT NOT NULL DEFAULT 0, -- Total products linked
active_product_count INT NOT NULL DEFAULT 0, -- Visible products linked
replenishable_product_count INT NOT NULL DEFAULT 0,-- Replenishable products linked
-- Current Stock Value (approximated using current product costs/prices)
current_stock_units INT NOT NULL DEFAULT 0,
current_stock_cost NUMERIC(16, 4) NOT NULL DEFAULT 0.00,
current_stock_retail NUMERIC(16, 4) NOT NULL DEFAULT 0.00,
-- Rolling Period Aggregates (Summed from product_metrics)
sales_7d INT NOT NULL DEFAULT 0, revenue_7d NUMERIC(16, 4) NOT NULL DEFAULT 0.00,
sales_30d INT NOT NULL DEFAULT 0, revenue_30d NUMERIC(16, 4) NOT NULL DEFAULT 0.00,
profit_30d NUMERIC(16, 4) NOT NULL DEFAULT 0.00, cogs_30d NUMERIC(16, 4) NOT NULL DEFAULT 0.00,
sales_365d INT NOT NULL DEFAULT 0, revenue_365d NUMERIC(16, 4) NOT NULL DEFAULT 0.00,
lifetime_sales INT NOT NULL DEFAULT 0, lifetime_revenue NUMERIC(18, 4) NOT NULL DEFAULT 0.00,
-- DIRECT METRICS (only products directly in this category)
direct_product_count INT NOT NULL DEFAULT 0, -- Products directly in this category
direct_active_product_count INT NOT NULL DEFAULT 0, -- Visible products directly in this category
direct_replenishable_product_count INT NOT NULL DEFAULT 0,-- Replenishable products directly in this category
-- Direct Current Stock Value
direct_current_stock_units INT NOT NULL DEFAULT 0,
direct_stock_cost NUMERIC(16, 4) NOT NULL DEFAULT 0.00,
direct_stock_retail NUMERIC(16, 4) NOT NULL DEFAULT 0.00,
-- Direct Rolling Period Aggregates
direct_sales_7d INT NOT NULL DEFAULT 0, direct_revenue_7d NUMERIC(16, 4) NOT NULL DEFAULT 0.00,
direct_sales_30d INT NOT NULL DEFAULT 0, direct_revenue_30d NUMERIC(16, 4) NOT NULL DEFAULT 0.00,
direct_profit_30d NUMERIC(16, 4) NOT NULL DEFAULT 0.00, direct_cogs_30d NUMERIC(16, 4) NOT NULL DEFAULT 0.00,
direct_sales_365d INT NOT NULL DEFAULT 0, direct_revenue_365d NUMERIC(16, 4) NOT NULL DEFAULT 0.00,
direct_lifetime_sales INT NOT NULL DEFAULT 0, direct_lifetime_revenue NUMERIC(18, 4) NOT NULL DEFAULT 0.00,
-- Calculated KPIs (Based on 30d aggregates) - Apply to rolled-up metrics
avg_margin_30d NUMERIC(7, 3), -- (profit / revenue) * 100
stock_turn_30d NUMERIC(10, 3), -- sales_units / avg_stock_units (Needs avg stock calc)
-- growth_rate_30d NUMERIC(7, 3), -- (current 30d rev - prev 30d rev) / prev 30d rev
CONSTRAINT fk_category_metrics_cat_id FOREIGN KEY (category_id) REFERENCES public.categories(cat_id) ON DELETE CASCADE ON UPDATE CASCADE
);
CREATE INDEX idx_category_metrics_name ON public.category_metrics(category_name);
CREATE INDEX idx_category_metrics_type ON public.category_metrics(category_type);
-- ========= Vendor Metrics =========
CREATE TABLE public.vendor_metrics (
vendor_name VARCHAR PRIMARY KEY, -- Matches products.vendor
last_calculated TIMESTAMPTZ NOT NULL DEFAULT NOW(),
-- Counts & Basic Info
product_count INT NOT NULL DEFAULT 0, -- Total products from this vendor
active_product_count INT NOT NULL DEFAULT 0, -- Visible products
replenishable_product_count INT NOT NULL DEFAULT 0,-- Replenishable products
-- Current Stock Value (approximated)
current_stock_units INT NOT NULL DEFAULT 0,
current_stock_cost NUMERIC(16, 4) NOT NULL DEFAULT 0.00,
current_stock_retail NUMERIC(16, 4) NOT NULL DEFAULT 0.00,
-- On Order Value
on_order_units INT NOT NULL DEFAULT 0,
on_order_cost NUMERIC(16, 4) NOT NULL DEFAULT 0.00,
-- PO Performance (Simplified)
po_count_365d INT NOT NULL DEFAULT 0, -- Count of distinct POs created in last year
avg_lead_time_days INT, -- Calculated from received POs historically
-- Rolling Period Aggregates (Summed from product_metrics)
sales_7d INT NOT NULL DEFAULT 0, revenue_7d NUMERIC(16, 4) NOT NULL DEFAULT 0.00,
sales_30d INT NOT NULL DEFAULT 0, revenue_30d NUMERIC(16, 4) NOT NULL DEFAULT 0.00,
profit_30d NUMERIC(16, 4) NOT NULL DEFAULT 0.00, cogs_30d NUMERIC(16, 4) NOT NULL DEFAULT 0.00,
sales_365d INT NOT NULL DEFAULT 0, revenue_365d NUMERIC(16, 4) NOT NULL DEFAULT 0.00,
lifetime_sales INT NOT NULL DEFAULT 0, lifetime_revenue NUMERIC(18, 4) NOT NULL DEFAULT 0.00,
-- Calculated KPIs (Based on 30d aggregates)
avg_margin_30d NUMERIC(14, 4) -- (profit / revenue) * 100
-- Add more KPIs if needed (e.g., avg product value, sell-through rate for vendor)
);
CREATE INDEX idx_vendor_metrics_active_count ON public.vendor_metrics(active_product_count);
-- ========= Brand Metrics =========
CREATE TABLE public.brand_metrics (
brand_name VARCHAR PRIMARY KEY, -- Matches products.brand (use 'Unbranded' for NULLs)
last_calculated TIMESTAMPTZ NOT NULL DEFAULT NOW(),
-- Counts & Basic Info
product_count INT NOT NULL DEFAULT 0, -- Total products of this brand
active_product_count INT NOT NULL DEFAULT 0, -- Visible products
replenishable_product_count INT NOT NULL DEFAULT 0,-- Replenishable products
-- Current Stock Value (approximated)
current_stock_units INT NOT NULL DEFAULT 0,
current_stock_cost NUMERIC(16, 4) NOT NULL DEFAULT 0.00,
current_stock_retail NUMERIC(16, 4) NOT NULL DEFAULT 0.00,
-- Rolling Period Aggregates (Summed from product_metrics)
sales_7d INT NOT NULL DEFAULT 0, revenue_7d NUMERIC(16, 4) NOT NULL DEFAULT 0.00,
sales_30d INT NOT NULL DEFAULT 0, revenue_30d NUMERIC(16, 4) NOT NULL DEFAULT 0.00,
profit_30d NUMERIC(16, 4) NOT NULL DEFAULT 0.00, cogs_30d NUMERIC(16, 4) NOT NULL DEFAULT 0.00,
sales_365d INT NOT NULL DEFAULT 0, revenue_365d NUMERIC(16, 4) NOT NULL DEFAULT 0.00,
lifetime_sales INT NOT NULL DEFAULT 0, lifetime_revenue NUMERIC(18, 4) NOT NULL DEFAULT 0.00,
-- Calculated KPIs (Based on 30d aggregates)
avg_margin_30d NUMERIC(7, 3) -- (profit / revenue) * 100
-- Add more KPIs if needed (e.g., avg product value, sell-through rate for brand)
);
CREATE INDEX idx_brand_metrics_active_count ON public.brand_metrics(active_product_count);

View File

@@ -1,430 +0,0 @@
-- Disable foreign key checks
SET FOREIGN_KEY_CHECKS = 0;
-- Temporary tables for batch metrics processing
CREATE TABLE IF NOT EXISTS temp_sales_metrics (
pid BIGINT NOT NULL,
daily_sales_avg DECIMAL(10,3),
weekly_sales_avg DECIMAL(10,3),
monthly_sales_avg DECIMAL(10,3),
total_revenue DECIMAL(10,3),
avg_margin_percent DECIMAL(10,3),
first_sale_date DATE,
last_sale_date DATE,
PRIMARY KEY (pid)
);
CREATE TABLE IF NOT EXISTS temp_purchase_metrics (
pid BIGINT NOT NULL,
avg_lead_time_days INT,
last_purchase_date DATE,
first_received_date DATE,
last_received_date DATE,
PRIMARY KEY (pid)
);
-- New table for product metrics
CREATE TABLE IF NOT EXISTS product_metrics (
pid BIGINT NOT NULL,
last_calculated_at TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
-- Sales velocity metrics
daily_sales_avg DECIMAL(10,3),
weekly_sales_avg DECIMAL(10,3),
monthly_sales_avg DECIMAL(10,3),
avg_quantity_per_order DECIMAL(10,3),
number_of_orders INT,
first_sale_date DATE,
last_sale_date DATE,
-- Stock metrics
days_of_inventory INT,
weeks_of_inventory INT,
reorder_point INT,
safety_stock INT,
reorder_qty INT DEFAULT 0,
overstocked_amt INT DEFAULT 0,
-- Financial metrics
avg_margin_percent DECIMAL(10,3),
total_revenue DECIMAL(10,3),
inventory_value DECIMAL(10,3),
cost_of_goods_sold DECIMAL(10,3),
gross_profit DECIMAL(10,3),
gmroi DECIMAL(10,3),
-- Purchase metrics
avg_lead_time_days INT,
last_purchase_date DATE,
first_received_date DATE,
last_received_date DATE,
-- Classification metrics
abc_class CHAR(1),
stock_status VARCHAR(20),
-- Turnover metrics
turnover_rate DECIMAL(12,3),
-- Lead time metrics
current_lead_time INT,
target_lead_time INT,
lead_time_status VARCHAR(20),
-- Forecast metrics
forecast_accuracy DECIMAL(5,2) DEFAULT NULL,
forecast_bias DECIMAL(5,2) DEFAULT NULL,
last_forecast_date DATE DEFAULT NULL,
PRIMARY KEY (pid),
FOREIGN KEY (pid) REFERENCES products(pid) ON DELETE CASCADE,
INDEX idx_metrics_revenue (total_revenue),
INDEX idx_metrics_stock_status (stock_status),
INDEX idx_metrics_lead_time (lead_time_status),
INDEX idx_metrics_turnover (turnover_rate),
INDEX idx_metrics_last_calculated (last_calculated_at),
INDEX idx_metrics_abc (abc_class),
INDEX idx_metrics_sales (daily_sales_avg, weekly_sales_avg, monthly_sales_avg),
INDEX idx_metrics_forecast (forecast_accuracy, forecast_bias)
);
-- New table for time-based aggregates
CREATE TABLE IF NOT EXISTS product_time_aggregates (
pid BIGINT NOT NULL,
year INT NOT NULL,
month INT NOT NULL,
-- Sales metrics
total_quantity_sold INT DEFAULT 0,
total_revenue DECIMAL(10,3) DEFAULT 0,
total_cost DECIMAL(10,3) DEFAULT 0,
order_count INT DEFAULT 0,
-- Stock changes
stock_received INT DEFAULT 0,
stock_ordered INT DEFAULT 0,
-- Calculated fields
avg_price DECIMAL(10,3),
profit_margin DECIMAL(10,3),
inventory_value DECIMAL(10,3),
gmroi DECIMAL(10,3),
PRIMARY KEY (pid, year, month),
FOREIGN KEY (pid) REFERENCES products(pid) ON DELETE CASCADE,
INDEX idx_date (year, month)
);
-- Create vendor details table
CREATE TABLE IF NOT EXISTS vendor_details (
vendor VARCHAR(100) NOT NULL,
contact_name VARCHAR(100),
email VARCHAR(100),
phone VARCHAR(20),
status VARCHAR(20) DEFAULT 'active',
notes TEXT,
created_at TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
updated_at TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
PRIMARY KEY (vendor),
INDEX idx_vendor_status (status)
);
-- New table for vendor metrics
CREATE TABLE IF NOT EXISTS vendor_metrics (
vendor VARCHAR(100) NOT NULL,
last_calculated_at TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
-- Performance metrics
avg_lead_time_days DECIMAL(10,3),
on_time_delivery_rate DECIMAL(5,2),
order_fill_rate DECIMAL(5,2),
total_orders INT DEFAULT 0,
total_late_orders INT DEFAULT 0,
total_purchase_value DECIMAL(10,3) DEFAULT 0,
avg_order_value DECIMAL(10,3),
-- Product metrics
active_products INT DEFAULT 0,
total_products INT DEFAULT 0,
-- Financial metrics
total_revenue DECIMAL(10,3) DEFAULT 0,
avg_margin_percent DECIMAL(5,2),
-- Status
status VARCHAR(20) DEFAULT 'active',
PRIMARY KEY (vendor),
FOREIGN KEY (vendor) REFERENCES vendor_details(vendor) ON DELETE CASCADE,
INDEX idx_vendor_performance (on_time_delivery_rate),
INDEX idx_vendor_status (status),
INDEX idx_metrics_last_calculated (last_calculated_at),
INDEX idx_vendor_metrics_orders (total_orders, total_late_orders)
);
-- New table for category metrics
CREATE TABLE IF NOT EXISTS category_metrics (
category_id BIGINT NOT NULL,
last_calculated_at TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
-- Product metrics
product_count INT DEFAULT 0,
active_products INT DEFAULT 0,
-- Financial metrics
total_value DECIMAL(15,3) DEFAULT 0,
avg_margin DECIMAL(5,2),
turnover_rate DECIMAL(12,3),
growth_rate DECIMAL(5,2),
-- Status
status VARCHAR(20) DEFAULT 'active',
PRIMARY KEY (category_id),
FOREIGN KEY (category_id) REFERENCES categories(cat_id) ON DELETE CASCADE,
INDEX idx_category_status (status),
INDEX idx_category_growth (growth_rate),
INDEX idx_metrics_last_calculated (last_calculated_at),
INDEX idx_category_metrics_products (product_count, active_products)
);
-- New table for vendor time-based metrics
CREATE TABLE IF NOT EXISTS vendor_time_metrics (
vendor VARCHAR(100) NOT NULL,
year INT NOT NULL,
month INT NOT NULL,
-- Order metrics
total_orders INT DEFAULT 0,
late_orders INT DEFAULT 0,
avg_lead_time_days DECIMAL(10,3),
-- Financial metrics
total_purchase_value DECIMAL(10,3) DEFAULT 0,
total_revenue DECIMAL(10,3) DEFAULT 0,
avg_margin_percent DECIMAL(5,2),
PRIMARY KEY (vendor, year, month),
FOREIGN KEY (vendor) REFERENCES vendor_details(vendor) ON DELETE CASCADE,
INDEX idx_vendor_date (year, month)
);
-- New table for category time-based metrics
CREATE TABLE IF NOT EXISTS category_time_metrics (
category_id BIGINT NOT NULL,
year INT NOT NULL,
month INT NOT NULL,
-- Product metrics
product_count INT DEFAULT 0,
active_products INT DEFAULT 0,
-- Financial metrics
total_value DECIMAL(15,3) DEFAULT 0,
total_revenue DECIMAL(15,3) DEFAULT 0,
avg_margin DECIMAL(5,2),
turnover_rate DECIMAL(12,3),
PRIMARY KEY (category_id, year, month),
FOREIGN KEY (category_id) REFERENCES categories(cat_id) ON DELETE CASCADE,
INDEX idx_category_date (year, month)
);
-- New table for category-based sales metrics
CREATE TABLE IF NOT EXISTS category_sales_metrics (
category_id BIGINT NOT NULL,
brand VARCHAR(100) NOT NULL,
period_start DATE NOT NULL,
period_end DATE NOT NULL,
avg_daily_sales DECIMAL(10,3) DEFAULT 0,
total_sold INT DEFAULT 0,
num_products INT DEFAULT 0,
avg_price DECIMAL(10,3) DEFAULT 0,
last_calculated_at TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
PRIMARY KEY (category_id, brand, period_start, period_end),
FOREIGN KEY (category_id) REFERENCES categories(cat_id) ON DELETE CASCADE,
INDEX idx_category_brand (category_id, brand),
INDEX idx_period (period_start, period_end)
);
-- New table for brand metrics
CREATE TABLE IF NOT EXISTS brand_metrics (
brand VARCHAR(100) NOT NULL,
last_calculated_at TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
-- Product metrics
product_count INT DEFAULT 0,
active_products INT DEFAULT 0,
-- Stock metrics
total_stock_units INT DEFAULT 0,
total_stock_cost DECIMAL(15,2) DEFAULT 0,
total_stock_retail DECIMAL(15,2) DEFAULT 0,
-- Sales metrics
total_revenue DECIMAL(15,2) DEFAULT 0,
avg_margin DECIMAL(5,2) DEFAULT 0,
growth_rate DECIMAL(5,2) DEFAULT 0,
PRIMARY KEY (brand),
INDEX idx_brand_metrics_last_calculated (last_calculated_at),
INDEX idx_brand_metrics_revenue (total_revenue),
INDEX idx_brand_metrics_growth (growth_rate)
);
-- New table for brand time-based metrics
CREATE TABLE IF NOT EXISTS brand_time_metrics (
brand VARCHAR(100) NOT NULL,
year INT NOT NULL,
month INT NOT NULL,
-- Product metrics
product_count INT DEFAULT 0,
active_products INT DEFAULT 0,
-- Stock metrics
total_stock_units INT DEFAULT 0,
total_stock_cost DECIMAL(15,2) DEFAULT 0,
total_stock_retail DECIMAL(15,2) DEFAULT 0,
-- Sales metrics
total_revenue DECIMAL(15,2) DEFAULT 0,
avg_margin DECIMAL(5,2) DEFAULT 0,
PRIMARY KEY (brand, year, month),
INDEX idx_brand_date (year, month)
);
-- New table for sales forecasts
CREATE TABLE IF NOT EXISTS sales_forecasts (
pid BIGINT NOT NULL,
forecast_date DATE NOT NULL,
forecast_units DECIMAL(10,2) DEFAULT 0,
forecast_revenue DECIMAL(10,2) DEFAULT 0,
confidence_level DECIMAL(5,2) DEFAULT 0,
last_calculated_at TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
PRIMARY KEY (pid, forecast_date),
FOREIGN KEY (pid) REFERENCES products(pid) ON DELETE CASCADE,
INDEX idx_forecast_date (forecast_date),
INDEX idx_forecast_last_calculated (last_calculated_at)
);
-- New table for category forecasts
CREATE TABLE IF NOT EXISTS category_forecasts (
category_id BIGINT NOT NULL,
forecast_date DATE NOT NULL,
forecast_units DECIMAL(10,2) DEFAULT 0,
forecast_revenue DECIMAL(10,2) DEFAULT 0,
confidence_level DECIMAL(5,2) DEFAULT 0,
last_calculated_at TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
PRIMARY KEY (category_id, forecast_date),
FOREIGN KEY (category_id) REFERENCES categories(cat_id) ON DELETE CASCADE,
INDEX idx_category_forecast_date (forecast_date),
INDEX idx_category_forecast_last_calculated (last_calculated_at)
);
-- Create view for inventory health
CREATE OR REPLACE VIEW inventory_health AS
WITH product_thresholds AS (
SELECT
p.pid,
COALESCE(
-- Try category+vendor specific
(SELECT critical_days FROM stock_thresholds st
JOIN product_categories pc ON st.category_id = pc.cat_id
WHERE pc.pid = p.pid
AND st.vendor = p.vendor LIMIT 1),
-- Try category specific
(SELECT critical_days FROM stock_thresholds st
JOIN product_categories pc ON st.category_id = pc.cat_id
WHERE pc.pid = p.pid
AND st.vendor IS NULL LIMIT 1),
-- Try vendor specific
(SELECT critical_days FROM stock_thresholds st
WHERE st.category_id IS NULL
AND st.vendor = p.vendor LIMIT 1),
-- Fall back to default
(SELECT critical_days FROM stock_thresholds st
WHERE st.category_id IS NULL
AND st.vendor IS NULL LIMIT 1),
7
) as critical_days,
COALESCE(
-- Try category+vendor specific
(SELECT reorder_days FROM stock_thresholds st
JOIN product_categories pc ON st.category_id = pc.cat_id
WHERE pc.pid = p.pid
AND st.vendor = p.vendor LIMIT 1),
-- Try category specific
(SELECT reorder_days FROM stock_thresholds st
JOIN product_categories pc ON st.category_id = pc.cat_id
WHERE pc.pid = p.pid
AND st.vendor IS NULL LIMIT 1),
-- Try vendor specific
(SELECT reorder_days FROM stock_thresholds st
WHERE st.category_id IS NULL
AND st.vendor = p.vendor LIMIT 1),
-- Fall back to default
(SELECT reorder_days FROM stock_thresholds st
WHERE st.category_id IS NULL
AND st.vendor IS NULL LIMIT 1),
14
) as reorder_days,
COALESCE(
-- Try category+vendor specific
(SELECT overstock_days FROM stock_thresholds st
JOIN product_categories pc ON st.category_id = pc.cat_id
WHERE pc.pid = p.pid
AND st.vendor = p.vendor LIMIT 1),
-- Try category specific
(SELECT overstock_days FROM stock_thresholds st
JOIN product_categories pc ON st.category_id = pc.cat_id
WHERE pc.pid = p.pid
AND st.vendor IS NULL LIMIT 1),
-- Try vendor specific
(SELECT overstock_days FROM stock_thresholds st
WHERE st.category_id IS NULL
AND st.vendor = p.vendor LIMIT 1),
-- Fall back to default
(SELECT overstock_days FROM stock_thresholds st
WHERE st.category_id IS NULL
AND st.vendor IS NULL LIMIT 1),
90
) as overstock_days
FROM products p
)
SELECT
p.pid,
p.SKU,
p.title,
p.stock_quantity,
COALESCE(pm.daily_sales_avg, 0) as daily_sales_avg,
COALESCE(pm.days_of_inventory, 0) as days_of_inventory,
COALESCE(pm.reorder_point, 0) as reorder_point,
COALESCE(pm.safety_stock, 0) as safety_stock,
CASE
WHEN pm.daily_sales_avg = 0 THEN 'New'
WHEN p.stock_quantity <= CEIL(pm.daily_sales_avg * pt.critical_days) THEN 'Critical'
WHEN p.stock_quantity <= CEIL(pm.daily_sales_avg * pt.reorder_days) THEN 'Reorder'
WHEN p.stock_quantity > (pm.daily_sales_avg * pt.overstock_days) THEN 'Overstocked'
ELSE 'Healthy'
END as stock_status
FROM
products p
LEFT JOIN
product_metrics pm ON p.pid = pm.pid
LEFT JOIN
product_thresholds pt ON p.pid = pt.pid
WHERE
p.managing_stock = true;
-- Create view for category performance trends
CREATE OR REPLACE VIEW category_performance_trends AS
SELECT
c.cat_id as category_id,
c.name,
c.description,
p.name as parent_name,
c.status,
cm.product_count,
cm.active_products,
cm.total_value,
cm.avg_margin,
cm.turnover_rate,
cm.growth_rate,
CASE
WHEN cm.growth_rate >= 20 THEN 'High Growth'
WHEN cm.growth_rate >= 5 THEN 'Growing'
WHEN cm.growth_rate >= -5 THEN 'Stable'
ELSE 'Declining'
END as performance_rating
FROM
categories c
LEFT JOIN
categories p ON c.parent_id = p.cat_id
LEFT JOIN
category_metrics cm ON c.cat_id = cm.category_id;
-- Re-enable foreign key checks
SET FOREIGN_KEY_CHECKS = 1;
-- Create table for sales seasonality factors
CREATE TABLE IF NOT EXISTS sales_seasonality (
month INT NOT NULL,
seasonality_factor DECIMAL(5,3) DEFAULT 0,
last_updated TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
PRIMARY KEY (month),
CHECK (month BETWEEN 1 AND 12),
CHECK (seasonality_factor BETWEEN -1.0 AND 1.0)
);
-- Insert default seasonality factors (neutral)
INSERT INTO sales_seasonality (month, seasonality_factor)
VALUES
(1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 0),
(7, 0), (8, 0), (9, 0), (10, 0), (11, 0), (12, 0)
ON DUPLICATE KEY UPDATE last_updated = CURRENT_TIMESTAMP;

View File

@@ -1,93 +1,113 @@
-- Enable strict error reporting
SET sql_mode = 'STRICT_ALL_TABLES,ERROR_FOR_DIVISION_BY_ZERO,NO_ZERO_DATE,NO_ZERO_IN_DATE,NO_ENGINE_SUBSTITUTION';
SET FOREIGN_KEY_CHECKS = 0;
SET session_replication_role = 'replica'; -- Disable foreign key checks temporarily
-- Create function for updating timestamps
CREATE OR REPLACE FUNCTION update_updated_column() RETURNS TRIGGER AS $func$
BEGIN
-- Check which table is being updated and use the appropriate column
IF TG_TABLE_NAME = 'categories' THEN
NEW.updated_at = CURRENT_TIMESTAMP;
ELSIF TG_TABLE_NAME IN ('products', 'orders', 'purchase_orders', 'receivings') THEN
NEW.updated = CURRENT_TIMESTAMP;
END IF;
RETURN NEW;
END;
$func$ language plpgsql;
-- Create tables
CREATE TABLE products (
pid BIGINT NOT NULL,
title VARCHAR(255) NOT NULL,
title TEXT NOT NULL,
description TEXT,
SKU VARCHAR(50) NOT NULL,
created_at TIMESTAMP NULL,
first_received TIMESTAMP NULL,
stock_quantity INT DEFAULT 0,
preorder_count INT DEFAULT 0,
notions_inv_count INT DEFAULT 0,
price DECIMAL(10, 3) NOT NULL,
regular_price DECIMAL(10, 3) NOT NULL,
cost_price DECIMAL(10, 3),
landing_cost_price DECIMAL(10, 3),
barcode VARCHAR(50),
harmonized_tariff_code VARCHAR(20),
updated_at TIMESTAMP,
sku TEXT NOT NULL,
created_at TIMESTAMP WITH TIME ZONE,
first_received TIMESTAMP WITH TIME ZONE,
stock_quantity INTEGER DEFAULT 0,
preorder_count INTEGER DEFAULT 0,
notions_inv_count INTEGER DEFAULT 0,
price NUMERIC(14, 4) NOT NULL,
regular_price NUMERIC(14, 4) NOT NULL,
cost_price NUMERIC(14, 4),
landing_cost_price NUMERIC(14, 4),
barcode TEXT,
harmonized_tariff_code TEXT,
updated_at TIMESTAMP WITH TIME ZONE,
visible BOOLEAN DEFAULT true,
managing_stock BOOLEAN DEFAULT true,
replenishable BOOLEAN DEFAULT true,
vendor VARCHAR(100),
vendor_reference VARCHAR(100),
notions_reference VARCHAR(100),
permalink VARCHAR(255),
vendor TEXT,
vendor_reference TEXT,
notions_reference TEXT,
permalink TEXT,
categories TEXT,
image VARCHAR(255),
image_175 VARCHAR(255),
image_full VARCHAR(255),
brand VARCHAR(100),
line VARCHAR(100),
subline VARCHAR(100),
artist VARCHAR(100),
image TEXT,
image_175 TEXT,
image_full TEXT,
brand TEXT,
line TEXT,
subline TEXT,
artist TEXT,
options TEXT,
tags TEXT,
moq INT DEFAULT 1,
uom INT DEFAULT 1,
rating DECIMAL(10,2) DEFAULT 0.00,
reviews INT UNSIGNED DEFAULT 0,
weight DECIMAL(10,3),
length DECIMAL(10,3),
width DECIMAL(10,3),
height DECIMAL(10,3),
country_of_origin VARCHAR(5),
location VARCHAR(50),
total_sold INT UNSIGNED DEFAULT 0,
baskets INT UNSIGNED DEFAULT 0,
notifies INT UNSIGNED DEFAULT 0,
moq INTEGER DEFAULT 1,
uom INTEGER DEFAULT 1,
rating NUMERIC(14, 4) DEFAULT 0.00,
reviews INTEGER DEFAULT 0,
weight NUMERIC(14, 4),
length NUMERIC(14, 4),
width NUMERIC(14, 4),
height NUMERIC(14, 4),
country_of_origin TEXT,
location TEXT,
total_sold INTEGER DEFAULT 0,
baskets INTEGER DEFAULT 0,
notifies INTEGER DEFAULT 0,
date_last_sold DATE,
PRIMARY KEY (pid),
INDEX idx_sku (SKU),
INDEX idx_vendor (vendor),
INDEX idx_brand (brand),
INDEX idx_location (location),
INDEX idx_total_sold (total_sold),
INDEX idx_date_last_sold (date_last_sold)
) ENGINE=InnoDB;
updated TIMESTAMP WITH TIME ZONE NOT NULL DEFAULT CURRENT_TIMESTAMP,
PRIMARY KEY (pid)
);
-- Create trigger for products
CREATE TRIGGER update_products_updated
BEFORE UPDATE ON products
FOR EACH ROW
EXECUTE FUNCTION update_updated_column();
-- Create indexes for products table
CREATE INDEX idx_products_sku ON products(sku);
CREATE INDEX idx_products_vendor ON products(vendor);
CREATE INDEX idx_products_brand ON products(brand);
CREATE INDEX idx_products_visible ON products(visible);
CREATE INDEX idx_products_replenishable ON products(replenishable);
CREATE INDEX idx_products_updated ON products(updated);
-- Create categories table with hierarchy support
CREATE TABLE categories (
cat_id BIGINT PRIMARY KEY,
name VARCHAR(100) NOT NULL,
type SMALLINT NOT NULL COMMENT '10=section, 11=category, 12=subcategory, 13=subsubcategory, 1=company, 2=line, 3=subline, 40=artist',
name TEXT NOT NULL,
type SMALLINT NOT NULL,
parent_id BIGINT,
description TEXT,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
status VARCHAR(20) DEFAULT 'active',
FOREIGN KEY (parent_id) REFERENCES categories(cat_id),
INDEX idx_parent (parent_id),
INDEX idx_type (type),
INDEX idx_status (status),
INDEX idx_name_type (name, type)
) ENGINE=InnoDB;
created_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP,
updated_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP,
updated TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP,
status TEXT DEFAULT 'active',
FOREIGN KEY (parent_id) REFERENCES categories(cat_id) ON DELETE SET NULL
);
-- Create vendor_details table
CREATE TABLE vendor_details (
vendor VARCHAR(100) PRIMARY KEY,
contact_name VARCHAR(100),
email VARCHAR(255),
phone VARCHAR(50),
status VARCHAR(20) DEFAULT 'active',
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
INDEX idx_status (status)
) ENGINE=InnoDB;
-- Create trigger for categories
CREATE TRIGGER update_categories_updated_at
BEFORE UPDATE ON categories
FOR EACH ROW
EXECUTE FUNCTION update_updated_column();
COMMENT ON COLUMN categories.type IS '10=section, 11=category, 12=subcategory, 13=subsubcategory, 1=company, 2=line, 3=subline, 40=artist';
CREATE INDEX idx_categories_parent ON categories(parent_id);
CREATE INDEX idx_categories_type ON categories(type);
CREATE INDEX idx_categories_status ON categories(status);
CREATE INDEX idx_categories_name ON categories(name);
CREATE INDEX idx_categories_name_type ON categories(name, type);
-- Create product_categories junction table
CREATE TABLE product_categories (
@@ -95,74 +115,190 @@ CREATE TABLE product_categories (
pid BIGINT NOT NULL,
PRIMARY KEY (pid, cat_id),
FOREIGN KEY (pid) REFERENCES products(pid) ON DELETE CASCADE,
FOREIGN KEY (cat_id) REFERENCES categories(cat_id) ON DELETE CASCADE,
INDEX idx_category (cat_id),
INDEX idx_product (pid)
) ENGINE=InnoDB;
FOREIGN KEY (cat_id) REFERENCES categories(cat_id) ON DELETE CASCADE
);
CREATE INDEX idx_product_categories_category ON product_categories(cat_id);
-- Create orders table with its indexes
CREATE TABLE IF NOT EXISTS orders (
id BIGINT NOT NULL AUTO_INCREMENT,
order_number VARCHAR(50) NOT NULL,
CREATE TABLE orders (
id BIGSERIAL PRIMARY KEY,
order_number TEXT NOT NULL,
pid BIGINT NOT NULL,
SKU VARCHAR(50) NOT NULL,
date DATE NOT NULL,
price DECIMAL(10,3) NOT NULL,
quantity INT NOT NULL,
discount DECIMAL(10,3) DEFAULT 0.000,
tax DECIMAL(10,3) DEFAULT 0.000,
tax_included TINYINT(1) DEFAULT 0,
shipping DECIMAL(10,3) DEFAULT 0.000,
costeach DECIMAL(10,3) DEFAULT 0.000,
customer VARCHAR(50) NOT NULL,
customer_name VARCHAR(100),
status VARCHAR(20) DEFAULT 'pending',
canceled TINYINT(1) DEFAULT 0,
PRIMARY KEY (id),
UNIQUE KEY unique_order_line (order_number, pid),
KEY order_number (order_number),
KEY pid (pid),
KEY customer (customer),
KEY date (date),
KEY status (status),
INDEX idx_orders_metrics (pid, date, canceled)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;
sku TEXT NOT NULL,
date TIMESTAMP WITH TIME ZONE NOT NULL,
price NUMERIC(14, 4) NOT NULL,
quantity INTEGER NOT NULL,
discount NUMERIC(14, 4) DEFAULT 0.0000,
tax NUMERIC(14, 4) DEFAULT 0.0000,
tax_included BOOLEAN DEFAULT false,
shipping NUMERIC(14, 4) DEFAULT 0.0000,
costeach NUMERIC(14, 4) DEFAULT 0.0000,
customer TEXT NOT NULL,
customer_name TEXT,
status TEXT DEFAULT 'pending',
canceled BOOLEAN DEFAULT false,
updated TIMESTAMP WITH TIME ZONE NOT NULL DEFAULT CURRENT_TIMESTAMP,
UNIQUE (order_number, pid),
FOREIGN KEY (pid) REFERENCES products(pid) ON DELETE RESTRICT
);
-- Create trigger for orders
CREATE TRIGGER update_orders_updated
BEFORE UPDATE ON orders
FOR EACH ROW
EXECUTE FUNCTION update_updated_column();
CREATE INDEX idx_orders_number ON orders(order_number);
CREATE INDEX idx_orders_pid ON orders(pid);
CREATE INDEX idx_orders_sku ON orders(sku);
CREATE INDEX idx_orders_customer ON orders(customer);
CREATE INDEX idx_orders_date ON orders(date);
CREATE INDEX idx_orders_status ON orders(status);
CREATE INDEX idx_orders_pid_date ON orders(pid, date);
CREATE INDEX idx_orders_updated ON orders(updated);
-- Create purchase_orders table with its indexes
-- This table now focuses solely on purchase order intent, not receivings
CREATE TABLE purchase_orders (
id BIGINT AUTO_INCREMENT PRIMARY KEY,
po_id VARCHAR(50) NOT NULL,
vendor VARCHAR(100) NOT NULL,
date DATE NOT NULL,
id BIGSERIAL PRIMARY KEY,
po_id TEXT NOT NULL,
vendor TEXT NOT NULL,
date TIMESTAMP WITH TIME ZONE NOT NULL,
expected_date DATE,
pid BIGINT NOT NULL,
sku VARCHAR(50) NOT NULL,
name VARCHAR(100) NOT NULL COMMENT 'Product name from products.description',
cost_price DECIMAL(10, 3) NOT NULL,
po_cost_price DECIMAL(10, 3) NOT NULL COMMENT 'Original cost from PO, before receiving adjustments',
status TINYINT UNSIGNED DEFAULT 1 COMMENT '0=canceled,1=created,10=electronically_ready_send,11=ordered,12=preordered,13=electronically_sent,15=receiving_started,50=done',
receiving_status TINYINT UNSIGNED DEFAULT 1 COMMENT '0=canceled,1=created,30=partial_received,40=full_received,50=paid',
sku TEXT NOT NULL,
name TEXT NOT NULL,
po_cost_price NUMERIC(14, 4) NOT NULL,
status TEXT DEFAULT 'created',
notes TEXT,
long_note TEXT,
ordered INT NOT NULL,
received INT DEFAULT 0,
received_date DATE COMMENT 'Date of first receiving',
last_received_date DATE COMMENT 'Date of most recent receiving',
received_by VARCHAR(100) COMMENT 'Name of person who first received this PO line',
receiving_history JSON COMMENT 'Array of receiving records with qty, date, cost, receiving_id, and alt_po flag',
FOREIGN KEY (pid) REFERENCES products(pid),
INDEX idx_po_id (po_id),
INDEX idx_vendor (vendor),
INDEX idx_status (status),
INDEX idx_receiving_status (receiving_status),
INDEX idx_purchase_orders_metrics (pid, date, status, ordered, received),
INDEX idx_po_metrics (pid, date, receiving_status, received_date),
INDEX idx_po_product_date (pid, date),
INDEX idx_po_product_status (pid, status),
UNIQUE KEY unique_po_product (po_id, pid)
) ENGINE=InnoDB;
ordered INTEGER NOT NULL,
supplier_id INTEGER,
date_created TIMESTAMP WITH TIME ZONE,
date_ordered TIMESTAMP WITH TIME ZONE,
updated TIMESTAMP WITH TIME ZONE NOT NULL DEFAULT CURRENT_TIMESTAMP,
FOREIGN KEY (pid) REFERENCES products(pid) ON DELETE CASCADE,
UNIQUE (po_id, pid)
);
SET FOREIGN_KEY_CHECKS = 1;
-- Create trigger for purchase_orders
CREATE TRIGGER update_purchase_orders_updated
BEFORE UPDATE ON purchase_orders
FOR EACH ROW
EXECUTE FUNCTION update_updated_column();
COMMENT ON COLUMN purchase_orders.name IS 'Product name from products.description';
COMMENT ON COLUMN purchase_orders.po_cost_price IS 'Original cost from PO';
COMMENT ON COLUMN purchase_orders.status IS 'canceled, created, electronically_ready_send, ordered, preordered, electronically_sent, receiving_started, done';
CREATE INDEX idx_po_id ON purchase_orders(po_id);
CREATE INDEX idx_po_sku ON purchase_orders(sku);
CREATE INDEX idx_po_vendor ON purchase_orders(vendor);
CREATE INDEX idx_po_status ON purchase_orders(status);
CREATE INDEX idx_po_expected_date ON purchase_orders(expected_date);
CREATE INDEX idx_po_pid_status ON purchase_orders(pid, status);
CREATE INDEX idx_po_pid_date ON purchase_orders(pid, date);
CREATE INDEX idx_po_updated ON purchase_orders(updated);
CREATE INDEX idx_po_supplier_id ON purchase_orders(supplier_id);
-- Create receivings table to track actual receipt of goods
CREATE TABLE receivings (
id BIGSERIAL PRIMARY KEY,
receiving_id TEXT NOT NULL,
pid BIGINT NOT NULL,
sku TEXT NOT NULL,
name TEXT NOT NULL,
vendor TEXT,
qty_each INTEGER NOT NULL,
qty_each_orig INTEGER,
cost_each NUMERIC(14, 5) NOT NULL,
cost_each_orig NUMERIC(14, 5),
received_by INTEGER,
received_by_name TEXT,
received_date TIMESTAMP WITH TIME ZONE NOT NULL,
receiving_created_date TIMESTAMP WITH TIME ZONE,
supplier_id INTEGER,
status TEXT DEFAULT 'created',
updated TIMESTAMP WITH TIME ZONE NOT NULL DEFAULT CURRENT_TIMESTAMP,
FOREIGN KEY (pid) REFERENCES products(pid) ON DELETE CASCADE,
UNIQUE (receiving_id, pid)
);
-- Create trigger for receivings
CREATE TRIGGER update_receivings_updated
BEFORE UPDATE ON receivings
FOR EACH ROW
EXECUTE FUNCTION update_updated_column();
COMMENT ON COLUMN receivings.status IS 'canceled, created, partial_received, full_received, paid';
COMMENT ON COLUMN receivings.qty_each_orig IS 'Original quantity from the source system';
COMMENT ON COLUMN receivings.cost_each_orig IS 'Original cost from the source system';
COMMENT ON COLUMN receivings.vendor IS 'Vendor name, same as in purchase_orders';
CREATE INDEX idx_receivings_id ON receivings(receiving_id);
CREATE INDEX idx_receivings_pid ON receivings(pid);
CREATE INDEX idx_receivings_sku ON receivings(sku);
CREATE INDEX idx_receivings_status ON receivings(status);
CREATE INDEX idx_receivings_received_date ON receivings(received_date);
CREATE INDEX idx_receivings_supplier_id ON receivings(supplier_id);
CREATE INDEX idx_receivings_vendor ON receivings(vendor);
CREATE INDEX idx_receivings_updated ON receivings(updated);
SET session_replication_role = 'origin'; -- Re-enable foreign key checks
-- Create views for common calculations
-- product_sales_trends view moved to metrics-schema.sql
-- product_sales_trends view moved to metrics-schema.sql
-- -- Historical data tables imported from production
-- CREATE TABLE imported_product_current_prices (
-- price_id BIGSERIAL PRIMARY KEY,
-- pid BIGINT NOT NULL,
-- qty_buy SMALLINT NOT NULL,
-- is_min_qty_buy BOOLEAN NOT NULL,
-- price_each NUMERIC(10,3) NOT NULL,
-- qty_limit SMALLINT NOT NULL,
-- no_promo BOOLEAN NOT NULL,
-- checkout_offer BOOLEAN NOT NULL,
-- active BOOLEAN NOT NULL,
-- date_active TIMESTAMP WITH TIME ZONE,
-- date_deactive TIMESTAMP WITH TIME ZONE,
-- updated TIMESTAMP WITH TIME ZONE NOT NULL DEFAULT CURRENT_TIMESTAMP
-- );
-- CREATE INDEX idx_imported_product_current_prices_pid ON imported_product_current_prices(pid, active, qty_buy);
-- CREATE INDEX idx_imported_product_current_prices_checkout ON imported_product_current_prices(checkout_offer, active);
-- CREATE INDEX idx_imported_product_current_prices_deactive ON imported_product_current_prices(date_deactive, active);
-- CREATE INDEX idx_imported_product_current_prices_active ON imported_product_current_prices(date_active, active);
-- CREATE TABLE imported_daily_inventory (
-- date DATE NOT NULL,
-- pid BIGINT NOT NULL,
-- amountsold SMALLINT NOT NULL DEFAULT 0,
-- times_sold SMALLINT NOT NULL DEFAULT 0,
-- qtyreceived SMALLINT NOT NULL DEFAULT 0,
-- price NUMERIC(7,2) NOT NULL DEFAULT 0,
-- costeach NUMERIC(7,2) NOT NULL DEFAULT 0,
-- stamp TIMESTAMP WITH TIME ZONE NOT NULL DEFAULT CURRENT_TIMESTAMP,
-- updated TIMESTAMP WITH TIME ZONE NOT NULL DEFAULT CURRENT_TIMESTAMP,
-- PRIMARY KEY (date, pid)
-- );
-- CREATE INDEX idx_imported_daily_inventory_pid ON imported_daily_inventory(pid);
-- CREATE TABLE imported_product_stat_history (
-- pid BIGINT NOT NULL,
-- date DATE NOT NULL,
-- score NUMERIC(10,2) NOT NULL,
-- score2 NUMERIC(10,2) NOT NULL,
-- qty_in_baskets SMALLINT NOT NULL,
-- qty_sold SMALLINT NOT NULL,
-- notifies_set SMALLINT NOT NULL,
-- visibility_score NUMERIC(10,2) NOT NULL,
-- health_score VARCHAR(5) NOT NULL,
-- sold_view_score NUMERIC(6,3) NOT NULL,
-- updated TIMESTAMP WITH TIME ZONE NOT NULL DEFAULT CURRENT_TIMESTAMP,
-- PRIMARY KEY (pid, date)
-- );
-- CREATE INDEX idx_imported_product_stat_history_date ON imported_product_stat_history(date);

View File

@@ -0,0 +1,115 @@
-- Templates table for storing import templates
CREATE TABLE IF NOT EXISTS templates (
id SERIAL PRIMARY KEY,
company TEXT NOT NULL,
product_type TEXT NOT NULL,
supplier TEXT,
msrp DECIMAL(10,2),
cost_each DECIMAL(10,2),
qty_per_unit INTEGER,
case_qty INTEGER,
hts_code TEXT,
description TEXT,
weight DECIMAL(10,2),
length DECIMAL(10,2),
width DECIMAL(10,2),
height DECIMAL(10,2),
tax_cat TEXT,
size_cat TEXT,
categories TEXT[],
ship_restrictions TEXT[],
created_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP,
updated_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP,
UNIQUE(company, product_type)
);
-- AI Prompts table for storing validation prompts
CREATE TABLE IF NOT EXISTS ai_prompts (
id SERIAL PRIMARY KEY,
prompt_text TEXT NOT NULL,
prompt_type TEXT NOT NULL CHECK (prompt_type IN ('general', 'company_specific', 'system')),
company TEXT,
created_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP,
updated_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP,
CONSTRAINT unique_company_prompt UNIQUE (company),
CONSTRAINT company_required_for_specific CHECK (
(prompt_type = 'general' AND company IS NULL) OR
(prompt_type = 'system' AND company IS NULL) OR
(prompt_type = 'company_specific' AND company IS NOT NULL)
)
);
-- Create a unique partial index to ensure only one general prompt
CREATE UNIQUE INDEX IF NOT EXISTS idx_unique_general_prompt
ON ai_prompts (prompt_type)
WHERE prompt_type = 'general';
-- Create a unique partial index to ensure only one system prompt
CREATE UNIQUE INDEX IF NOT EXISTS idx_unique_system_prompt
ON ai_prompts (prompt_type)
WHERE prompt_type = 'system';
-- Reusable Images table for storing persistent images
CREATE TABLE IF NOT EXISTS reusable_images (
id SERIAL PRIMARY KEY,
name TEXT NOT NULL,
filename TEXT NOT NULL,
file_path TEXT NOT NULL,
image_url TEXT NOT NULL,
is_global BOOLEAN NOT NULL DEFAULT false,
company TEXT,
mime_type TEXT,
file_size INTEGER,
created_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP,
updated_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP,
CONSTRAINT company_required_for_non_global CHECK (
(is_global = true AND company IS NULL) OR
(is_global = false AND company IS NOT NULL)
)
);
-- Create index on company for efficient querying
CREATE INDEX IF NOT EXISTS idx_reusable_images_company ON reusable_images(company);
-- Create index on is_global for efficient querying
CREATE INDEX IF NOT EXISTS idx_reusable_images_is_global ON reusable_images(is_global);
-- AI Validation Performance Tracking
CREATE TABLE IF NOT EXISTS ai_validation_performance (
id SERIAL PRIMARY KEY,
prompt_length INTEGER NOT NULL,
product_count INTEGER NOT NULL,
start_time TIMESTAMP WITH TIME ZONE NOT NULL,
end_time TIMESTAMP WITH TIME ZONE NOT NULL,
duration_seconds DECIMAL(10,2) GENERATED ALWAYS AS (EXTRACT(EPOCH FROM (end_time - start_time))) STORED,
created_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP
);
-- Create index on prompt_length for efficient querying
CREATE INDEX IF NOT EXISTS idx_ai_validation_prompt_length ON ai_validation_performance(prompt_length);
-- Function to update the updated_at timestamp
CREATE OR REPLACE FUNCTION update_updated_at_column()
RETURNS TRIGGER AS $$
BEGIN
NEW.updated_at = CURRENT_TIMESTAMP;
RETURN NEW;
END;
$$ language 'plpgsql';
-- Trigger to automatically update the updated_at column
CREATE TRIGGER update_templates_updated_at
BEFORE UPDATE ON templates
FOR EACH ROW
EXECUTE FUNCTION update_updated_at_column();
-- Trigger to automatically update the updated_at column for ai_prompts
CREATE TRIGGER update_ai_prompts_updated_at
BEFORE UPDATE ON ai_prompts
FOR EACH ROW
EXECUTE FUNCTION update_updated_at_column();
-- Trigger to automatically update the updated_at column for reusable_images
CREATE TRIGGER update_reusable_images_updated_at
BEFORE UPDATE ON reusable_images
FOR EACH ROW
EXECUTE FUNCTION update_updated_at_column();

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,426 @@
const path = require('path');
const fs = require('fs');
const progress = require('../scripts/metrics-new/utils/progress'); // Assuming progress utils are here
const { getConnection, closePool } = require('../scripts/metrics-new/utils/db'); // Assuming db utils are here
const os = require('os'); // For detecting number of CPU cores
// --- Configuration ---
const BATCH_SIZE_DAYS = 1; // Process 1 day per database function call
const SQL_FUNCTION_FILE = path.resolve(__dirname, 'backfill_historical_snapshots.sql'); // Correct path
const LOG_PROGRESS_INTERVAL_MS = 5000; // Update console progress roughly every 5 seconds
const HISTORY_TYPE = 'backfill_snapshots'; // Identifier for history table
const MAX_WORKERS = Math.max(1, Math.floor(os.cpus().length / 2)); // Use half of available CPU cores
const USE_PARALLEL = false; // Set to true to enable parallel processing
const PG_STATEMENT_TIMEOUT_MS = 1800000; // 30 minutes max per query
// --- Cancellation Handling ---
let isCancelled = false;
let runningQueryPromise = null; // To potentially track the active query
function requestCancellation() {
if (!isCancelled) {
isCancelled = true;
console.warn('\nCancellation requested. Finishing current batch then stopping...');
// Note: We are NOT forcefully cancelling the backend query anymore.
}
}
process.on('SIGINT', requestCancellation); // Handle Ctrl+C
process.on('SIGTERM', requestCancellation); // Handle termination signals
// --- Main Backfill Function ---
async function backfillSnapshots(cmdStartDate, cmdEndDate, cmdStartBatch = 1) {
let connection;
const overallStartTime = Date.now();
let calculateHistoryId = null;
let processedDaysTotal = 0; // Track total days processed across all batches executed in this run
let currentBatchNum = cmdStartBatch > 0 ? cmdStartBatch : 1;
let totalBatches = 0; // Initialize totalBatches
let totalDays = 0; // Initialize totalDays
console.log(`Starting snapshot backfill process...`);
console.log(`SQL Function definition file: ${SQL_FUNCTION_FILE}`);
if (!fs.existsSync(SQL_FUNCTION_FILE)) {
console.error(`FATAL: SQL file not found at ${SQL_FUNCTION_FILE}`);
process.exit(1); // Exit early if file doesn't exist
}
try {
// Set up a connection with higher memory limits
connection = await getConnection({
// Add performance-related settings
application_name: 'backfill_snapshots',
statement_timeout: PG_STATEMENT_TIMEOUT_MS, // 30 min timeout per statement
// These parameters may need to be configured in your database:
// work_mem: '1GB',
// maintenance_work_mem: '2GB',
// temp_buffers: '1GB',
});
console.log('Database connection acquired.');
// --- Ensure Function Exists ---
console.log('Ensuring database function is up-to-date...');
try {
const sqlFunctionDef = fs.readFileSync(SQL_FUNCTION_FILE, 'utf8');
if (!sqlFunctionDef.includes('CREATE OR REPLACE FUNCTION backfill_daily_snapshots_range_final')) {
throw new Error(`SQL file ${SQL_FUNCTION_FILE} does not seem to contain the function definition.`);
}
await connection.query(sqlFunctionDef); // Execute the whole file
console.log('Database function `backfill_daily_snapshots_range_final` created/updated.');
// Add performance query hints to the database
await connection.query(`
-- Analyze tables for better query planning
ANALYZE public.products;
ANALYZE public.imported_daily_inventory;
ANALYZE public.imported_product_stat_history;
ANALYZE public.daily_product_snapshots;
ANALYZE public.imported_product_current_prices;
`).catch(err => {
// Non-fatal if analyze fails
console.warn('Failed to analyze tables (non-fatal):', err.message);
});
} catch (err) {
console.error(`Error processing SQL function file ${SQL_FUNCTION_FILE}:`, err);
throw new Error(`Failed to create or replace DB function: ${err.message}`);
}
// --- Prepare History Record ---
console.log('Preparing calculation history record...');
// Ensure history table exists (optional, could be done elsewhere)
await connection.query(`
CREATE TABLE IF NOT EXISTS public.calculate_history (
id SERIAL PRIMARY KEY,
start_time TIMESTAMPTZ NOT NULL DEFAULT NOW(),
end_time TIMESTAMPTZ,
duration_seconds INTEGER,
status VARCHAR(20) NOT NULL, -- e.g., 'running', 'completed', 'failed', 'cancelled'
error_message TEXT,
additional_info JSONB -- Store type, file, batch info etc.
);
`);
// Mark previous runs of this type as potentially failed if they were left 'running'
await connection.query(`
UPDATE public.calculate_history
SET status = 'failed', error_message = 'Interrupted by new run.'
WHERE status = 'running' AND additional_info->>'type' = $1;
`, [HISTORY_TYPE]);
// Create new history record
const historyResult = await connection.query(`
INSERT INTO public.calculate_history (start_time, status, additional_info)
VALUES (NOW(), 'running', jsonb_build_object('type', $1::text, 'sql_file', $2::text, 'start_batch', $3::integer))
RETURNING id;
`, [HISTORY_TYPE, path.basename(SQL_FUNCTION_FILE), cmdStartBatch]);
calculateHistoryId = historyResult.rows[0].id;
console.log(`Calculation history record created with ID: ${calculateHistoryId}`);
// --- Determine Date Range ---
console.log('Determining date range...');
let effectiveStartDate, effectiveEndDate;
// Use command-line dates if provided, otherwise query DB
if (cmdStartDate) {
effectiveStartDate = cmdStartDate;
} else {
const minDateResult = await connection.query(`
SELECT LEAST(
COALESCE((SELECT MIN(date) FROM public.imported_daily_inventory WHERE date > '1970-01-01'), CURRENT_DATE),
COALESCE((SELECT MIN(date) FROM public.imported_product_stat_history WHERE date > '1970-01-01'), CURRENT_DATE)
)::date as min_date;
`);
effectiveStartDate = minDateResult.rows[0]?.min_date || new Date().toISOString().split('T')[0]; // Fallback
console.log(`Auto-detected start date: ${effectiveStartDate}`);
}
if (cmdEndDate) {
effectiveEndDate = cmdEndDate;
} else {
const maxDateResult = await connection.query(`
SELECT GREATEST(
COALESCE((SELECT MAX(date) FROM public.imported_daily_inventory WHERE date < CURRENT_DATE), '1970-01-01'::date),
COALESCE((SELECT MAX(date) FROM public.imported_product_stat_history WHERE date < CURRENT_DATE), '1970-01-01'::date)
)::date as max_date;
`);
// Ensure end date is not today or in the future
effectiveEndDate = maxDateResult.rows[0]?.max_date || new Date(Date.now() - 86400000).toISOString().split('T')[0]; // Default yesterday
if (new Date(effectiveEndDate) >= new Date(new Date().toISOString().split('T')[0])) {
effectiveEndDate = new Date(Date.now() - 86400000).toISOString().split('T')[0]; // Set to yesterday if >= today
}
console.log(`Auto-detected end date: ${effectiveEndDate}`);
}
// Validate dates
const dStart = new Date(effectiveStartDate);
const dEnd = new Date(effectiveEndDate);
if (isNaN(dStart.getTime()) || isNaN(dEnd.getTime()) || dStart > dEnd) {
throw new Error(`Invalid date range: Start "${effectiveStartDate}", End "${effectiveEndDate}"`);
}
// --- Batch Processing ---
totalDays = Math.ceil((dEnd - dStart) / (1000 * 60 * 60 * 24)) + 1; // Inclusive
totalBatches = Math.ceil(totalDays / BATCH_SIZE_DAYS);
console.log(`Target Date Range: ${effectiveStartDate} to ${effectiveEndDate} (${totalDays} days)`);
console.log(`Total Batches: ${totalBatches} (Batch Size: ${BATCH_SIZE_DAYS} days)`);
console.log(`Starting from Batch: ${currentBatchNum}`);
// Initial progress update
progress.outputProgress({
status: 'running',
operation: 'Starting Batch Processing',
currentBatch: currentBatchNum,
totalBatches: totalBatches,
totalDays: totalDays,
elapsed: '0s',
remaining: 'Calculating...',
rate: 0,
historyId: calculateHistoryId // Include history ID in the object
});
while (currentBatchNum <= totalBatches && !isCancelled) {
const batchOffset = (currentBatchNum - 1) * BATCH_SIZE_DAYS;
const batchStartDate = new Date(dStart);
batchStartDate.setDate(dStart.getDate() + batchOffset);
const batchEndDate = new Date(batchStartDate);
batchEndDate.setDate(batchStartDate.getDate() + BATCH_SIZE_DAYS - 1);
// Clamp batch end date to the overall effective end date
if (batchEndDate > dEnd) {
batchEndDate.setTime(dEnd.getTime());
}
const batchStartDateStr = batchStartDate.toISOString().split('T')[0];
const batchEndDateStr = batchEndDate.toISOString().split('T')[0];
const batchStartTime = Date.now();
console.log(`\n--- Processing Batch ${currentBatchNum} / ${totalBatches} ---`);
console.log(` Dates: ${batchStartDateStr} to ${batchEndDateStr}`);
// Execute the function for the batch
try {
progress.outputProgress({
status: 'running',
operation: `Executing DB function for batch ${currentBatchNum}...`,
currentBatch: currentBatchNum,
totalBatches: totalBatches,
totalDays: totalDays,
elapsed: progress.formatElapsedTime(overallStartTime),
remaining: 'Executing...',
rate: 0,
historyId: calculateHistoryId
});
// Performance improvement: Add batch processing hint
await connection.query('SET LOCAL enable_parallel_append = on; SET LOCAL enable_parallel_hash = on; SET LOCAL max_parallel_workers_per_gather = 4;');
// Store promise in case we need to try and cancel (though not implemented forcefully)
runningQueryPromise = connection.query(
`SELECT backfill_daily_snapshots_range_final($1::date, $2::date);`,
[batchStartDateStr, batchEndDateStr]
);
await runningQueryPromise; // Wait for the function call to complete
runningQueryPromise = null; // Clear the promise
const batchDurationMs = Date.now() - batchStartTime;
const daysInThisBatch = Math.ceil((batchEndDate - batchStartDate) / (1000 * 60 * 60 * 24)) + 1;
processedDaysTotal += daysInThisBatch;
console.log(` Batch ${currentBatchNum} completed in ${progress.formatElapsedTime(batchStartTime)}.`);
// --- Update Progress & History ---
const overallElapsedSec = Math.round((Date.now() - overallStartTime) / 1000);
progress.outputProgress({
status: 'running',
operation: `Completed batch ${currentBatchNum}`,
currentBatch: currentBatchNum,
totalBatches: totalBatches,
totalDays: totalDays,
processedDays: processedDaysTotal,
elapsed: progress.formatElapsedTime(overallStartTime),
remaining: progress.estimateRemaining(overallStartTime, processedDaysTotal, totalDays),
rate: progress.calculateRate(overallStartTime, processedDaysTotal),
batchDuration: progress.formatElapsedTime(batchStartTime),
historyId: calculateHistoryId
});
// Save checkpoint in history
await connection.query(`
UPDATE public.calculate_history
SET additional_info = jsonb_set(additional_info, '{last_completed_batch}', $1::jsonb)
|| jsonb_build_object('last_processed_date', $2::text)
WHERE id = $3::integer;
`, [JSON.stringify(currentBatchNum), batchEndDateStr, calculateHistoryId]);
} catch (batchError) {
console.error(`\n--- ERROR in Batch ${currentBatchNum} (${batchStartDateStr} to ${batchEndDateStr}) ---`);
console.error(' Database Error:', batchError.message);
console.error(' DB Error Code:', batchError.code);
// Log detailed error to history and re-throw to stop the process
await connection.query(`
UPDATE public.calculate_history
SET status = 'failed',
end_time = NOW(),
duration_seconds = $1::integer,
error_message = $2::text,
additional_info = additional_info || jsonb_build_object('failed_batch', $3::integer, 'failed_date_range', $4::text)
WHERE id = $5::integer;
`, [
Math.round((Date.now() - overallStartTime) / 1000),
`Batch ${currentBatchNum} failed: ${batchError.message} (Code: ${batchError.code || 'N/A'})`,
currentBatchNum,
`${batchStartDateStr} to ${batchEndDateStr}`,
calculateHistoryId
]);
throw batchError; // Stop execution
}
currentBatchNum++;
// Optional delay between batches
// await new Promise(resolve => setTimeout(resolve, 500));
} // End while loop
// --- Final Outcome ---
const finalStatus = isCancelled ? 'cancelled' : 'completed';
const finalMessage = isCancelled ? `Calculation stopped after completing batch ${currentBatchNum - 1}.` : 'Historical snapshots backfill completed successfully.';
const finalDurationSec = Math.round((Date.now() - overallStartTime) / 1000);
console.log(`\n--- Backfill ${finalStatus.toUpperCase()} ---`);
console.log(finalMessage);
console.log(`Total duration: ${progress.formatElapsedTime(overallStartTime)}`);
// Update history record
await connection.query(`
UPDATE public.calculate_history SET status = $1::calculation_status, end_time = NOW(), duration_seconds = $2::integer, error_message = $3
WHERE id = $4::integer;
`, [finalStatus, finalDurationSec, (isCancelled ? 'User cancelled' : null), calculateHistoryId]);
if (!isCancelled) {
progress.clearProgress(); // Clear progress state only on successful completion
} else {
progress.outputProgress({ // Final cancelled status update
status: 'cancelled',
operation: finalMessage,
currentBatch: currentBatchNum - 1,
totalBatches: totalBatches,
totalDays: totalDays,
processedDays: processedDaysTotal,
elapsed: progress.formatElapsedTime(overallStartTime),
remaining: 'Cancelled',
rate: 0,
historyId: calculateHistoryId
});
}
return { success: true, status: finalStatus, message: finalMessage, duration: finalDurationSec };
} catch (error) {
console.error('\n--- Backfill encountered an unrecoverable error ---');
console.error(error.message);
const finalDurationSec = Math.round((Date.now() - overallStartTime) / 1000);
// Update history if possible
if (connection && calculateHistoryId) {
try {
await connection.query(`
UPDATE public.calculate_history
SET status = $1::calculation_status, end_time = NOW(), duration_seconds = $2::integer, error_message = $3::text
WHERE id = $4::integer;
`, [
isCancelled ? 'cancelled' : 'failed',
finalDurationSec,
error.message,
calculateHistoryId
]);
} catch (histError) {
console.error("Failed to update history record with error state:", histError);
}
} else {
console.error("Could not update history record (no ID or connection).");
}
// FIX: Use initialized value or a default if loop never started
const batchNumForError = currentBatchNum > cmdStartBatch ? currentBatchNum - 1 : cmdStartBatch - 1;
// Update progress.outputProgress call to match actual function signature
try {
// Create progress data object
const progressData = {
status: 'failed',
operation: 'Backfill failed',
message: error.message,
currentBatch: batchNumForError,
totalBatches: totalBatches,
totalDays: totalDays,
processedDays: processedDaysTotal,
elapsed: progress.formatElapsedTime(overallStartTime),
remaining: 'Failed',
rate: 0,
// Include history ID in progress data if needed
historyId: calculateHistoryId
};
// Call with single object parameter (not separate historyId)
progress.outputProgress(progressData);
} catch (progressError) {
console.error('Failed to report progress:', progressError);
}
return { success: false, status: 'failed', error: error.message, duration: finalDurationSec };
} finally {
if (connection) {
console.log('Releasing database connection.');
connection.release();
}
// Close pool only if this script is meant to be standalone
// If part of a larger app, the app should manage pool closure
// console.log('Closing database pool.');
// await closePool();
}
}
// --- Script Execution ---
// Parse command-line arguments
const args = process.argv.slice(2);
let cmdStartDateArg, cmdEndDateArg, cmdStartBatchArg = 1; // Default start batch is 1
for (let i = 0; i < args.length; i++) {
if (args[i] === '--start-date' && args[i+1]) cmdStartDateArg = args[++i];
else if (args[i] === '--end-date' && args[i+1]) cmdEndDateArg = args[++i];
else if (args[i] === '--start-batch' && args[i+1]) cmdStartBatchArg = parseInt(args[++i], 10);
}
if (isNaN(cmdStartBatchArg) || cmdStartBatchArg < 1) {
console.warn(`Invalid --start-batch value. Defaulting to 1.`);
cmdStartBatchArg = 1;
}
// Run the backfill process
backfillSnapshots(cmdStartDateArg, cmdEndDateArg, cmdStartBatchArg)
.then(result => {
if (result.success) {
console.log(`\n${result.message} (Duration: ${result.duration}s)`);
process.exitCode = 0; // Success
} else {
console.error(`\n❌ Backfill failed: ${result.error || 'Unknown error'} (Duration: ${result.duration}s)`);
process.exitCode = 1; // Failure
}
})
.catch(err => {
console.error('\n❌ Unexpected error during backfill execution:', err);
process.exitCode = 1; // Failure
})
.finally(async () => {
// Ensure pool is closed if run standalone
console.log('Backfill script finished. Closing pool.');
await closePool(); // Make sure closePool exists and works in your db utils
process.exit(process.exitCode); // Exit with appropriate code
});

View File

@@ -0,0 +1,161 @@
-- Description: Backfills the daily_product_snapshots table using imported historical unit data
-- (daily inventory/stats) and historical price data (current prices table).
-- - Uses imported daily sales/receipt UNIT counts for accuracy.
-- - ESTIMATES historical stock levels using a forward calculation.
-- - APPROXIMATES historical REVENUE using looked-up historical base prices.
-- - APPROXIMATES historical COGS, PROFIT, and STOCK VALUE using CURRENT product costs/prices.
-- Run ONCE after importing historical data and before initial product_metrics population.
-- Dependencies: Core import tables (products), imported history tables (imported_daily_inventory,
-- imported_product_stat_history, imported_product_current_prices),
-- daily_product_snapshots table must exist.
-- Frequency: Run ONCE.
CREATE OR REPLACE FUNCTION backfill_daily_snapshots_range_final(
_start_date DATE,
_end_date DATE
)
RETURNS VOID AS $$
DECLARE
_current_processing_date DATE := _start_date;
_batch_start_time TIMESTAMPTZ;
_row_count INTEGER;
BEGIN
RAISE NOTICE 'Starting FINAL historical snapshot backfill from % to %.', _start_date, _end_date;
RAISE NOTICE 'Using historical units and historical prices (for revenue approximation).';
RAISE NOTICE 'WARNING: Historical COGS, Profit, and Stock Value use CURRENT product costs/prices.';
-- Ensure end date is not in the future
IF _end_date >= CURRENT_DATE THEN
_end_date := CURRENT_DATE - INTERVAL '1 day';
RAISE NOTICE 'Adjusted end date to % to avoid conflict with hourly script.', _end_date;
END IF;
-- Performance: Create temporary table with product info to avoid repeated lookups
CREATE TEMP TABLE IF NOT EXISTS temp_product_info AS
SELECT
pid,
sku,
COALESCE(landing_cost_price, cost_price, 0.00) as effective_cost_price,
COALESCE(price, 0.00) as current_price,
COALESCE(regular_price, 0.00) as current_regular_price
FROM public.products;
-- Performance: Create index on temporary table
CREATE INDEX IF NOT EXISTS temp_product_info_pid_idx ON temp_product_info(pid);
ANALYZE temp_product_info;
RAISE NOTICE 'Created temporary product info table with % products', (SELECT COUNT(*) FROM temp_product_info);
WHILE _current_processing_date <= _end_date LOOP
_batch_start_time := clock_timestamp();
RAISE NOTICE 'Processing date: %', _current_processing_date;
-- Get Daily Transaction Unit Info from imported history
WITH DailyHistoryUnits AS (
SELECT
pids.pid,
-- Prioritize daily_inventory, fallback to product_stat_history for sold qty
COALESCE(di.amountsold, ps.qty_sold, 0)::integer as units_sold_today,
COALESCE(di.qtyreceived, 0)::integer as units_received_today
FROM
(SELECT DISTINCT pid FROM temp_product_info) pids -- Ensure all products are considered
LEFT JOIN public.imported_daily_inventory di
ON pids.pid = di.pid AND di.date = _current_processing_date
LEFT JOIN public.imported_product_stat_history ps
ON pids.pid = ps.pid AND ps.date = _current_processing_date
-- Removed WHERE clause to ensure snapshots are created even for days with 0 activity,
-- allowing stock carry-over. The main query will handle products properly.
),
HistoricalPrice AS (
-- Find the base price (qty_buy=1) active on the processing date
SELECT DISTINCT ON (pid)
pid,
price_each
FROM public.imported_product_current_prices
WHERE
qty_buy = 1
-- Use TIMESTAMPTZ comparison logic:
AND date_active <= (_current_processing_date + interval '1 day' - interval '1 second') -- Active sometime on or before end of processing day
AND (date_deactive IS NULL OR date_deactive > _current_processing_date) -- Not deactivated before start of processing day
-- Assuming 'active' flag isn't needed if dates are correct; add 'AND active != 0' if necessary
ORDER BY
pid, date_active DESC -- Get the most recently activated price
),
PreviousStock AS (
-- Get the estimated stock from the PREVIOUS day snapshot
SELECT pid, eod_stock_quantity
FROM public.daily_product_snapshots
WHERE snapshot_date = _current_processing_date - INTERVAL '1 day'
)
-- Insert into the daily snapshots table
INSERT INTO public.daily_product_snapshots (
snapshot_date, pid, sku,
eod_stock_quantity, eod_stock_cost, eod_stock_retail, eod_stock_gross, stockout_flag,
units_sold, units_returned,
gross_revenue, discounts, returns_revenue,
net_revenue, cogs, gross_regular_revenue, profit,
units_received, cost_received,
calculation_timestamp
)
SELECT
_current_processing_date AS snapshot_date,
p.pid,
p.sku,
-- Estimated EOD Stock (using historical daily units)
-- Handle potential NULL from joins with COALESCE 0
COALESCE(ps.eod_stock_quantity, 0) + COALESCE(dh.units_received_today, 0) - COALESCE(dh.units_sold_today, 0) AS estimated_eod_stock,
-- Valued Stock (using estimated stock and CURRENT prices/costs - APPROXIMATION)
GREATEST(0, COALESCE(ps.eod_stock_quantity, 0) + COALESCE(dh.units_received_today, 0) - COALESCE(dh.units_sold_today, 0)) * p.effective_cost_price AS eod_stock_cost,
GREATEST(0, COALESCE(ps.eod_stock_quantity, 0) + COALESCE(dh.units_received_today, 0) - COALESCE(dh.units_sold_today, 0)) * p.current_price AS eod_stock_retail, -- Stock retail uses current price
GREATEST(0, COALESCE(ps.eod_stock_quantity, 0) + COALESCE(dh.units_received_today, 0) - COALESCE(dh.units_sold_today, 0)) * p.current_regular_price AS eod_stock_gross, -- Stock gross uses current regular price
-- Stockout Flag (based on estimated stock)
(COALESCE(ps.eod_stock_quantity, 0) + COALESCE(dh.units_received_today, 0) - COALESCE(dh.units_sold_today, 0)) <= 0 AS stockout_flag,
-- Today's Unit Aggregates from History
COALESCE(dh.units_sold_today, 0) as units_sold,
0 AS units_returned, -- Placeholder: Cannot determine returns from daily summary
-- Monetary Values using looked-up Historical Price and CURRENT Cost/RegPrice
COALESCE(dh.units_sold_today, 0) * COALESCE(hp.price_each, p.current_price) AS gross_revenue, -- Approx Revenue
0 AS discounts, -- Placeholder
0 AS returns_revenue, -- Placeholder
COALESCE(dh.units_sold_today, 0) * COALESCE(hp.price_each, p.current_price) AS net_revenue, -- Approx Net Revenue
COALESCE(dh.units_sold_today, 0) * p.effective_cost_price AS cogs, -- Approx COGS (uses CURRENT cost)
COALESCE(dh.units_sold_today, 0) * p.current_regular_price AS gross_regular_revenue, -- Approx Gross Regular Revenue
-- Approx Profit
(COALESCE(dh.units_sold_today, 0) * COALESCE(hp.price_each, p.current_price)) - (COALESCE(dh.units_sold_today, 0) * p.effective_cost_price) AS profit,
COALESCE(dh.units_received_today, 0) as units_received,
-- Estimate received cost using CURRENT product cost
COALESCE(dh.units_received_today, 0) * p.effective_cost_price AS cost_received, -- Approx
clock_timestamp() -- Timestamp of this specific calculation
FROM temp_product_info p -- Use the temp table for better performance
LEFT JOIN PreviousStock ps ON p.pid = ps.pid
LEFT JOIN DailyHistoryUnits dh ON p.pid = dh.pid -- Join today's historical activity
LEFT JOIN HistoricalPrice hp ON p.pid = hp.pid -- Join the looked-up historical price
-- Optimization: Only process products with activity or previous stock
WHERE (dh.units_sold_today > 0 OR dh.units_received_today > 0 OR COALESCE(ps.eod_stock_quantity, 0) > 0)
ON CONFLICT (snapshot_date, pid) DO NOTHING; -- Avoid errors if rerunning parts, but prefer clean runs
GET DIAGNOSTICS _row_count = ROW_COUNT;
RAISE NOTICE 'Processed %: Inserted/Skipped % rows. Duration: %',
_current_processing_date,
_row_count,
clock_timestamp() - _batch_start_time;
_current_processing_date := _current_processing_date + INTERVAL '1 day';
END LOOP;
-- Clean up temporary tables
DROP TABLE IF EXISTS temp_product_info;
RAISE NOTICE 'Finished FINAL historical snapshot backfill.';
END;
$$ LANGUAGE plpgsql;
-- Example usage:
-- SELECT backfill_daily_snapshots_range_final('2023-01-01'::date, '2023-12-31'::date);

View File

@@ -0,0 +1,558 @@
const path = require('path');
// Change working directory to script directory
process.chdir(path.dirname(__filename));
require('dotenv').config({ path: path.resolve(__dirname, '..', '.env') });
// Configuration flags for controlling which metrics to calculate
// Set to 1 to skip the corresponding calculation, 0 to run it
const SKIP_PRODUCT_METRICS = 0;
const SKIP_TIME_AGGREGATES = 0;
const SKIP_FINANCIAL_METRICS = 0;
const SKIP_VENDOR_METRICS = 0;
const SKIP_CATEGORY_METRICS = 0;
const SKIP_BRAND_METRICS = 0;
const SKIP_SALES_FORECASTS = 0;
// Add error handler for uncaught exceptions
process.on('uncaughtException', (error) => {
console.error('Uncaught Exception:', error);
process.exit(1);
});
// Add error handler for unhandled promise rejections
process.on('unhandledRejection', (reason, promise) => {
console.error('Unhandled Rejection at:', promise, 'reason:', reason);
process.exit(1);
});
const progress = require('./metrics/utils/progress');
console.log('Progress module loaded:', {
modulePath: require.resolve('./metrics/utils/progress'),
exports: Object.keys(progress),
currentDir: process.cwd(),
scriptDir: __dirname
});
// Store progress functions in global scope to ensure availability
global.formatElapsedTime = progress.formatElapsedTime;
global.estimateRemaining = progress.estimateRemaining;
global.calculateRate = progress.calculateRate;
global.outputProgress = progress.outputProgress;
global.clearProgress = progress.clearProgress;
global.getProgress = progress.getProgress;
global.logError = progress.logError;
// List of temporary tables used in the calculation process
const TEMP_TABLES = [
'temp_revenue_ranks',
'temp_sales_metrics',
'temp_purchase_metrics',
'temp_product_metrics',
'temp_vendor_metrics',
'temp_category_metrics',
'temp_brand_metrics',
'temp_forecast_dates',
'temp_daily_sales',
'temp_product_stats',
'temp_category_sales',
'temp_category_stats',
'temp_beginning_inventory',
'temp_monthly_inventory'
];
// Add cleanup function for temporary tables
async function cleanupTemporaryTables(connection) {
try {
// Drop each temporary table if it exists
for (const table of TEMP_TABLES) {
await connection.query(`DROP TABLE IF EXISTS ${table}`);
}
} catch (err) {
console.error('Error cleaning up temporary tables:', err);
}
}
const { getConnection, closePool } = require('./metrics/utils/db');
const calculateProductMetrics = require('./metrics/product-metrics');
const calculateTimeAggregates = require('./metrics/time-aggregates');
const calculateFinancialMetrics = require('./metrics/financial-metrics');
const calculateVendorMetrics = require('./metrics/vendor-metrics');
const calculateCategoryMetrics = require('./metrics/category-metrics');
const calculateBrandMetrics = require('./metrics/brand-metrics');
const calculateSalesForecasts = require('./metrics/sales-forecasts');
// Add cancel handler
let isCancelled = false;
function cancelCalculation() {
isCancelled = true;
console.log('Calculation has been cancelled by user');
// Force-terminate any query that's been running for more than 5 seconds
try {
const connection = getConnection();
connection.then(async (conn) => {
try {
// Identify and terminate long-running queries from our application
await conn.query(`
SELECT pg_cancel_backend(pid)
FROM pg_stat_activity
WHERE query_start < now() - interval '5 seconds'
AND application_name LIKE '%node%'
AND query NOT LIKE '%pg_cancel_backend%'
`);
// Clean up any temporary tables
await cleanupTemporaryTables(conn);
// Release connection
conn.release();
} catch (err) {
console.error('Error during force cancellation:', err);
conn.release();
}
}).catch(err => {
console.error('Could not get connection for cancellation:', err);
});
} catch (err) {
console.error('Failed to terminate running queries:', err);
}
return {
success: true,
message: 'Calculation has been cancelled'
};
}
// Handle SIGTERM signal for cancellation
process.on('SIGTERM', cancelCalculation);
// Update the main calculation function to use the new modular structure
async function calculateMetrics() {
let connection;
const startTime = Date.now();
let processedProducts = 0;
let processedOrders = 0;
let processedPurchaseOrders = 0;
let totalProducts = 0;
let totalOrders = 0;
let totalPurchaseOrders = 0;
let calculateHistoryId;
// Set a maximum execution time (30 minutes)
const MAX_EXECUTION_TIME = 30 * 60 * 1000;
const timeout = setTimeout(() => {
console.error(`Calculation timed out after ${MAX_EXECUTION_TIME/1000} seconds, forcing termination`);
// Call cancel and force exit
cancelCalculation();
process.exit(1);
}, MAX_EXECUTION_TIME);
try {
// Clean up any previously running calculations
connection = await getConnection();
await connection.query(`
UPDATE calculate_history
SET
status = 'cancelled',
end_time = NOW(),
duration_seconds = EXTRACT(EPOCH FROM (NOW() - start_time))::INTEGER,
error_message = 'Previous calculation was not completed properly'
WHERE status = 'running'
`);
// Get counts from all relevant tables
const [productCountResult, orderCountResult, poCountResult] = await Promise.all([
connection.query('SELECT COUNT(*) as total FROM products'),
connection.query('SELECT COUNT(*) as total FROM orders'),
connection.query('SELECT COUNT(*) as total FROM purchase_orders')
]);
totalProducts = parseInt(productCountResult.rows[0].total);
totalOrders = parseInt(orderCountResult.rows[0].total);
totalPurchaseOrders = parseInt(poCountResult.rows[0].total);
// Create history record for this calculation
const historyResult = await connection.query(`
INSERT INTO calculate_history (
start_time,
status,
total_products,
total_orders,
total_purchase_orders,
additional_info
) VALUES (
NOW(),
'running',
$1,
$2,
$3,
jsonb_build_object(
'skip_product_metrics', ($4::int > 0),
'skip_time_aggregates', ($5::int > 0),
'skip_financial_metrics', ($6::int > 0),
'skip_vendor_metrics', ($7::int > 0),
'skip_category_metrics', ($8::int > 0),
'skip_brand_metrics', ($9::int > 0),
'skip_sales_forecasts', ($10::int > 0)
)
) RETURNING id
`, [
totalProducts,
totalOrders,
totalPurchaseOrders,
SKIP_PRODUCT_METRICS,
SKIP_TIME_AGGREGATES,
SKIP_FINANCIAL_METRICS,
SKIP_VENDOR_METRICS,
SKIP_CATEGORY_METRICS,
SKIP_BRAND_METRICS,
SKIP_SALES_FORECASTS
]);
calculateHistoryId = historyResult.rows[0].id;
// Add debug logging for the progress functions
console.log('Debug - Progress functions:', {
formatElapsedTime: typeof global.formatElapsedTime,
estimateRemaining: typeof global.estimateRemaining,
calculateRate: typeof global.calculateRate,
startTime: startTime
});
try {
const elapsed = global.formatElapsedTime(startTime);
console.log('Debug - formatElapsedTime test successful:', elapsed);
} catch (err) {
console.error('Debug - Error testing formatElapsedTime:', err);
throw err;
}
// Release the connection before getting a new one
connection.release();
isCancelled = false;
connection = await getConnection();
try {
global.outputProgress({
status: 'running',
operation: 'Starting metrics calculation',
current: 0,
total: 100,
elapsed: '0s',
remaining: 'Calculating...',
rate: 0,
percentage: '0',
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
// Update progress periodically
const updateProgress = async (products = null, orders = null, purchaseOrders = null) => {
// Ensure all values are valid numbers or default to previous value
if (products !== null) processedProducts = Number(products) || processedProducts || 0;
if (orders !== null) processedOrders = Number(orders) || processedOrders || 0;
if (purchaseOrders !== null) processedPurchaseOrders = Number(purchaseOrders) || processedPurchaseOrders || 0;
// Ensure we never send NaN to the database
const safeProducts = Number(processedProducts) || 0;
const safeOrders = Number(processedOrders) || 0;
const safePurchaseOrders = Number(processedPurchaseOrders) || 0;
await connection.query(`
UPDATE calculate_history
SET
processed_products = $1,
processed_orders = $2,
processed_purchase_orders = $3
WHERE id = $4
`, [safeProducts, safeOrders, safePurchaseOrders, calculateHistoryId]);
};
// Helper function to ensure valid progress numbers
const ensureValidProgress = (current, total) => ({
current: Number(current) || 0,
total: Number(total) || 1, // Default to 1 to avoid division by zero
percentage: (((Number(current) || 0) / (Number(total) || 1)) * 100).toFixed(1)
});
// Initial progress
const initialProgress = ensureValidProgress(0, totalProducts);
global.outputProgress({
status: 'running',
operation: 'Starting metrics calculation',
current: initialProgress.current,
total: initialProgress.total,
elapsed: '0s',
remaining: 'Calculating...',
rate: 0,
percentage: initialProgress.percentage,
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
if (!SKIP_PRODUCT_METRICS) {
const result = await calculateProductMetrics(startTime, totalProducts);
await updateProgress(result.processedProducts, result.processedOrders, result.processedPurchaseOrders);
if (!result.success) {
throw new Error('Product metrics calculation failed');
}
} else {
console.log('Skipping product metrics calculation...');
processedProducts = Math.floor(totalProducts * 0.6);
await updateProgress(processedProducts);
global.outputProgress({
status: 'running',
operation: 'Skipping product metrics calculation',
current: processedProducts,
total: totalProducts,
elapsed: global.formatElapsedTime(startTime),
remaining: global.estimateRemaining(startTime, processedProducts, totalProducts),
rate: global.calculateRate(startTime, processedProducts),
percentage: '60',
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
}
// Calculate time-based aggregates
if (!SKIP_TIME_AGGREGATES) {
const result = await calculateTimeAggregates(startTime, totalProducts, processedProducts);
await updateProgress(result.processedProducts, result.processedOrders, result.processedPurchaseOrders);
if (!result.success) {
throw new Error('Time aggregates calculation failed');
}
} else {
console.log('Skipping time aggregates calculation');
}
// Calculate financial metrics
if (!SKIP_FINANCIAL_METRICS) {
const result = await calculateFinancialMetrics(startTime, totalProducts, processedProducts);
await updateProgress(result.processedProducts, result.processedOrders, result.processedPurchaseOrders);
if (!result.success) {
throw new Error('Financial metrics calculation failed');
}
} else {
console.log('Skipping financial metrics calculation');
}
// Calculate vendor metrics
if (!SKIP_VENDOR_METRICS) {
const result = await calculateVendorMetrics(startTime, totalProducts, processedProducts);
await updateProgress(result.processedProducts, result.processedOrders, result.processedPurchaseOrders);
if (!result.success) {
throw new Error('Vendor metrics calculation failed');
}
} else {
console.log('Skipping vendor metrics calculation');
}
// Calculate category metrics
if (!SKIP_CATEGORY_METRICS) {
const result = await calculateCategoryMetrics(startTime, totalProducts, processedProducts);
await updateProgress(result.processedProducts, result.processedOrders, result.processedPurchaseOrders);
if (!result.success) {
throw new Error('Category metrics calculation failed');
}
} else {
console.log('Skipping category metrics calculation');
}
// Calculate brand metrics
if (!SKIP_BRAND_METRICS) {
const result = await calculateBrandMetrics(startTime, totalProducts, processedProducts);
await updateProgress(result.processedProducts, result.processedOrders, result.processedPurchaseOrders);
if (!result.success) {
throw new Error('Brand metrics calculation failed');
}
} else {
console.log('Skipping brand metrics calculation');
}
// Calculate sales forecasts
if (!SKIP_SALES_FORECASTS) {
const result = await calculateSalesForecasts(startTime, totalProducts, processedProducts);
await updateProgress(result.processedProducts, result.processedOrders, result.processedPurchaseOrders);
if (!result.success) {
throw new Error('Sales forecasts calculation failed');
}
} else {
console.log('Skipping sales forecasts calculation');
}
// Final progress update with guaranteed valid numbers
const finalProgress = ensureValidProgress(totalProducts, totalProducts);
// Final success message
outputProgress({
status: 'complete',
operation: 'Metrics calculation complete',
current: finalProgress.current,
total: finalProgress.total,
elapsed: global.formatElapsedTime(startTime),
remaining: '0s',
rate: global.calculateRate(startTime, finalProgress.current),
percentage: '100',
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
// Ensure all values are valid numbers before final update
const finalStats = {
processedProducts: Number(processedProducts) || 0,
processedOrders: Number(processedOrders) || 0,
processedPurchaseOrders: Number(processedPurchaseOrders) || 0
};
// Update history with completion
await connection.query(`
UPDATE calculate_history
SET
end_time = NOW(),
duration_seconds = $1,
processed_products = $2,
processed_orders = $3,
processed_purchase_orders = $4,
status = 'completed'
WHERE id = $5
`, [Math.round((Date.now() - startTime) / 1000),
finalStats.processedProducts,
finalStats.processedOrders,
finalStats.processedPurchaseOrders,
calculateHistoryId]);
// Clear progress file on successful completion
global.clearProgress();
return {
success: true,
message: 'Calculation completed successfully',
duration: Math.round((Date.now() - startTime) / 1000)
};
} catch (error) {
const endTime = Date.now();
const totalElapsedSeconds = Math.round((endTime - startTime) / 1000);
// Update history with error
await connection.query(`
UPDATE calculate_history
SET
end_time = NOW(),
duration_seconds = $1,
processed_products = $2,
processed_orders = $3,
processed_purchase_orders = $4,
status = $5,
error_message = $6
WHERE id = $7
`, [
totalElapsedSeconds,
processedProducts || 0, // Ensure we have a valid number
processedOrders || 0, // Ensure we have a valid number
processedPurchaseOrders || 0, // Ensure we have a valid number
isCancelled ? 'cancelled' : 'failed',
error.message,
calculateHistoryId
]);
if (isCancelled) {
global.outputProgress({
status: 'cancelled',
operation: 'Calculation cancelled',
current: processedProducts,
total: totalProducts || 0,
elapsed: global.formatElapsedTime(startTime),
remaining: null,
rate: global.calculateRate(startTime, processedProducts),
percentage: ((processedProducts / (totalProducts || 1)) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
} else {
global.outputProgress({
status: 'error',
operation: 'Error: ' + error.message,
current: processedProducts,
total: totalProducts || 0,
elapsed: global.formatElapsedTime(startTime),
remaining: null,
rate: global.calculateRate(startTime, processedProducts),
percentage: ((processedProducts / (totalProducts || 1)) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
}
throw error;
} finally {
// Clear the timeout to prevent forced termination
clearTimeout(timeout);
// Always clean up and release connection
if (connection) {
try {
await cleanupTemporaryTables(connection);
connection.release();
} catch (err) {
console.error('Error in final cleanup:', err);
}
}
}
} catch (error) {
console.error('Error in metrics calculation', error);
try {
if (connection) {
await connection.query(`
UPDATE calculate_history
SET
status = 'failed',
end_time = NOW(),
duration_seconds = EXTRACT(EPOCH FROM (NOW() - start_time))::INTEGER,
error_message = $1
WHERE id = $2
`, [error.message.substring(0, 500), calculateHistoryId]);
}
} catch (updateError) {
console.error('Error updating calculation history:', updateError);
}
throw error;
}
}
// Export as a module with all necessary functions
module.exports = {
calculateMetrics,
cancelCalculation,
getProgress: global.getProgress
};
// Run directly if called from command line
if (require.main === module) {
calculateMetrics().catch(error => {
if (!error.message.includes('Operation cancelled')) {
console.error('Error:', error);
}
process.exit(1);
});
}

View File

@@ -0,0 +1,242 @@
-- -- Configuration tables schema
-- -- Stock threshold configurations
-- CREATE TABLE stock_thresholds (
-- id INTEGER NOT NULL,
-- category_id BIGINT, -- NULL means default/global threshold
-- vendor VARCHAR(100), -- NULL means applies to all vendors
-- critical_days INTEGER NOT NULL DEFAULT 7,
-- reorder_days INTEGER NOT NULL DEFAULT 14,
-- overstock_days INTEGER NOT NULL DEFAULT 90,
-- low_stock_threshold INTEGER NOT NULL DEFAULT 5,
-- min_reorder_quantity INTEGER NOT NULL DEFAULT 1,
-- created_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP,
-- updated_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP,
-- PRIMARY KEY (id),
-- FOREIGN KEY (category_id) REFERENCES categories(cat_id) ON DELETE CASCADE,
-- UNIQUE (category_id, vendor)
-- );
-- CREATE TRIGGER update_stock_thresholds_updated
-- BEFORE UPDATE ON stock_thresholds
-- FOR EACH ROW
-- EXECUTE FUNCTION update_updated_at_column();
-- CREATE INDEX idx_st_metrics ON stock_thresholds(category_id, vendor);
-- -- Lead time threshold configurations
-- CREATE TABLE lead_time_thresholds (
-- id INTEGER NOT NULL,
-- category_id BIGINT, -- NULL means default/global threshold
-- vendor VARCHAR(100), -- NULL means applies to all vendors
-- target_days INTEGER NOT NULL DEFAULT 14,
-- warning_days INTEGER NOT NULL DEFAULT 21,
-- critical_days INTEGER NOT NULL DEFAULT 30,
-- created_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP,
-- updated_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP,
-- PRIMARY KEY (id),
-- FOREIGN KEY (category_id) REFERENCES categories(cat_id) ON DELETE CASCADE,
-- UNIQUE (category_id, vendor)
-- );
-- CREATE TRIGGER update_lead_time_thresholds_updated
-- BEFORE UPDATE ON lead_time_thresholds
-- FOR EACH ROW
-- EXECUTE FUNCTION update_updated_at_column();
-- -- Sales velocity window configurations
-- CREATE TABLE sales_velocity_config (
-- id INTEGER NOT NULL,
-- category_id BIGINT, -- NULL means default/global threshold
-- vendor VARCHAR(100), -- NULL means applies to all vendors
-- daily_window_days INTEGER NOT NULL DEFAULT 30,
-- weekly_window_days INTEGER NOT NULL DEFAULT 7,
-- monthly_window_days INTEGER NOT NULL DEFAULT 90,
-- created_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP,
-- updated_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP,
-- PRIMARY KEY (id),
-- FOREIGN KEY (category_id) REFERENCES categories(cat_id) ON DELETE CASCADE,
-- UNIQUE (category_id, vendor)
-- );
-- CREATE TRIGGER update_sales_velocity_config_updated
-- BEFORE UPDATE ON sales_velocity_config
-- FOR EACH ROW
-- EXECUTE FUNCTION update_updated_at_column();
-- CREATE INDEX idx_sv_metrics ON sales_velocity_config(category_id, vendor);
-- -- ABC Classification configurations
-- CREATE TABLE abc_classification_config (
-- id INTEGER NOT NULL PRIMARY KEY,
-- a_threshold DECIMAL(5,2) NOT NULL DEFAULT 20.0,
-- b_threshold DECIMAL(5,2) NOT NULL DEFAULT 50.0,
-- classification_period_days INTEGER NOT NULL DEFAULT 90,
-- created_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP,
-- updated_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP
-- );
-- CREATE TRIGGER update_abc_classification_config_updated
-- BEFORE UPDATE ON abc_classification_config
-- FOR EACH ROW
-- EXECUTE FUNCTION update_updated_at_column();
-- -- Safety stock configurations
-- CREATE TABLE safety_stock_config (
-- id INTEGER NOT NULL,
-- category_id BIGINT, -- NULL means default/global threshold
-- vendor VARCHAR(100), -- NULL means applies to all vendors
-- coverage_days INTEGER NOT NULL DEFAULT 14,
-- service_level DECIMAL(5,2) NOT NULL DEFAULT 95.0,
-- created_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP,
-- updated_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP,
-- PRIMARY KEY (id),
-- FOREIGN KEY (category_id) REFERENCES categories(cat_id) ON DELETE CASCADE,
-- UNIQUE (category_id, vendor)
-- );
-- CREATE TRIGGER update_safety_stock_config_updated
-- BEFORE UPDATE ON safety_stock_config
-- FOR EACH ROW
-- EXECUTE FUNCTION update_updated_at_column();
-- CREATE INDEX idx_ss_metrics ON safety_stock_config(category_id, vendor);
-- -- Turnover rate configurations
-- CREATE TABLE turnover_config (
-- id INTEGER NOT NULL,
-- category_id BIGINT, -- NULL means default/global threshold
-- vendor VARCHAR(100), -- NULL means applies to all vendors
-- calculation_period_days INTEGER NOT NULL DEFAULT 30,
-- target_rate DECIMAL(10,2) NOT NULL DEFAULT 1.0,
-- created_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP,
-- updated_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP,
-- PRIMARY KEY (id),
-- FOREIGN KEY (category_id) REFERENCES categories(cat_id) ON DELETE CASCADE,
-- UNIQUE (category_id, vendor)
-- );
-- CREATE TRIGGER update_turnover_config_updated
-- BEFORE UPDATE ON turnover_config
-- FOR EACH ROW
-- EXECUTE FUNCTION update_updated_at_column();
-- -- Create table for sales seasonality factors
-- CREATE TABLE sales_seasonality (
-- month INTEGER NOT NULL,
-- seasonality_factor DECIMAL(5,3) DEFAULT 0,
-- last_updated TIMESTAMP WITH TIME ZONE NOT NULL DEFAULT CURRENT_TIMESTAMP,
-- PRIMARY KEY (month),
-- CONSTRAINT month_range CHECK (month BETWEEN 1 AND 12),
-- CONSTRAINT seasonality_range CHECK (seasonality_factor BETWEEN -1.0 AND 1.0)
-- );
-- CREATE TRIGGER update_sales_seasonality_updated
-- BEFORE UPDATE ON sales_seasonality
-- FOR EACH ROW
-- EXECUTE FUNCTION update_updated_at_column();
-- -- Create table for financial calculation parameters
-- CREATE TABLE financial_calc_config (
-- id INTEGER NOT NULL PRIMARY KEY,
-- order_cost DECIMAL(10,2) NOT NULL DEFAULT 25.00, -- The fixed cost per purchase order (used in EOQ)
-- holding_rate DECIMAL(10,4) NOT NULL DEFAULT 0.25, -- The annual inventory holding cost as a percentage of unit cost (used in EOQ)
-- service_level_z_score DECIMAL(10,4) NOT NULL DEFAULT 1.96, -- Z-score for ~95% service level (used in Safety Stock)
-- min_reorder_qty INTEGER NOT NULL DEFAULT 1, -- Minimum reorder quantity
-- default_reorder_qty INTEGER NOT NULL DEFAULT 5, -- Default reorder quantity when sales data is insufficient
-- default_safety_stock INTEGER NOT NULL DEFAULT 5, -- Default safety stock when sales data is insufficient
-- created_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP,
-- updated_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP
-- );
-- CREATE TRIGGER update_financial_calc_config_updated
-- BEFORE UPDATE ON financial_calc_config
-- FOR EACH ROW
-- EXECUTE FUNCTION update_updated_at_column();
-- -- Insert default global thresholds
-- INSERT INTO stock_thresholds (id, category_id, vendor, critical_days, reorder_days, overstock_days)
-- VALUES (1, NULL, NULL, 7, 14, 90)
-- ON CONFLICT (id) DO UPDATE SET
-- critical_days = EXCLUDED.critical_days,
-- reorder_days = EXCLUDED.reorder_days,
-- overstock_days = EXCLUDED.overstock_days;
-- INSERT INTO lead_time_thresholds (id, category_id, vendor, target_days, warning_days, critical_days)
-- VALUES (1, NULL, NULL, 14, 21, 30)
-- ON CONFLICT (id) DO UPDATE SET
-- target_days = EXCLUDED.target_days,
-- warning_days = EXCLUDED.warning_days,
-- critical_days = EXCLUDED.critical_days;
-- INSERT INTO sales_velocity_config (id, category_id, vendor, daily_window_days, weekly_window_days, monthly_window_days)
-- VALUES (1, NULL, NULL, 30, 7, 90)
-- ON CONFLICT (id) DO UPDATE SET
-- daily_window_days = EXCLUDED.daily_window_days,
-- weekly_window_days = EXCLUDED.weekly_window_days,
-- monthly_window_days = EXCLUDED.monthly_window_days;
-- INSERT INTO abc_classification_config (id, a_threshold, b_threshold, classification_period_days)
-- VALUES (1, 20.0, 50.0, 90)
-- ON CONFLICT (id) DO UPDATE SET
-- a_threshold = EXCLUDED.a_threshold,
-- b_threshold = EXCLUDED.b_threshold,
-- classification_period_days = EXCLUDED.classification_period_days;
-- INSERT INTO safety_stock_config (id, category_id, vendor, coverage_days, service_level)
-- VALUES (1, NULL, NULL, 14, 95.0)
-- ON CONFLICT (id) DO UPDATE SET
-- coverage_days = EXCLUDED.coverage_days,
-- service_level = EXCLUDED.service_level;
-- INSERT INTO turnover_config (id, category_id, vendor, calculation_period_days, target_rate)
-- VALUES (1, NULL, NULL, 30, 1.0)
-- ON CONFLICT (id) DO UPDATE SET
-- calculation_period_days = EXCLUDED.calculation_period_days,
-- target_rate = EXCLUDED.target_rate;
-- -- Insert default seasonality factors (neutral)
-- INSERT INTO sales_seasonality (month, seasonality_factor)
-- VALUES
-- (1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 0),
-- (7, 0), (8, 0), (9, 0), (10, 0), (11, 0), (12, 0)
-- ON CONFLICT (month) DO UPDATE SET
-- last_updated = CURRENT_TIMESTAMP;
-- -- Insert default values
-- INSERT INTO financial_calc_config (id, order_cost, holding_rate, service_level_z_score, min_reorder_qty, default_reorder_qty, default_safety_stock)
-- VALUES (1, 25.00, 0.25, 1.96, 1, 5, 5)
-- ON CONFLICT (id) DO UPDATE SET
-- order_cost = EXCLUDED.order_cost,
-- holding_rate = EXCLUDED.holding_rate,
-- service_level_z_score = EXCLUDED.service_level_z_score,
-- min_reorder_qty = EXCLUDED.min_reorder_qty,
-- default_reorder_qty = EXCLUDED.default_reorder_qty,
-- default_safety_stock = EXCLUDED.default_safety_stock;
-- -- View to show thresholds with category names
-- CREATE OR REPLACE VIEW stock_thresholds_view AS
-- SELECT
-- st.*,
-- c.name as category_name,
-- CASE
-- WHEN st.category_id IS NULL AND st.vendor IS NULL THEN 'Global Default'
-- WHEN st.category_id IS NULL THEN 'Vendor: ' || st.vendor
-- WHEN st.vendor IS NULL THEN 'Category: ' || c.name
-- ELSE 'Category: ' || c.name || ' / Vendor: ' || st.vendor
-- END as threshold_scope
-- FROM
-- stock_thresholds st
-- LEFT JOIN
-- categories c ON st.category_id = c.cat_id
-- ORDER BY
-- CASE
-- WHEN st.category_id IS NULL AND st.vendor IS NULL THEN 1
-- WHEN st.category_id IS NULL THEN 2
-- WHEN st.vendor IS NULL THEN 3
-- ELSE 4
-- END,
-- c.name,
-- st.vendor;

View File

@@ -0,0 +1,377 @@
-- Disable foreign key checks
SET session_replication_role = 'replica';
-- Temporary tables for batch metrics processing
CREATE TABLE temp_sales_metrics (
pid BIGINT NOT NULL,
daily_sales_avg DECIMAL(10,3),
weekly_sales_avg DECIMAL(10,3),
monthly_sales_avg DECIMAL(10,3),
total_revenue DECIMAL(10,3),
avg_margin_percent DECIMAL(10,3),
first_sale_date DATE,
last_sale_date DATE,
stddev_daily_sales DECIMAL(10,3),
PRIMARY KEY (pid)
);
CREATE TABLE temp_purchase_metrics (
pid BIGINT NOT NULL,
avg_lead_time_days DECIMAL(10,2),
last_purchase_date DATE,
first_received_date DATE,
last_received_date DATE,
stddev_lead_time_days DECIMAL(10,2),
PRIMARY KEY (pid)
);
-- New table for product metrics
CREATE TABLE product_metrics (
pid BIGINT NOT NULL,
last_calculated_at TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
-- Sales velocity metrics
daily_sales_avg DECIMAL(10,3),
weekly_sales_avg DECIMAL(10,3),
monthly_sales_avg DECIMAL(10,3),
avg_quantity_per_order DECIMAL(10,3),
number_of_orders INTEGER,
first_sale_date DATE,
last_sale_date DATE,
-- Stock metrics
days_of_inventory INTEGER,
weeks_of_inventory INTEGER,
reorder_point INTEGER,
safety_stock INTEGER,
reorder_qty INTEGER DEFAULT 0,
overstocked_amt INTEGER DEFAULT 0,
-- Financial metrics
avg_margin_percent DECIMAL(10,3),
total_revenue DECIMAL(10,3),
inventory_value DECIMAL(10,3),
cost_of_goods_sold DECIMAL(10,3),
gross_profit DECIMAL(10,3),
gmroi DECIMAL(10,3),
-- Purchase metrics
avg_lead_time_days DECIMAL(10,2),
last_purchase_date DATE,
first_received_date DATE,
last_received_date DATE,
-- Classification metrics
abc_class CHAR(1),
stock_status VARCHAR(20),
-- Turnover metrics
turnover_rate DECIMAL(12,3),
-- Lead time metrics
current_lead_time INTEGER,
target_lead_time INTEGER,
lead_time_status VARCHAR(20),
-- Forecast metrics
forecast_accuracy DECIMAL(5,2) DEFAULT NULL,
forecast_bias DECIMAL(5,2) DEFAULT NULL,
last_forecast_date DATE DEFAULT NULL,
PRIMARY KEY (pid),
FOREIGN KEY (pid) REFERENCES products(pid) ON DELETE CASCADE
);
CREATE INDEX idx_metrics_revenue ON product_metrics(total_revenue);
CREATE INDEX idx_metrics_stock_status ON product_metrics(stock_status);
CREATE INDEX idx_metrics_lead_time ON product_metrics(lead_time_status);
CREATE INDEX idx_metrics_turnover ON product_metrics(turnover_rate);
CREATE INDEX idx_metrics_last_calculated ON product_metrics(last_calculated_at);
CREATE INDEX idx_metrics_abc ON product_metrics(abc_class);
CREATE INDEX idx_metrics_sales ON product_metrics(daily_sales_avg, weekly_sales_avg, monthly_sales_avg);
CREATE INDEX idx_metrics_forecast ON product_metrics(forecast_accuracy, forecast_bias);
-- New table for time-based aggregates
CREATE TABLE product_time_aggregates (
pid BIGINT NOT NULL,
year INTEGER NOT NULL,
month INTEGER NOT NULL,
-- Sales metrics
total_quantity_sold INTEGER DEFAULT 0,
total_revenue DECIMAL(10,3) DEFAULT 0,
total_cost DECIMAL(10,3) DEFAULT 0,
order_count INTEGER DEFAULT 0,
-- Stock changes
stock_received INTEGER DEFAULT 0,
stock_ordered INTEGER DEFAULT 0,
-- Calculated fields
avg_price DECIMAL(10,3),
profit_margin DECIMAL(10,3),
inventory_value DECIMAL(10,3),
gmroi DECIMAL(10,3),
PRIMARY KEY (pid, year, month),
FOREIGN KEY (pid) REFERENCES products(pid) ON DELETE CASCADE
);
CREATE INDEX idx_date ON product_time_aggregates(year, month);
-- Create vendor_details table
CREATE TABLE vendor_details (
vendor VARCHAR(100) PRIMARY KEY,
contact_name VARCHAR(100),
email VARCHAR(255),
phone VARCHAR(50),
status VARCHAR(20) DEFAULT 'active',
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);
CREATE INDEX idx_vendor_details_status ON vendor_details(status);
-- New table for vendor metrics
CREATE TABLE vendor_metrics (
vendor VARCHAR(100) NOT NULL,
last_calculated_at TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
-- Performance metrics
avg_lead_time_days DECIMAL(10,3),
on_time_delivery_rate DECIMAL(5,2),
order_fill_rate DECIMAL(5,2),
total_orders INTEGER DEFAULT 0,
total_late_orders INTEGER DEFAULT 0,
total_purchase_value DECIMAL(10,3) DEFAULT 0,
avg_order_value DECIMAL(10,3),
-- Product metrics
active_products INTEGER DEFAULT 0,
total_products INTEGER DEFAULT 0,
-- Financial metrics
total_revenue DECIMAL(10,3) DEFAULT 0,
avg_margin_percent DECIMAL(5,2),
-- Status
status VARCHAR(20) DEFAULT 'active',
PRIMARY KEY (vendor),
FOREIGN KEY (vendor) REFERENCES vendor_details(vendor) ON DELETE CASCADE
);
CREATE INDEX idx_vendor_performance ON vendor_metrics(on_time_delivery_rate);
CREATE INDEX idx_vendor_status ON vendor_metrics(status);
CREATE INDEX idx_vendor_metrics_last_calculated ON vendor_metrics(last_calculated_at);
CREATE INDEX idx_vendor_metrics_orders ON vendor_metrics(total_orders, total_late_orders);
-- New table for category metrics
CREATE TABLE category_metrics (
category_id BIGINT NOT NULL,
last_calculated_at TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
-- Product metrics
product_count INTEGER DEFAULT 0,
active_products INTEGER DEFAULT 0,
-- Financial metrics
total_value DECIMAL(15,3) DEFAULT 0,
avg_margin DECIMAL(5,2),
turnover_rate DECIMAL(12,3),
growth_rate DECIMAL(5,2),
-- Status
status VARCHAR(20) DEFAULT 'active',
PRIMARY KEY (category_id),
FOREIGN KEY (category_id) REFERENCES categories(cat_id) ON DELETE CASCADE
);
CREATE INDEX idx_category_status ON category_metrics(status);
CREATE INDEX idx_category_growth ON category_metrics(growth_rate);
CREATE INDEX idx_metrics_last_calculated_cat ON category_metrics(last_calculated_at);
CREATE INDEX idx_category_metrics_products ON category_metrics(product_count, active_products);
-- New table for vendor time-based metrics
CREATE TABLE vendor_time_metrics (
vendor VARCHAR(100) NOT NULL,
year INTEGER NOT NULL,
month INTEGER NOT NULL,
-- Order metrics
total_orders INTEGER DEFAULT 0,
late_orders INTEGER DEFAULT 0,
avg_lead_time_days DECIMAL(10,3),
-- Financial metrics
total_purchase_value DECIMAL(10,3) DEFAULT 0,
total_revenue DECIMAL(10,3) DEFAULT 0,
avg_margin_percent DECIMAL(5,2),
PRIMARY KEY (vendor, year, month),
FOREIGN KEY (vendor) REFERENCES vendor_details(vendor) ON DELETE CASCADE
);
CREATE INDEX idx_vendor_date ON vendor_time_metrics(year, month);
-- New table for category time-based metrics
CREATE TABLE category_time_metrics (
category_id BIGINT NOT NULL,
year INTEGER NOT NULL,
month INTEGER NOT NULL,
-- Product metrics
product_count INTEGER DEFAULT 0,
active_products INTEGER DEFAULT 0,
-- Financial metrics
total_value DECIMAL(15,3) DEFAULT 0,
total_revenue DECIMAL(15,3) DEFAULT 0,
avg_margin DECIMAL(5,2),
turnover_rate DECIMAL(12,3),
PRIMARY KEY (category_id, year, month),
FOREIGN KEY (category_id) REFERENCES categories(cat_id) ON DELETE CASCADE
);
CREATE INDEX idx_category_date ON category_time_metrics(year, month);
-- New table for category-based sales metrics
CREATE TABLE category_sales_metrics (
category_id BIGINT NOT NULL,
brand VARCHAR(100) NOT NULL,
period_start DATE NOT NULL,
period_end DATE NOT NULL,
avg_daily_sales DECIMAL(10,3) DEFAULT 0,
total_sold INTEGER DEFAULT 0,
num_products INTEGER DEFAULT 0,
avg_price DECIMAL(10,3) DEFAULT 0,
last_calculated_at TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
PRIMARY KEY (category_id, brand, period_start, period_end),
FOREIGN KEY (category_id) REFERENCES categories(cat_id) ON DELETE CASCADE
);
CREATE INDEX idx_category_brand ON category_sales_metrics(category_id, brand);
CREATE INDEX idx_period ON category_sales_metrics(period_start, period_end);
-- New table for brand metrics
CREATE TABLE brand_metrics (
brand VARCHAR(100) NOT NULL,
last_calculated_at TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
-- Product metrics
product_count INTEGER DEFAULT 0,
active_products INTEGER DEFAULT 0,
-- Stock metrics
total_stock_units INTEGER DEFAULT 0,
total_stock_cost DECIMAL(15,2) DEFAULT 0,
total_stock_retail DECIMAL(15,2) DEFAULT 0,
-- Sales metrics
total_revenue DECIMAL(15,2) DEFAULT 0,
avg_margin DECIMAL(5,2) DEFAULT 0,
growth_rate DECIMAL(5,2) DEFAULT 0,
PRIMARY KEY (brand)
);
CREATE INDEX idx_brand_metrics_last_calculated ON brand_metrics(last_calculated_at);
CREATE INDEX idx_brand_metrics_revenue ON brand_metrics(total_revenue);
CREATE INDEX idx_brand_metrics_growth ON brand_metrics(growth_rate);
-- New table for brand time-based metrics
CREATE TABLE brand_time_metrics (
brand VARCHAR(100) NOT NULL,
year INTEGER NOT NULL,
month INTEGER NOT NULL,
-- Product metrics
product_count INTEGER DEFAULT 0,
active_products INTEGER DEFAULT 0,
-- Stock metrics
total_stock_units INTEGER DEFAULT 0,
total_stock_cost DECIMAL(15,2) DEFAULT 0,
total_stock_retail DECIMAL(15,2) DEFAULT 0,
-- Sales metrics
total_revenue DECIMAL(15,2) DEFAULT 0,
avg_margin DECIMAL(5,2) DEFAULT 0,
growth_rate DECIMAL(5,2) DEFAULT 0,
PRIMARY KEY (brand, year, month)
);
CREATE INDEX idx_brand_time_date ON brand_time_metrics(year, month);
-- New table for sales forecasts
CREATE TABLE sales_forecasts (
pid BIGINT NOT NULL,
forecast_date DATE NOT NULL,
forecast_quantity INTEGER,
confidence_level DECIMAL(5,2),
created_at TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
PRIMARY KEY (pid, forecast_date),
FOREIGN KEY (pid) REFERENCES products(pid) ON DELETE CASCADE
);
CREATE INDEX idx_forecast_date ON sales_forecasts(forecast_date);
-- New table for category forecasts
CREATE TABLE category_forecasts (
category_id BIGINT NOT NULL,
forecast_date DATE NOT NULL,
forecast_revenue DECIMAL(15,2),
forecast_units INTEGER,
confidence_level DECIMAL(5,2),
created_at TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
PRIMARY KEY (category_id, forecast_date),
FOREIGN KEY (category_id) REFERENCES categories(cat_id) ON DELETE CASCADE
);
CREATE INDEX idx_cat_forecast_date ON category_forecasts(forecast_date);
-- Create views for common calculations
CREATE OR REPLACE VIEW inventory_health AS
WITH stock_levels AS (
SELECT
p.pid,
p.title,
p.SKU,
p.stock_quantity,
p.preorder_count,
pm.daily_sales_avg,
pm.weekly_sales_avg,
pm.monthly_sales_avg,
pm.reorder_point,
pm.safety_stock,
pm.days_of_inventory,
pm.weeks_of_inventory,
pm.stock_status,
pm.abc_class,
pm.turnover_rate,
pm.avg_lead_time_days,
pm.current_lead_time,
pm.target_lead_time,
pm.lead_time_status,
p.cost_price,
p.price,
pm.inventory_value,
pm.gmroi
FROM products p
LEFT JOIN product_metrics pm ON p.pid = pm.pid
WHERE p.managing_stock = true AND p.visible = true
)
SELECT
*,
CASE
WHEN stock_quantity <= safety_stock THEN 'Critical'
WHEN stock_quantity <= reorder_point THEN 'Low'
WHEN stock_quantity > (reorder_point * 3) THEN 'Excess'
ELSE 'Healthy'
END as inventory_status,
CASE
WHEN lead_time_status = 'delayed' AND stock_status = 'low' THEN 'High'
WHEN lead_time_status = 'delayed' OR stock_status = 'low' THEN 'Medium'
ELSE 'Low'
END as risk_level
FROM stock_levels;
-- Create view for category performance trends
CREATE OR REPLACE VIEW category_performance_trends AS
WITH monthly_trends AS (
SELECT
c.cat_id,
c.name as category_name,
ctm.year,
ctm.month,
ctm.product_count,
ctm.active_products,
ctm.total_value,
ctm.total_revenue,
ctm.avg_margin,
ctm.turnover_rate,
LAG(ctm.total_revenue) OVER (PARTITION BY c.cat_id ORDER BY ctm.year, ctm.month) as prev_month_revenue,
LAG(ctm.turnover_rate) OVER (PARTITION BY c.cat_id ORDER BY ctm.year, ctm.month) as prev_month_turnover
FROM categories c
JOIN category_time_metrics ctm ON c.cat_id = ctm.category_id
)
SELECT
*,
CASE
WHEN prev_month_revenue IS NULL THEN 0
ELSE ((total_revenue - prev_month_revenue) / prev_month_revenue) * 100
END as revenue_growth_percent,
CASE
WHEN prev_month_turnover IS NULL THEN 0
ELSE ((turnover_rate - prev_month_turnover) / prev_month_turnover) * 100
END as turnover_growth_percent
FROM monthly_trends;
SET session_replication_role = 'origin';

View File

@@ -1,8 +1,11 @@
const { outputProgress, formatElapsedTime, estimateRemaining, calculateRate, logError } = require('./utils/progress');
const { getConnection } = require('./utils/db');
async function calculateBrandMetrics(startTime, totalProducts, processedCount, isCancelled = false) {
async function calculateBrandMetrics(startTime, totalProducts, processedCount = 0, isCancelled = false) {
const connection = await getConnection();
let success = false;
let processedOrders = 0;
try {
if (isCancelled) {
outputProgress({
@@ -20,9 +23,22 @@ async function calculateBrandMetrics(startTime, totalProducts, processedCount, i
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
return processedCount;
return {
processedProducts: processedCount,
processedOrders: 0,
processedPurchaseOrders: 0,
success
};
}
// Get order count that will be processed
const orderCount = await connection.query(`
SELECT COUNT(*) as count
FROM orders o
WHERE o.canceled = false
`);
processedOrders = parseInt(orderCount.rows[0].count);
outputProgress({
status: 'running',
operation: 'Starting brand metrics calculation',
@@ -82,14 +98,14 @@ async function calculateBrandMetrics(startTime, totalProducts, processedCount, i
SUM(o.quantity * (o.price - COALESCE(o.discount, 0) - p.cost_price)) as period_margin,
COUNT(DISTINCT DATE(o.date)) as period_days,
CASE
WHEN o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 3 MONTH) THEN 'current'
WHEN o.date BETWEEN DATE_SUB(CURRENT_DATE, INTERVAL 15 MONTH)
AND DATE_SUB(CURRENT_DATE, INTERVAL 12 MONTH) THEN 'previous'
WHEN o.date >= CURRENT_DATE - INTERVAL '3 months' THEN 'current'
WHEN o.date BETWEEN CURRENT_DATE - INTERVAL '15 months'
AND CURRENT_DATE - INTERVAL '12 months' THEN 'previous'
END as period_type
FROM filtered_products p
JOIN orders o ON p.pid = o.pid
WHERE o.canceled = false
AND o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 15 MONTH)
AND o.date >= CURRENT_DATE - INTERVAL '15 months'
GROUP BY p.brand, period_type
),
brand_data AS (
@@ -149,15 +165,16 @@ async function calculateBrandMetrics(startTime, totalProducts, processedCount, i
LEFT JOIN sales_periods sp ON bd.brand = sp.brand
GROUP BY bd.brand, bd.product_count, bd.active_products, bd.total_stock_units,
bd.total_stock_cost, bd.total_stock_retail, bd.total_revenue, bd.avg_margin
ON DUPLICATE KEY UPDATE
product_count = VALUES(product_count),
active_products = VALUES(active_products),
total_stock_units = VALUES(total_stock_units),
total_stock_cost = VALUES(total_stock_cost),
total_stock_retail = VALUES(total_stock_retail),
total_revenue = VALUES(total_revenue),
avg_margin = VALUES(avg_margin),
growth_rate = VALUES(growth_rate),
ON CONFLICT (brand) DO UPDATE
SET
product_count = EXCLUDED.product_count,
active_products = EXCLUDED.active_products,
total_stock_units = EXCLUDED.total_stock_units,
total_stock_cost = EXCLUDED.total_stock_cost,
total_stock_retail = EXCLUDED.total_stock_retail,
total_revenue = EXCLUDED.total_revenue,
avg_margin = EXCLUDED.avg_margin,
growth_rate = EXCLUDED.growth_rate,
last_calculated_at = CURRENT_TIMESTAMP
`);
@@ -178,7 +195,12 @@ async function calculateBrandMetrics(startTime, totalProducts, processedCount, i
}
});
if (isCancelled) return processedCount;
if (isCancelled) return {
processedProducts: processedCount,
processedOrders,
processedPurchaseOrders: 0,
success
};
// Calculate brand time-based metrics with optimized query
await connection.query(`
@@ -209,8 +231,8 @@ async function calculateBrandMetrics(startTime, totalProducts, processedCount, i
monthly_metrics AS (
SELECT
p.brand,
YEAR(o.date) as year,
MONTH(o.date) as month,
EXTRACT(YEAR FROM o.date::timestamp with time zone) as year,
EXTRACT(MONTH FROM o.date::timestamp with time zone) as month,
COUNT(DISTINCT p.valid_pid) as product_count,
COUNT(DISTINCT p.active_pid) as active_products,
SUM(p.valid_stock) as total_stock_units,
@@ -234,19 +256,20 @@ async function calculateBrandMetrics(startTime, totalProducts, processedCount, i
END as avg_margin
FROM filtered_products p
LEFT JOIN orders o ON p.pid = o.pid AND o.canceled = false
WHERE o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 12 MONTH)
GROUP BY p.brand, YEAR(o.date), MONTH(o.date)
WHERE o.date >= CURRENT_DATE - INTERVAL '12 months'
GROUP BY p.brand, EXTRACT(YEAR FROM o.date::timestamp with time zone), EXTRACT(MONTH FROM o.date::timestamp with time zone)
)
SELECT *
FROM monthly_metrics
ON DUPLICATE KEY UPDATE
product_count = VALUES(product_count),
active_products = VALUES(active_products),
total_stock_units = VALUES(total_stock_units),
total_stock_cost = VALUES(total_stock_cost),
total_stock_retail = VALUES(total_stock_retail),
total_revenue = VALUES(total_revenue),
avg_margin = VALUES(avg_margin)
ON CONFLICT (brand, year, month) DO UPDATE
SET
product_count = EXCLUDED.product_count,
active_products = EXCLUDED.active_products,
total_stock_units = EXCLUDED.total_stock_units,
total_stock_cost = EXCLUDED.total_stock_cost,
total_stock_retail = EXCLUDED.total_stock_retail,
total_revenue = EXCLUDED.total_revenue,
avg_margin = EXCLUDED.avg_margin
`);
processedCount = Math.floor(totalProducts * 0.99);
@@ -266,8 +289,26 @@ async function calculateBrandMetrics(startTime, totalProducts, processedCount, i
}
});
return processedCount;
// If we get here, everything completed successfully
success = true;
// Update calculate_status
await connection.query(`
INSERT INTO calculate_status (module_name, last_calculation_timestamp)
VALUES ('brand_metrics', NOW())
ON CONFLICT (module_name) DO UPDATE
SET last_calculation_timestamp = NOW()
`);
return {
processedProducts: processedCount,
processedOrders,
processedPurchaseOrders: 0,
success
};
} catch (error) {
success = false;
logError(error, 'Error calculating brand metrics');
throw error;
} finally {

View File

@@ -1,8 +1,11 @@
const { outputProgress, formatElapsedTime, estimateRemaining, calculateRate, logError } = require('./utils/progress');
const { getConnection } = require('./utils/db');
async function calculateCategoryMetrics(startTime, totalProducts, processedCount, isCancelled = false) {
async function calculateCategoryMetrics(startTime, totalProducts, processedCount = 0, isCancelled = false) {
const connection = await getConnection();
let success = false;
let processedOrders = 0;
try {
if (isCancelled) {
outputProgress({
@@ -20,9 +23,22 @@ async function calculateCategoryMetrics(startTime, totalProducts, processedCount
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
return processedCount;
return {
processedProducts: processedCount,
processedOrders: 0,
processedPurchaseOrders: 0,
success
};
}
// Get order count that will be processed
const orderCount = await connection.query(`
SELECT COUNT(*) as count
FROM orders o
WHERE o.canceled = false
`);
processedOrders = parseInt(orderCount.rows[0].count);
outputProgress({
status: 'running',
operation: 'Starting category metrics calculation',
@@ -60,12 +76,13 @@ async function calculateCategoryMetrics(startTime, totalProducts, processedCount
LEFT JOIN product_categories pc ON c.cat_id = pc.cat_id
LEFT JOIN products p ON pc.pid = p.pid
GROUP BY c.cat_id, c.status
ON DUPLICATE KEY UPDATE
product_count = VALUES(product_count),
active_products = VALUES(active_products),
total_value = VALUES(total_value),
status = VALUES(status),
last_calculated_at = VALUES(last_calculated_at)
ON CONFLICT (category_id) DO UPDATE
SET
product_count = EXCLUDED.product_count,
active_products = EXCLUDED.active_products,
total_value = EXCLUDED.total_value,
status = EXCLUDED.status,
last_calculated_at = EXCLUDED.last_calculated_at
`);
processedCount = Math.floor(totalProducts * 0.90);
@@ -85,7 +102,12 @@ async function calculateCategoryMetrics(startTime, totalProducts, processedCount
}
});
if (isCancelled) return processedCount;
if (isCancelled) return {
processedProducts: processedCount,
processedOrders,
processedPurchaseOrders: 0,
success
};
// Then update with margin and turnover data
await connection.query(`
@@ -106,17 +128,13 @@ async function calculateCategoryMetrics(startTime, totalProducts, processedCount
(tc.category_id IS NULL AND tc.vendor = p.vendor) OR
(tc.category_id IS NULL AND tc.vendor IS NULL)
WHERE o.canceled = false
AND o.date >= DATE_SUB(CURRENT_DATE, INTERVAL COALESCE(tc.calculation_period_days, 30) DAY)
AND o.date >= CURRENT_DATE - (COALESCE(tc.calculation_period_days, 30) || ' days')::INTERVAL
GROUP BY pc.cat_id
)
UPDATE category_metrics cm
JOIN category_sales cs ON cm.category_id = cs.cat_id
LEFT JOIN turnover_config tc ON
(tc.category_id = cm.category_id AND tc.vendor IS NULL) OR
(tc.category_id IS NULL AND tc.vendor IS NULL)
UPDATE category_metrics
SET
cm.avg_margin = COALESCE(cs.total_margin * 100.0 / NULLIF(cs.total_sales, 0), 0),
cm.turnover_rate = CASE
avg_margin = COALESCE(cs.total_margin * 100.0 / NULLIF(cs.total_sales, 0), 0),
turnover_rate = CASE
WHEN cs.avg_stock > 0 AND cs.active_days > 0
THEN LEAST(
(cs.units_sold / cs.avg_stock) * (365.0 / cs.active_days),
@@ -124,7 +142,9 @@ async function calculateCategoryMetrics(startTime, totalProducts, processedCount
)
ELSE 0
END,
cm.last_calculated_at = NOW()
last_calculated_at = NOW()
FROM category_sales cs
WHERE category_id = cs.cat_id
`);
processedCount = Math.floor(totalProducts * 0.95);
@@ -144,7 +164,12 @@ async function calculateCategoryMetrics(startTime, totalProducts, processedCount
}
});
if (isCancelled) return processedCount;
if (isCancelled) return {
processedProducts: processedCount,
processedOrders,
processedPurchaseOrders: 0,
success
};
// Finally update growth rates
await connection.query(`
@@ -158,9 +183,9 @@ async function calculateCategoryMetrics(startTime, totalProducts, processedCount
FROM product_categories pc
JOIN products p ON pc.pid = p.pid
JOIN orders o ON p.pid = o.pid
LEFT JOIN sales_seasonality ss ON MONTH(o.date) = ss.month
LEFT JOIN sales_seasonality ss ON EXTRACT(MONTH FROM o.date) = ss.month
WHERE o.canceled = false
AND o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 3 MONTH)
AND o.date >= CURRENT_DATE - INTERVAL '3 months'
GROUP BY pc.cat_id
),
previous_period AS (
@@ -172,26 +197,26 @@ async function calculateCategoryMetrics(startTime, totalProducts, processedCount
FROM product_categories pc
JOIN products p ON pc.pid = p.pid
JOIN orders o ON p.pid = o.pid
LEFT JOIN sales_seasonality ss ON MONTH(o.date) = ss.month
LEFT JOIN sales_seasonality ss ON EXTRACT(MONTH FROM o.date) = ss.month
WHERE o.canceled = false
AND o.date BETWEEN DATE_SUB(CURRENT_DATE, INTERVAL 15 MONTH)
AND DATE_SUB(CURRENT_DATE, INTERVAL 12 MONTH)
AND o.date BETWEEN CURRENT_DATE - INTERVAL '15 months'
AND CURRENT_DATE - INTERVAL '12 months'
GROUP BY pc.cat_id
),
trend_data AS (
SELECT
pc.cat_id,
MONTH(o.date) as month,
EXTRACT(MONTH FROM o.date) as month,
SUM(o.quantity * (o.price - COALESCE(o.discount, 0)) /
(1 + COALESCE(ss.seasonality_factor, 0))) as revenue,
COUNT(DISTINCT DATE(o.date)) as days_in_month
FROM product_categories pc
JOIN products p ON pc.pid = p.pid
JOIN orders o ON p.pid = o.pid
LEFT JOIN sales_seasonality ss ON MONTH(o.date) = ss.month
LEFT JOIN sales_seasonality ss ON EXTRACT(MONTH FROM o.date) = ss.month
WHERE o.canceled = false
AND o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 15 MONTH)
GROUP BY pc.cat_id, MONTH(o.date)
AND o.date >= CURRENT_DATE - INTERVAL '15 months'
GROUP BY pc.cat_id, EXTRACT(MONTH FROM o.date)
),
trend_stats AS (
SELECT
@@ -235,16 +260,42 @@ async function calculateCategoryMetrics(startTime, totalProducts, processedCount
JOIN products p ON pc.pid = p.pid
JOIN orders o ON p.pid = o.pid
WHERE o.canceled = false
AND o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 3 MONTH)
AND o.date >= CURRENT_DATE - INTERVAL '3 months'
GROUP BY pc.cat_id
),
combined_metrics AS (
SELECT
COALESCE(cp.cat_id, pp.cat_id) as category_id,
CASE
WHEN pp.revenue = 0 AND COALESCE(cp.revenue, 0) > 0 THEN 100.0
WHEN pp.revenue = 0 OR cp.revenue IS NULL THEN 0.0
WHEN ta.trend_slope IS NOT NULL THEN
GREATEST(
-100.0,
LEAST(
(ta.trend_slope / NULLIF(ta.avg_daily_revenue, 0)) * 365 * 100,
999.99
)
)
ELSE
GREATEST(
-100.0,
LEAST(
((COALESCE(cp.revenue, 0) - pp.revenue) /
NULLIF(ABS(pp.revenue), 0)) * 100.0,
999.99
)
)
END as growth_rate,
mc.avg_margin
FROM current_period cp
FULL OUTER JOIN previous_period pp ON cp.cat_id = pp.cat_id
LEFT JOIN trend_analysis ta ON COALESCE(cp.cat_id, pp.cat_id) = ta.cat_id
LEFT JOIN margin_calc mc ON COALESCE(cp.cat_id, pp.cat_id) = mc.cat_id
)
UPDATE category_metrics cm
LEFT JOIN current_period cp ON cm.category_id = cp.cat_id
LEFT JOIN previous_period pp ON cm.category_id = pp.cat_id
LEFT JOIN trend_analysis ta ON cm.category_id = ta.cat_id
LEFT JOIN margin_calc mc ON cm.category_id = mc.cat_id
SET
cm.growth_rate = CASE
growth_rate = CASE
WHEN pp.revenue = 0 AND COALESCE(cp.revenue, 0) > 0 THEN 100.0
WHEN pp.revenue = 0 OR cp.revenue IS NULL THEN 0.0
WHEN ta.trend_slope IS NOT NULL THEN
@@ -265,9 +316,13 @@ async function calculateCategoryMetrics(startTime, totalProducts, processedCount
)
)
END,
cm.avg_margin = COALESCE(mc.avg_margin, cm.avg_margin),
cm.last_calculated_at = NOW()
WHERE cp.cat_id IS NOT NULL OR pp.cat_id IS NOT NULL
avg_margin = COALESCE(mc.avg_margin, cm.avg_margin),
last_calculated_at = NOW()
FROM current_period cp
FULL OUTER JOIN previous_period pp ON cp.cat_id = pp.cat_id
LEFT JOIN trend_analysis ta ON COALESCE(cp.cat_id, pp.cat_id) = ta.cat_id
LEFT JOIN margin_calc mc ON COALESCE(cp.cat_id, pp.cat_id) = mc.cat_id
WHERE cm.category_id = COALESCE(cp.cat_id, pp.cat_id)
`);
processedCount = Math.floor(totalProducts * 0.97);
@@ -287,7 +342,12 @@ async function calculateCategoryMetrics(startTime, totalProducts, processedCount
}
});
if (isCancelled) return processedCount;
if (isCancelled) return {
processedProducts: processedCount,
processedOrders,
processedPurchaseOrders: 0,
success
};
// Calculate time-based metrics
await connection.query(`
@@ -304,8 +364,8 @@ async function calculateCategoryMetrics(startTime, totalProducts, processedCount
)
SELECT
pc.cat_id,
YEAR(o.date) as year,
MONTH(o.date) as month,
EXTRACT(YEAR FROM o.date::timestamp with time zone) as year,
EXTRACT(MONTH FROM o.date::timestamp with time zone) as month,
COUNT(DISTINCT p.pid) as product_count,
COUNT(DISTINCT CASE WHEN p.visible = true THEN p.pid END) as active_products,
SUM(p.stock_quantity * p.cost_price) as total_value,
@@ -333,15 +393,16 @@ async function calculateCategoryMetrics(startTime, totalProducts, processedCount
JOIN products p ON pc.pid = p.pid
JOIN orders o ON p.pid = o.pid
WHERE o.canceled = false
AND o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 12 MONTH)
GROUP BY pc.cat_id, YEAR(o.date), MONTH(o.date)
ON DUPLICATE KEY UPDATE
product_count = VALUES(product_count),
active_products = VALUES(active_products),
total_value = VALUES(total_value),
total_revenue = VALUES(total_revenue),
avg_margin = VALUES(avg_margin),
turnover_rate = VALUES(turnover_rate)
AND o.date >= CURRENT_DATE - INTERVAL '12 months'
GROUP BY pc.cat_id, EXTRACT(YEAR FROM o.date::timestamp with time zone), EXTRACT(MONTH FROM o.date::timestamp with time zone)
ON CONFLICT (category_id, year, month) DO UPDATE
SET
product_count = EXCLUDED.product_count,
active_products = EXCLUDED.active_products,
total_value = EXCLUDED.total_value,
total_revenue = EXCLUDED.total_revenue,
avg_margin = EXCLUDED.avg_margin,
turnover_rate = EXCLUDED.turnover_rate
`);
processedCount = Math.floor(totalProducts * 0.99);
@@ -361,7 +422,12 @@ async function calculateCategoryMetrics(startTime, totalProducts, processedCount
}
});
if (isCancelled) return processedCount;
if (isCancelled) return {
processedProducts: processedCount,
processedOrders,
processedPurchaseOrders: 0,
success
};
// Calculate category-sales metrics
await connection.query(`
@@ -378,20 +444,20 @@ async function calculateCategoryMetrics(startTime, totalProducts, processedCount
)
WITH date_ranges AS (
SELECT
DATE_SUB(CURRENT_DATE, INTERVAL 30 DAY) as period_start,
CURRENT_DATE - INTERVAL '30 days' as period_start,
CURRENT_DATE as period_end
UNION ALL
SELECT
DATE_SUB(CURRENT_DATE, INTERVAL 90 DAY),
DATE_SUB(CURRENT_DATE, INTERVAL 31 DAY)
CURRENT_DATE - INTERVAL '90 days',
CURRENT_DATE - INTERVAL '31 days'
UNION ALL
SELECT
DATE_SUB(CURRENT_DATE, INTERVAL 180 DAY),
DATE_SUB(CURRENT_DATE, INTERVAL 91 DAY)
CURRENT_DATE - INTERVAL '180 days',
CURRENT_DATE - INTERVAL '91 days'
UNION ALL
SELECT
DATE_SUB(CURRENT_DATE, INTERVAL 365 DAY),
DATE_SUB(CURRENT_DATE, INTERVAL 181 DAY)
CURRENT_DATE - INTERVAL '365 days',
CURRENT_DATE - INTERVAL '181 days'
),
sales_data AS (
SELECT
@@ -430,12 +496,13 @@ async function calculateCategoryMetrics(startTime, totalProducts, processedCount
END as avg_price,
NOW() as last_calculated_at
FROM sales_data
ON DUPLICATE KEY UPDATE
avg_daily_sales = VALUES(avg_daily_sales),
total_sold = VALUES(total_sold),
num_products = VALUES(num_products),
avg_price = VALUES(avg_price),
last_calculated_at = VALUES(last_calculated_at)
ON CONFLICT (category_id, brand, period_start, period_end) DO UPDATE
SET
avg_daily_sales = EXCLUDED.avg_daily_sales,
total_sold = EXCLUDED.total_sold,
num_products = EXCLUDED.num_products,
avg_price = EXCLUDED.avg_price,
last_calculated_at = EXCLUDED.last_calculated_at
`);
processedCount = Math.floor(totalProducts * 1.0);
@@ -455,8 +522,26 @@ async function calculateCategoryMetrics(startTime, totalProducts, processedCount
}
});
return processedCount;
// If we get here, everything completed successfully
success = true;
// Update calculate_status
await connection.query(`
INSERT INTO calculate_status (module_name, last_calculation_timestamp)
VALUES ('category_metrics', NOW())
ON CONFLICT (module_name) DO UPDATE
SET last_calculation_timestamp = NOW()
`);
return {
processedProducts: processedCount,
processedOrders,
processedPurchaseOrders: 0,
success
};
} catch (error) {
success = false;
logError(error, 'Error calculating category metrics');
throw error;
} finally {

View File

@@ -0,0 +1,214 @@
const { outputProgress, formatElapsedTime, estimateRemaining, calculateRate, logError } = require('./utils/progress');
const { getConnection } = require('./utils/db');
async function calculateFinancialMetrics(startTime, totalProducts, processedCount = 0, isCancelled = false) {
const connection = await getConnection();
let success = false;
let processedOrders = 0;
try {
if (isCancelled) {
outputProgress({
status: 'cancelled',
operation: 'Financial metrics calculation cancelled',
current: processedCount,
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: null,
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
return {
processedProducts: processedCount,
processedOrders: 0,
processedPurchaseOrders: 0,
success
};
}
// Get order count that will be processed
const orderCount = await connection.query(`
SELECT COUNT(*) as count
FROM orders o
WHERE o.canceled = false
AND DATE(o.date) >= CURRENT_DATE - INTERVAL '12 months'
`);
processedOrders = parseInt(orderCount.rows[0].count);
outputProgress({
status: 'running',
operation: 'Starting financial metrics calculation',
current: processedCount,
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
// First, calculate beginning inventory values (12 months ago)
await connection.query(`
CREATE TEMPORARY TABLE IF NOT EXISTS temp_beginning_inventory AS
WITH beginning_inventory_calc AS (
SELECT
p.pid,
p.stock_quantity as current_quantity,
COALESCE(SUM(o.quantity), 0) as sold_quantity,
COALESCE(SUM(po.received), 0) as received_quantity,
GREATEST(0, (p.stock_quantity + COALESCE(SUM(o.quantity), 0) - COALESCE(SUM(po.received), 0))) as beginning_quantity,
p.cost_price
FROM
products p
LEFT JOIN
orders o ON p.pid = o.pid
AND o.canceled = false
AND o.date >= CURRENT_DATE - INTERVAL '12 months'::interval
LEFT JOIN
purchase_orders po ON p.pid = po.pid
AND po.received_date IS NOT NULL
AND po.received_date >= CURRENT_DATE - INTERVAL '12 months'::interval
GROUP BY
p.pid, p.stock_quantity, p.cost_price
)
SELECT
pid,
beginning_quantity,
beginning_quantity * cost_price as beginning_value,
current_quantity * cost_price as current_value,
((beginning_quantity * cost_price) + (current_quantity * cost_price)) / 2 as average_inventory_value
FROM
beginning_inventory_calc
`);
processedCount = Math.floor(totalProducts * 0.60);
outputProgress({
status: 'running',
operation: 'Beginning inventory values calculated, computing financial metrics',
current: processedCount,
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
// Calculate financial metrics with optimized query and standard formulas
await connection.query(`
WITH product_financials AS (
SELECT
p.pid,
COALESCE(bi.average_inventory_value, p.cost_price * p.stock_quantity) as avg_inventory_value,
p.cost_price * p.stock_quantity as current_inventory_value,
SUM(o.quantity * (o.price - COALESCE(o.discount, 0))) as total_revenue,
SUM(o.quantity * COALESCE(o.costeach, 0)) as cost_of_goods_sold,
SUM(o.quantity * (o.price - COALESCE(o.discount, 0) - COALESCE(o.costeach, 0))) as gross_profit,
MIN(o.date) as first_sale_date,
MAX(o.date) as last_sale_date,
EXTRACT(DAY FROM (MAX(o.date)::timestamp with time zone - MIN(o.date)::timestamp with time zone)) + 1 as calculation_period_days,
COUNT(DISTINCT DATE(o.date)) as active_days
FROM products p
LEFT JOIN orders o ON p.pid = o.pid
LEFT JOIN temp_beginning_inventory bi ON p.pid = bi.pid
WHERE o.canceled = false
AND DATE(o.date) >= CURRENT_DATE - INTERVAL '12 months'::interval
GROUP BY p.pid, p.cost_price, p.stock_quantity, bi.average_inventory_value
)
UPDATE product_metrics pm
SET
inventory_value = COALESCE(pf.current_inventory_value, 0)::decimal(10,3),
total_revenue = COALESCE(pf.total_revenue, 0)::decimal(10,3),
cost_of_goods_sold = COALESCE(pf.cost_of_goods_sold, 0)::decimal(10,3),
gross_profit = COALESCE(pf.gross_profit, 0)::decimal(10,3),
turnover_rate = CASE
WHEN COALESCE(pf.avg_inventory_value, 0) > 0 THEN
COALESCE(pf.cost_of_goods_sold, 0) / NULLIF(pf.avg_inventory_value, 0)
ELSE 0
END::decimal(12,3),
gmroi = CASE
WHEN COALESCE(pf.avg_inventory_value, 0) > 0 THEN
COALESCE(pf.gross_profit, 0) / NULLIF(pf.avg_inventory_value, 0)
ELSE 0
END::decimal(10,3),
last_calculated_at = CURRENT_TIMESTAMP
FROM product_financials pf
WHERE pm.pid = pf.pid
`);
processedCount = Math.floor(totalProducts * 0.65);
outputProgress({
status: 'running',
operation: 'Base financial metrics calculated, updating time aggregates',
current: processedCount,
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
if (isCancelled) return {
processedProducts: processedCount,
processedOrders,
processedPurchaseOrders: 0,
success
};
// Clean up temporary tables
await connection.query('DROP TABLE IF EXISTS temp_beginning_inventory');
// If we get here, everything completed successfully
success = true;
// Update calculate_status
await connection.query(`
INSERT INTO calculate_status (module_name, last_calculation_timestamp)
VALUES ('financial_metrics', NOW())
ON CONFLICT (module_name) DO UPDATE
SET last_calculation_timestamp = NOW()
`);
return {
processedProducts: processedCount,
processedOrders,
processedPurchaseOrders: 0,
success
};
} catch (error) {
success = false;
logError(error, 'Error calculating financial metrics');
throw error;
} finally {
if (connection) {
try {
// Make sure temporary tables are always cleaned up
await connection.query('DROP TABLE IF EXISTS temp_beginning_inventory');
} catch (err) {
console.error('Error cleaning up temp tables:', err);
}
connection.release();
}
}
}
module.exports = calculateFinancialMetrics;

View File

@@ -0,0 +1,736 @@
const { outputProgress, formatElapsedTime, estimateRemaining, calculateRate, logError } = require('./utils/progress');
const { getConnection } = require('./utils/db');
// Helper function to handle NaN and undefined values
function sanitizeValue(value) {
if (value === undefined || value === null || Number.isNaN(value)) {
return null;
}
return value;
}
async function calculateProductMetrics(startTime, totalProducts, processedCount = 0, isCancelled = false) {
let connection;
let success = false;
let processedOrders = 0;
const BATCH_SIZE = 5000;
try {
connection = await getConnection();
// Skip flags are inherited from the parent scope
const SKIP_PRODUCT_BASE_METRICS = 0;
const SKIP_PRODUCT_TIME_AGGREGATES = 0;
// Get total product count if not provided
if (!totalProducts) {
const productCount = await connection.query('SELECT COUNT(*) as count FROM products');
totalProducts = parseInt(productCount.rows[0].count);
}
if (isCancelled) {
outputProgress({
status: 'cancelled',
operation: 'Product metrics calculation cancelled',
current: processedCount,
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: null,
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
return {
processedProducts: processedCount,
processedOrders,
processedPurchaseOrders: 0,
success
};
}
// First ensure all products have a metrics record
await connection.query(`
INSERT INTO product_metrics (pid, last_calculated_at)
SELECT pid, NOW()
FROM products
ON CONFLICT (pid) DO NOTHING
`);
// Get threshold settings once
const thresholds = await connection.query(`
SELECT critical_days, reorder_days, overstock_days, low_stock_threshold
FROM stock_thresholds
WHERE category_id IS NULL AND vendor IS NULL
LIMIT 1
`);
// Check if threshold data was returned
if (!thresholds.rows || thresholds.rows.length === 0) {
console.warn('No default thresholds found in the database. Using explicit type casting in the query.');
}
const defaultThresholds = thresholds.rows[0];
// Get financial calculation configuration parameters
const financialConfig = await connection.query(`
SELECT
order_cost,
holding_rate,
service_level_z_score,
min_reorder_qty,
default_reorder_qty,
default_safety_stock
FROM financial_calc_config
WHERE id = 1
LIMIT 1
`);
const finConfig = financialConfig.rows[0] || {
order_cost: 25.00,
holding_rate: 0.25,
service_level_z_score: 1.96,
min_reorder_qty: 1,
default_reorder_qty: 5,
default_safety_stock: 5
};
// Calculate base product metrics
if (!SKIP_PRODUCT_BASE_METRICS) {
outputProgress({
status: 'running',
operation: 'Starting base product metrics calculation',
current: processedCount,
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
// Get order count that will be processed
const orderCount = await connection.query(`
SELECT COUNT(*) as count
FROM orders o
WHERE o.canceled = false
`);
processedOrders = parseInt(orderCount.rows[0].count);
// Clear temporary tables
await connection.query('DROP TABLE IF EXISTS temp_sales_metrics');
await connection.query('DROP TABLE IF EXISTS temp_purchase_metrics');
// Create temp_sales_metrics
await connection.query(`
CREATE TEMPORARY TABLE temp_sales_metrics (
pid BIGINT NOT NULL,
daily_sales_avg DECIMAL(10,3),
weekly_sales_avg DECIMAL(10,3),
monthly_sales_avg DECIMAL(10,3),
total_revenue DECIMAL(10,3),
avg_margin_percent DECIMAL(10,3),
first_sale_date DATE,
last_sale_date DATE,
stddev_daily_sales DECIMAL(10,3),
PRIMARY KEY (pid)
)
`);
// Create temp_purchase_metrics
await connection.query(`
CREATE TEMPORARY TABLE temp_purchase_metrics (
pid BIGINT NOT NULL,
avg_lead_time_days DECIMAL(10,2),
last_purchase_date DATE,
first_received_date DATE,
last_received_date DATE,
stddev_lead_time_days DECIMAL(10,2),
PRIMARY KEY (pid)
)
`);
// Populate temp_sales_metrics with base stats and sales averages
await connection.query(`
INSERT INTO temp_sales_metrics
SELECT
p.pid,
COALESCE(SUM(o.quantity) / NULLIF(COUNT(DISTINCT DATE(o.date)), 0), 0) as daily_sales_avg,
COALESCE(SUM(o.quantity) / NULLIF(CEIL(COUNT(DISTINCT DATE(o.date)) / 7), 0), 0) as weekly_sales_avg,
COALESCE(SUM(o.quantity) / NULLIF(CEIL(COUNT(DISTINCT DATE(o.date)) / 30), 0), 0) as monthly_sales_avg,
COALESCE(SUM(o.quantity * o.price), 0) as total_revenue,
CASE
WHEN SUM(o.quantity * o.price) > 0
THEN ((SUM(o.quantity * o.price) - SUM(o.quantity * p.cost_price)) / SUM(o.quantity * o.price)) * 100
ELSE 0
END as avg_margin_percent,
MIN(o.date) as first_sale_date,
MAX(o.date) as last_sale_date,
COALESCE(STDDEV_SAMP(daily_qty.quantity), 0) as stddev_daily_sales
FROM products p
LEFT JOIN orders o ON p.pid = o.pid
AND o.canceled = false
AND o.date >= CURRENT_DATE - INTERVAL '90 days'
LEFT JOIN (
SELECT
pid,
DATE(date) as sale_date,
SUM(quantity) as quantity
FROM orders
WHERE canceled = false
AND date >= CURRENT_DATE - INTERVAL '90 days'
GROUP BY pid, DATE(date)
) daily_qty ON p.pid = daily_qty.pid
GROUP BY p.pid
`);
// Populate temp_purchase_metrics with timeout protection
await Promise.race([
connection.query(`
INSERT INTO temp_purchase_metrics
SELECT
p.pid,
AVG(
CASE
WHEN po.received_date IS NOT NULL AND po.date IS NOT NULL
THEN EXTRACT(EPOCH FROM (po.received_date::timestamp with time zone - po.date::timestamp with time zone)) / 86400.0
ELSE NULL
END
) as avg_lead_time_days,
MAX(po.date) as last_purchase_date,
MIN(po.received_date) as first_received_date,
MAX(po.received_date) as last_received_date,
STDDEV_SAMP(
CASE
WHEN po.received_date IS NOT NULL AND po.date IS NOT NULL
THEN EXTRACT(EPOCH FROM (po.received_date::timestamp with time zone - po.date::timestamp with time zone)) / 86400.0
ELSE NULL
END
) as stddev_lead_time_days
FROM products p
LEFT JOIN purchase_orders po ON p.pid = po.pid
AND po.received_date IS NOT NULL
AND po.date IS NOT NULL
AND po.date >= CURRENT_DATE - INTERVAL '365 days'
GROUP BY p.pid
`),
new Promise((_, reject) =>
setTimeout(() => reject(new Error('Timeout: temp_purchase_metrics query took too long')), 60000)
)
]).catch(async (err) => {
logError(err, 'Error populating temp_purchase_metrics, continuing with empty table');
// Create an empty fallback to continue processing
await connection.query(`
INSERT INTO temp_purchase_metrics
SELECT
p.pid,
30.0 as avg_lead_time_days,
NULL as last_purchase_date,
NULL as first_received_date,
NULL as last_received_date,
0.0 as stddev_lead_time_days
FROM products p
LEFT JOIN temp_purchase_metrics tpm ON p.pid = tpm.pid
WHERE tpm.pid IS NULL
`);
});
// Process updates in batches
let lastPid = 0;
let batchCount = 0;
const MAX_BATCHES = 1000; // Safety limit for number of batches to prevent infinite loops
while (batchCount < MAX_BATCHES) {
if (isCancelled) break;
batchCount++;
const batch = await connection.query(
'SELECT pid FROM products WHERE pid > $1 ORDER BY pid LIMIT $2',
[lastPid, BATCH_SIZE]
);
if (batch.rows.length === 0) break;
// Process the entire batch in a single efficient query
const lowStockThreshold = parseInt(defaultThresholds?.low_stock_threshold) || 5;
const criticalDays = parseInt(defaultThresholds?.critical_days) || 7;
const reorderDays = parseInt(defaultThresholds?.reorder_days) || 14;
const overstockDays = parseInt(defaultThresholds?.overstock_days) || 90;
const serviceLevel = parseFloat(finConfig?.service_level_z_score) || 1.96;
const defaultSafetyStock = parseInt(finConfig?.default_safety_stock) || 5;
const defaultReorderQty = parseInt(finConfig?.default_reorder_qty) || 5;
const orderCost = parseFloat(finConfig?.order_cost) || 25.00;
const holdingRate = parseFloat(finConfig?.holding_rate) || 0.25;
const minReorderQty = parseInt(finConfig?.min_reorder_qty) || 1;
await connection.query(`
UPDATE product_metrics pm
SET
inventory_value = p.stock_quantity * NULLIF(p.cost_price, 0),
daily_sales_avg = COALESCE(sm.daily_sales_avg, 0),
weekly_sales_avg = COALESCE(sm.weekly_sales_avg, 0),
monthly_sales_avg = COALESCE(sm.monthly_sales_avg, 0),
total_revenue = COALESCE(sm.total_revenue, 0),
avg_margin_percent = COALESCE(sm.avg_margin_percent, 0),
first_sale_date = sm.first_sale_date,
last_sale_date = sm.last_sale_date,
avg_lead_time_days = COALESCE(lm.avg_lead_time_days, 30.0),
days_of_inventory = CASE
WHEN COALESCE(sm.daily_sales_avg, 0) > 0
THEN FLOOR(p.stock_quantity / NULLIF(sm.daily_sales_avg, 0))
ELSE NULL
END,
weeks_of_inventory = CASE
WHEN COALESCE(sm.weekly_sales_avg, 0) > 0
THEN FLOOR(p.stock_quantity / NULLIF(sm.weekly_sales_avg, 0))
ELSE NULL
END,
stock_status = CASE
WHEN p.stock_quantity <= 0 THEN 'Out of Stock'
WHEN COALESCE(sm.daily_sales_avg, 0) = 0 AND p.stock_quantity <= ${lowStockThreshold} THEN 'Low Stock'
WHEN COALESCE(sm.daily_sales_avg, 0) = 0 THEN 'In Stock'
WHEN p.stock_quantity / NULLIF(sm.daily_sales_avg, 0) <= ${criticalDays} THEN 'Critical'
WHEN p.stock_quantity / NULLIF(sm.daily_sales_avg, 0) <= ${reorderDays} THEN 'Reorder'
WHEN p.stock_quantity / NULLIF(sm.daily_sales_avg, 0) > ${overstockDays} THEN 'Overstocked'
ELSE 'Healthy'
END,
safety_stock = CASE
WHEN COALESCE(sm.daily_sales_avg, 0) > 0 AND COALESCE(lm.avg_lead_time_days, 0) > 0 THEN
CEIL(
${serviceLevel} * SQRT(
GREATEST(0, COALESCE(lm.avg_lead_time_days, 0)) * POWER(COALESCE(sm.stddev_daily_sales, 0), 2) +
POWER(COALESCE(sm.daily_sales_avg, 0), 2) * POWER(COALESCE(lm.stddev_lead_time_days, 0), 2)
)
)
ELSE ${defaultSafetyStock}
END,
reorder_point = CASE
WHEN COALESCE(sm.daily_sales_avg, 0) > 0 THEN
CEIL(sm.daily_sales_avg * GREATEST(0, COALESCE(lm.avg_lead_time_days, 30.0))) +
(CASE
WHEN COALESCE(sm.daily_sales_avg, 0) > 0 AND COALESCE(lm.avg_lead_time_days, 0) > 0 THEN
CEIL(
${serviceLevel} * SQRT(
GREATEST(0, COALESCE(lm.avg_lead_time_days, 0)) * POWER(COALESCE(sm.stddev_daily_sales, 0), 2) +
POWER(COALESCE(sm.daily_sales_avg, 0), 2) * POWER(COALESCE(lm.stddev_lead_time_days, 0), 2)
)
)
ELSE ${defaultSafetyStock}
END)
ELSE ${lowStockThreshold}
END,
reorder_qty = CASE
WHEN COALESCE(sm.daily_sales_avg, 0) > 0 AND NULLIF(p.cost_price, 0) IS NOT NULL AND NULLIF(p.cost_price, 0) > 0 THEN
GREATEST(
CEIL(SQRT(
(2 * (sm.daily_sales_avg * 365) * ${orderCost}) /
NULLIF(p.cost_price * ${holdingRate}, 0)
)),
${minReorderQty}
)
ELSE ${defaultReorderQty}
END,
overstocked_amt = CASE
WHEN p.stock_quantity / NULLIF(sm.daily_sales_avg, 0) > ${overstockDays}
THEN GREATEST(0, p.stock_quantity - CEIL(sm.daily_sales_avg * ${overstockDays}))
ELSE 0
END,
last_calculated_at = NOW()
FROM products p
LEFT JOIN temp_sales_metrics sm ON p.pid = sm.pid
LEFT JOIN temp_purchase_metrics lm ON p.pid = lm.pid
WHERE p.pid = ANY($1::BIGINT[])
AND pm.pid = p.pid
`, [batch.rows.map(row => row.pid)]);
lastPid = batch.rows[batch.rows.length - 1].pid;
processedCount += batch.rows.length;
outputProgress({
status: 'running',
operation: 'Processing base metrics batch',
current: processedCount,
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
}
// Add safety check if the loop processed MAX_BATCHES
if (batchCount >= MAX_BATCHES) {
logError(new Error(`Reached maximum batch count (${MAX_BATCHES}). Process may have entered an infinite loop.`), 'Batch processing safety limit reached');
}
}
// Calculate forecast accuracy and bias in batches
let forecastPid = 0;
while (true) {
if (isCancelled) break;
const forecastBatch = await connection.query(
'SELECT pid FROM products WHERE pid > $1 ORDER BY pid LIMIT $2',
[forecastPid, BATCH_SIZE]
);
if (forecastBatch.rows.length === 0) break;
const forecastPidArray = forecastBatch.rows.map(row => row.pid);
// Use array_to_string to convert the array to a string of comma-separated values
await connection.query(`
WITH forecast_metrics AS (
SELECT
sf.pid,
AVG(CASE
WHEN o.quantity > 0
THEN ABS(sf.forecast_quantity - o.quantity) / o.quantity * 100
ELSE 100
END) as avg_forecast_error,
AVG(CASE
WHEN o.quantity > 0
THEN (sf.forecast_quantity - o.quantity) / o.quantity * 100
ELSE 0
END) as avg_forecast_bias,
MAX(sf.forecast_date) as last_forecast_date
FROM sales_forecasts sf
JOIN orders o ON sf.pid = o.pid
AND DATE(o.date) = sf.forecast_date
WHERE o.canceled = false
AND sf.forecast_date >= CURRENT_DATE - INTERVAL '90 days'
AND sf.pid = ANY('{${forecastPidArray.join(',')}}'::BIGINT[])
GROUP BY sf.pid
)
UPDATE product_metrics pm
SET
forecast_accuracy = GREATEST(0, 100 - LEAST(fm.avg_forecast_error, 100)),
forecast_bias = GREATEST(-100, LEAST(fm.avg_forecast_bias, 100)),
last_forecast_date = fm.last_forecast_date,
last_calculated_at = NOW()
FROM forecast_metrics fm
WHERE pm.pid = fm.pid
`);
forecastPid = forecastBatch.rows[forecastBatch.rows.length - 1].pid;
}
// Calculate product time aggregates
if (!SKIP_PRODUCT_TIME_AGGREGATES) {
outputProgress({
status: 'running',
operation: 'Starting product time aggregates calculation',
current: processedCount || 0,
total: totalProducts || 0,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount || 0, totalProducts || 0),
rate: calculateRate(startTime, processedCount || 0),
percentage: (((processedCount || 0) / (totalProducts || 1)) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
// Note: The time-aggregates calculation has been moved to time-aggregates.js
// This module will not duplicate that functionality
processedCount = Math.floor(totalProducts * 0.6);
outputProgress({
status: 'running',
operation: 'Product time aggregates calculation delegated to time-aggregates module',
current: processedCount || 0,
total: totalProducts || 0,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount || 0, totalProducts || 0),
rate: calculateRate(startTime, processedCount || 0),
percentage: (((processedCount || 0) / (totalProducts || 1)) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
} else {
processedCount = Math.floor(totalProducts * 0.6);
outputProgress({
status: 'running',
operation: 'Skipping product time aggregates calculation',
current: processedCount || 0,
total: totalProducts || 0,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount || 0, totalProducts || 0),
rate: calculateRate(startTime, processedCount || 0),
percentage: (((processedCount || 0) / (totalProducts || 1)) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
}
// Calculate ABC classification
outputProgress({
status: 'running',
operation: 'Starting ABC classification',
current: processedCount,
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
if (isCancelled) return {
processedProducts: processedCount,
processedOrders,
processedPurchaseOrders: 0, // This module doesn't process POs
success
};
const abcConfig = await connection.query('SELECT a_threshold, b_threshold FROM abc_classification_config WHERE id = 1');
const abcThresholds = abcConfig.rows[0] || { a_threshold: 20, b_threshold: 50 };
// Extract values and ensure they are valid numbers
const aThreshold = parseFloat(abcThresholds.a_threshold) || 20;
const bThreshold = parseFloat(abcThresholds.b_threshold) || 50;
// First, create and populate the rankings table with an index
await connection.query('DROP TABLE IF EXISTS temp_revenue_ranks');
await connection.query(`
CREATE TEMPORARY TABLE temp_revenue_ranks (
pid BIGINT NOT NULL,
total_revenue DECIMAL(10,3),
rank_num INT,
dense_rank_num INT,
percentile DECIMAL(5,2),
total_count INT,
PRIMARY KEY (pid)
)
`);
await connection.query('CREATE INDEX ON temp_revenue_ranks (rank_num)');
await connection.query('CREATE INDEX ON temp_revenue_ranks (dense_rank_num)');
await connection.query('CREATE INDEX ON temp_revenue_ranks (percentile)');
// Calculate rankings with proper tie handling
await connection.query(`
INSERT INTO temp_revenue_ranks
WITH revenue_data AS (
SELECT
pid,
total_revenue,
COUNT(*) OVER () as total_count,
PERCENT_RANK() OVER (ORDER BY total_revenue DESC) * 100 as percentile,
RANK() OVER (ORDER BY total_revenue DESC) as rank_num,
DENSE_RANK() OVER (ORDER BY total_revenue DESC) as dense_rank_num
FROM product_metrics
WHERE total_revenue > 0
)
SELECT
pid,
total_revenue,
rank_num,
dense_rank_num,
percentile,
total_count
FROM revenue_data
`);
// Get total count for percentage calculation
const rankingCount = await connection.query('SELECT MAX(rank_num) as total_count FROM temp_revenue_ranks');
const totalCount = parseInt(rankingCount.rows[0].total_count) || 1;
// Process updates in batches
let abcProcessedCount = 0;
const batchSize = 5000;
const maxPid = await connection.query('SELECT MAX(pid) as max_pid FROM products');
const maxProductId = parseInt(maxPid.rows[0].max_pid);
while (abcProcessedCount < maxProductId) {
if (isCancelled) return {
processedProducts: processedCount,
processedOrders,
processedPurchaseOrders: 0,
success
};
// Get a batch of PIDs that need updating
const pids = await connection.query(`
SELECT pm.pid
FROM product_metrics pm
LEFT JOIN temp_revenue_ranks tr ON pm.pid = tr.pid
WHERE pm.pid > $1
AND (pm.abc_class IS NULL
OR pm.abc_class !=
CASE
WHEN tr.pid IS NULL THEN 'C'
WHEN tr.percentile <= ${aThreshold} THEN 'A'
WHEN tr.percentile <= ${bThreshold} THEN 'B'
ELSE 'C'
END)
ORDER BY pm.pid
LIMIT $2
`, [abcProcessedCount, batchSize]);
if (pids.rows.length === 0) break;
const pidValues = pids.rows.map(row => row.pid);
await connection.query(`
UPDATE product_metrics pm
SET abc_class =
CASE
WHEN tr.pid IS NULL THEN 'C'
WHEN tr.percentile <= ${aThreshold} THEN 'A'
WHEN tr.percentile <= ${bThreshold} THEN 'B'
ELSE 'C'
END,
last_calculated_at = NOW()
FROM (SELECT pid, percentile FROM temp_revenue_ranks) tr
WHERE pm.pid = tr.pid AND pm.pid = ANY($1::BIGINT[])
OR (pm.pid = ANY($1::BIGINT[]) AND tr.pid IS NULL)
`, [pidValues]);
// Now update turnover rate with proper handling of zero inventory periods
await connection.query(`
UPDATE product_metrics pm
SET
turnover_rate = CASE
WHEN sales.avg_nonzero_stock > 0 AND sales.active_days > 0
THEN LEAST(
(sales.total_sold / sales.avg_nonzero_stock) * (365.0 / sales.active_days),
999.99
)
ELSE 0
END,
last_calculated_at = NOW()
FROM (
SELECT
o.pid,
SUM(o.quantity) as total_sold,
COUNT(DISTINCT DATE(o.date)) as active_days,
AVG(CASE
WHEN p.stock_quantity > 0 THEN p.stock_quantity
ELSE NULL
END) as avg_nonzero_stock
FROM orders o
JOIN products p ON o.pid = p.pid
WHERE o.canceled = false
AND o.date >= CURRENT_DATE - INTERVAL '90 days'
AND o.pid = ANY($1::BIGINT[])
GROUP BY o.pid
) sales
WHERE pm.pid = sales.pid
`, [pidValues]);
abcProcessedCount = pids.rows[pids.rows.length - 1].pid;
// Calculate progress proportionally to total products
processedCount = Math.floor(totalProducts * (0.60 + (abcProcessedCount / maxProductId) * 0.2));
outputProgress({
status: 'running',
operation: 'ABC classification progress',
current: processedCount,
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
}
// If we get here, everything completed successfully
success = true;
// Update calculate_status
await connection.query(`
INSERT INTO calculate_status (module_name, last_calculation_timestamp)
VALUES ('product_metrics', NOW())
ON CONFLICT (module_name) DO UPDATE
SET last_calculation_timestamp = NOW()
`);
return {
processedProducts: processedCount || 0,
processedOrders: processedOrders || 0,
processedPurchaseOrders: 0, // This module doesn't process POs
success
};
} catch (error) {
success = false;
logError(error, 'Error calculating product metrics');
throw error;
} finally {
// Always clean up temporary tables, even if an error occurred
if (connection) {
try {
await connection.query('DROP TABLE IF EXISTS temp_sales_metrics');
await connection.query('DROP TABLE IF EXISTS temp_purchase_metrics');
} catch (err) {
console.error('Error cleaning up temporary tables:', err);
}
// Make sure to release the connection
connection.release();
}
}
}
function calculateStockStatus(stock, config, daily_sales_avg, weekly_sales_avg, monthly_sales_avg) {
if (stock <= 0) {
return 'Out of Stock';
}
// Use the most appropriate sales average based on data quality
let sales_avg = daily_sales_avg;
if (sales_avg === 0) {
sales_avg = weekly_sales_avg / 7;
}
if (sales_avg === 0) {
sales_avg = monthly_sales_avg / 30;
}
if (sales_avg === 0) {
return stock <= config.low_stock_threshold ? 'Low Stock' : 'In Stock';
}
const days_of_stock = stock / sales_avg;
if (days_of_stock <= config.critical_days) {
return 'Critical';
} else if (days_of_stock <= config.reorder_days) {
return 'Reorder';
} else if (days_of_stock > config.overstock_days) {
return 'Overstocked';
}
return 'Healthy';
}
// Note: calculateReorderQuantities function has been removed as its logic has been incorporated
// in the main SQL query with configurable parameters
module.exports = calculateProductMetrics;

View File

@@ -1,8 +1,11 @@
const { outputProgress, formatElapsedTime, estimateRemaining, calculateRate, logError } = require('./utils/progress');
const { getConnection } = require('./utils/db');
async function calculateSalesForecasts(startTime, totalProducts, processedCount, isCancelled = false) {
async function calculateSalesForecasts(startTime, totalProducts, processedCount = 0, isCancelled = false) {
const connection = await getConnection();
let success = false;
let processedOrders = 0;
try {
if (isCancelled) {
outputProgress({
@@ -20,9 +23,23 @@ async function calculateSalesForecasts(startTime, totalProducts, processedCount,
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
return processedCount;
return {
processedProducts: processedCount,
processedOrders: 0,
processedPurchaseOrders: 0,
success
};
}
// Get order count that will be processed
const orderCount = await connection.query(`
SELECT COUNT(*) as count
FROM orders o
WHERE o.canceled = false
AND o.date >= CURRENT_DATE - INTERVAL '90 days'
`);
processedOrders = parseInt(orderCount.rows[0].count);
outputProgress({
status: 'running',
operation: 'Starting sales forecasts calculation',
@@ -52,15 +69,15 @@ async function calculateSalesForecasts(startTime, totalProducts, processedCount,
await connection.query(`
INSERT INTO temp_forecast_dates
SELECT
DATE_ADD(CURRENT_DATE, INTERVAL n DAY) as forecast_date,
DAYOFWEEK(DATE_ADD(CURRENT_DATE, INTERVAL n DAY)) as day_of_week,
MONTH(DATE_ADD(CURRENT_DATE, INTERVAL n DAY)) as month
CURRENT_DATE + (n || ' days')::INTERVAL as forecast_date,
EXTRACT(DOW FROM CURRENT_DATE + (n || ' days')::INTERVAL) + 1 as day_of_week,
EXTRACT(MONTH FROM CURRENT_DATE + (n || ' days')::INTERVAL) as month
FROM (
SELECT a.N + b.N * 10 as n
SELECT a.n + b.n * 10 as n
FROM
(SELECT 0 as N UNION SELECT 1 UNION SELECT 2 UNION SELECT 3 UNION SELECT 4 UNION
(SELECT 0 as n UNION SELECT 1 UNION SELECT 2 UNION SELECT 3 UNION SELECT 4 UNION
SELECT 5 UNION SELECT 6 UNION SELECT 7 UNION SELECT 8 UNION SELECT 9) a,
(SELECT 0 as N UNION SELECT 1 UNION SELECT 2) b
(SELECT 0 as n UNION SELECT 1 UNION SELECT 2) b
ORDER BY n
LIMIT 31
) numbers
@@ -83,21 +100,26 @@ async function calculateSalesForecasts(startTime, totalProducts, processedCount,
}
});
if (isCancelled) return processedCount;
if (isCancelled) return {
processedProducts: processedCount,
processedOrders,
processedPurchaseOrders: 0,
success
};
// Create temporary table for daily sales stats
await connection.query(`
CREATE TEMPORARY TABLE IF NOT EXISTS temp_daily_sales AS
CREATE TEMPORARY TABLE temp_daily_sales AS
SELECT
o.pid,
DAYOFWEEK(o.date) as day_of_week,
EXTRACT(DOW FROM o.date) + 1 as day_of_week,
SUM(o.quantity) as daily_quantity,
SUM(o.price * o.quantity) as daily_revenue,
COUNT(DISTINCT DATE(o.date)) as day_count
FROM orders o
WHERE o.canceled = false
AND o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 90 DAY)
GROUP BY o.pid, DAYOFWEEK(o.date)
AND o.date >= CURRENT_DATE - INTERVAL '90 days'
GROUP BY o.pid, EXTRACT(DOW FROM o.date) + 1
`);
processedCount = Math.floor(totalProducts * 0.94);
@@ -117,11 +139,16 @@ async function calculateSalesForecasts(startTime, totalProducts, processedCount,
}
});
if (isCancelled) return processedCount;
if (isCancelled) return {
processedProducts: processedCount,
processedOrders,
processedPurchaseOrders: 0,
success
};
// Create temporary table for product stats
await connection.query(`
CREATE TEMPORARY TABLE IF NOT EXISTS temp_product_stats AS
CREATE TEMPORARY TABLE temp_product_stats AS
SELECT
pid,
AVG(daily_revenue) as overall_avg_revenue,
@@ -147,17 +174,21 @@ async function calculateSalesForecasts(startTime, totalProducts, processedCount,
}
});
if (isCancelled) return processedCount;
if (isCancelled) return {
processedProducts: processedCount,
processedOrders,
processedPurchaseOrders: 0,
success
};
// Calculate product-level forecasts
await connection.query(`
INSERT INTO sales_forecasts (
pid,
forecast_date,
forecast_units,
forecast_revenue,
forecast_quantity,
confidence_level,
last_calculated_at
created_at
)
WITH daily_stats AS (
SELECT
@@ -185,35 +216,9 @@ async function calculateSalesForecasts(startTime, totalProducts, processedCount,
GREATEST(0,
ROUND(
ds.avg_daily_qty *
(1 + COALESCE(sf.seasonality_factor, 0)) *
CASE
WHEN ds.std_daily_qty / NULLIF(ds.avg_daily_qty, 0) > 1.5 THEN 0.85
WHEN ds.std_daily_qty / NULLIF(ds.avg_daily_qty, 0) > 1.0 THEN 0.9
WHEN ds.std_daily_qty / NULLIF(ds.avg_daily_qty, 0) > 0.5 THEN 0.95
ELSE 1.0
END,
2
(1 + COALESCE(sf.seasonality_factor, 0))
)
) as forecast_units,
GREATEST(0,
ROUND(
COALESCE(
CASE
WHEN ds.data_points >= 4 THEN ds.avg_daily_revenue
ELSE ps.overall_avg_revenue
END *
(1 + COALESCE(sf.seasonality_factor, 0)) *
CASE
WHEN ds.std_daily_revenue / NULLIF(ds.avg_daily_revenue, 0) > 1.5 THEN 0.85
WHEN ds.std_daily_revenue / NULLIF(ds.avg_daily_revenue, 0) > 1.0 THEN 0.9
WHEN ds.std_daily_revenue / NULLIF(ds.avg_daily_revenue, 0) > 0.5 THEN 0.95
ELSE 1.0
END,
0
),
2
)
) as forecast_revenue,
) as forecast_quantity,
CASE
WHEN ds.total_days >= 60 AND ds.daily_variance_ratio < 0.5 THEN 90
WHEN ds.total_days >= 60 THEN 85
@@ -223,17 +228,18 @@ async function calculateSalesForecasts(startTime, totalProducts, processedCount,
WHEN ds.total_days >= 14 THEN 65
ELSE 60
END as confidence_level,
NOW() as last_calculated_at
NOW() as created_at
FROM daily_stats ds
JOIN temp_product_stats ps ON ds.pid = ps.pid
CROSS JOIN temp_forecast_dates fd
LEFT JOIN sales_seasonality sf ON fd.month = sf.month
GROUP BY ds.pid, fd.forecast_date, ps.overall_avg_revenue, sf.seasonality_factor
ON DUPLICATE KEY UPDATE
forecast_units = VALUES(forecast_units),
forecast_revenue = VALUES(forecast_revenue),
confidence_level = VALUES(confidence_level),
last_calculated_at = NOW()
GROUP BY ds.pid, fd.forecast_date, ps.overall_avg_revenue, sf.seasonality_factor,
ds.avg_daily_qty, ds.std_daily_qty, ds.avg_daily_qty, ds.total_days, ds.daily_variance_ratio
ON CONFLICT (pid, forecast_date) DO UPDATE
SET
forecast_quantity = EXCLUDED.forecast_quantity,
confidence_level = EXCLUDED.confidence_level,
created_at = NOW()
`);
processedCount = Math.floor(totalProducts * 0.98);
@@ -253,26 +259,31 @@ async function calculateSalesForecasts(startTime, totalProducts, processedCount,
}
});
if (isCancelled) return processedCount;
if (isCancelled) return {
processedProducts: processedCount,
processedOrders,
processedPurchaseOrders: 0,
success
};
// Create temporary table for category stats
await connection.query(`
CREATE TEMPORARY TABLE IF NOT EXISTS temp_category_sales AS
CREATE TEMPORARY TABLE temp_category_sales AS
SELECT
pc.cat_id,
DAYOFWEEK(o.date) as day_of_week,
EXTRACT(DOW FROM o.date) + 1 as day_of_week,
SUM(o.quantity) as daily_quantity,
SUM(o.price * o.quantity) as daily_revenue,
COUNT(DISTINCT DATE(o.date)) as day_count
FROM orders o
JOIN product_categories pc ON o.pid = pc.pid
WHERE o.canceled = false
AND o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 90 DAY)
GROUP BY pc.cat_id, DAYOFWEEK(o.date)
AND o.date >= CURRENT_DATE - INTERVAL '90 days'
GROUP BY pc.cat_id, EXTRACT(DOW FROM o.date) + 1
`);
await connection.query(`
CREATE TEMPORARY TABLE IF NOT EXISTS temp_category_stats AS
CREATE TEMPORARY TABLE temp_category_stats AS
SELECT
cat_id,
AVG(daily_revenue) as overall_avg_revenue,
@@ -298,7 +309,12 @@ async function calculateSalesForecasts(startTime, totalProducts, processedCount,
}
});
if (isCancelled) return processedCount;
if (isCancelled) return {
processedProducts: processedCount,
processedOrders,
processedPurchaseOrders: 0,
success
};
// Calculate category-level forecasts
await connection.query(`
@@ -308,14 +324,14 @@ async function calculateSalesForecasts(startTime, totalProducts, processedCount,
forecast_units,
forecast_revenue,
confidence_level,
last_calculated_at
created_at
)
SELECT
cs.cat_id as category_id,
cs.cat_id::bigint as category_id,
fd.forecast_date,
GREATEST(0,
AVG(cs.daily_quantity) *
(1 + COALESCE(sf.seasonality_factor, 0))
ROUND(AVG(cs.daily_quantity) *
(1 + COALESCE(sf.seasonality_factor, 0)))
) as forecast_units,
GREATEST(0,
COALESCE(
@@ -323,8 +339,7 @@ async function calculateSalesForecasts(startTime, totalProducts, processedCount,
WHEN SUM(cs.day_count) >= 4 THEN AVG(cs.daily_revenue)
ELSE ct.overall_avg_revenue
END *
(1 + COALESCE(sf.seasonality_factor, 0)) *
(0.95 + (RAND() * 0.1)),
(1 + COALESCE(sf.seasonality_factor, 0)),
0
)
) as forecast_revenue,
@@ -334,27 +349,34 @@ async function calculateSalesForecasts(startTime, totalProducts, processedCount,
WHEN ct.total_days >= 14 THEN 70
ELSE 60
END as confidence_level,
NOW() as last_calculated_at
NOW() as created_at
FROM temp_category_sales cs
JOIN temp_category_stats ct ON cs.cat_id = ct.cat_id
CROSS JOIN temp_forecast_dates fd
LEFT JOIN sales_seasonality sf ON fd.month = sf.month
GROUP BY cs.cat_id, fd.forecast_date, ct.overall_avg_revenue, ct.total_days, sf.seasonality_factor
GROUP BY
cs.cat_id,
fd.forecast_date,
ct.overall_avg_revenue,
ct.total_days,
sf.seasonality_factor,
sf.month
HAVING AVG(cs.daily_quantity) > 0
ON DUPLICATE KEY UPDATE
forecast_units = VALUES(forecast_units),
forecast_revenue = VALUES(forecast_revenue),
confidence_level = VALUES(confidence_level),
last_calculated_at = NOW()
ON CONFLICT (category_id, forecast_date) DO UPDATE
SET
forecast_units = EXCLUDED.forecast_units,
forecast_revenue = EXCLUDED.forecast_revenue,
confidence_level = EXCLUDED.confidence_level,
created_at = NOW()
`);
// Clean up temporary tables
await connection.query(`
DROP TEMPORARY TABLE IF EXISTS temp_forecast_dates;
DROP TEMPORARY TABLE IF EXISTS temp_daily_sales;
DROP TEMPORARY TABLE IF EXISTS temp_product_stats;
DROP TEMPORARY TABLE IF EXISTS temp_category_sales;
DROP TEMPORARY TABLE IF EXISTS temp_category_stats;
DROP TABLE IF EXISTS temp_forecast_dates;
DROP TABLE IF EXISTS temp_daily_sales;
DROP TABLE IF EXISTS temp_product_stats;
DROP TABLE IF EXISTS temp_category_sales;
DROP TABLE IF EXISTS temp_category_stats;
`);
processedCount = Math.floor(totalProducts * 1.0);
@@ -374,12 +396,42 @@ async function calculateSalesForecasts(startTime, totalProducts, processedCount,
}
});
return processedCount;
// If we get here, everything completed successfully
success = true;
// Update calculate_status
await connection.query(`
INSERT INTO calculate_status (module_name, last_calculation_timestamp)
VALUES ('sales_forecasts', NOW())
ON CONFLICT (module_name) DO UPDATE
SET last_calculation_timestamp = NOW()
`);
return {
processedProducts: processedCount,
processedOrders,
processedPurchaseOrders: 0,
success
};
} catch (error) {
success = false;
logError(error, 'Error calculating sales forecasts');
throw error;
} finally {
if (connection) {
try {
// Ensure temporary tables are cleaned up
await connection.query(`
DROP TABLE IF EXISTS temp_forecast_dates;
DROP TABLE IF EXISTS temp_daily_sales;
DROP TABLE IF EXISTS temp_product_stats;
DROP TABLE IF EXISTS temp_category_sales;
DROP TABLE IF EXISTS temp_category_stats;
`);
} catch (err) {
console.error('Error cleaning up temporary tables:', err);
}
connection.release();
}
}

View File

@@ -0,0 +1,344 @@
const { outputProgress, formatElapsedTime, estimateRemaining, calculateRate, logError } = require('./utils/progress');
const { getConnection } = require('./utils/db');
async function calculateTimeAggregates(startTime, totalProducts, processedCount = 0, isCancelled = false) {
const connection = await getConnection();
let success = false;
let processedOrders = 0;
try {
if (isCancelled) {
outputProgress({
status: 'cancelled',
operation: 'Time aggregates calculation cancelled',
current: processedCount,
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: null,
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
return {
processedProducts: processedCount,
processedOrders: 0,
processedPurchaseOrders: 0,
success
};
}
// Get order count that will be processed
const orderCount = await connection.query(`
SELECT COUNT(*) as count
FROM orders o
WHERE o.canceled = false
`);
processedOrders = parseInt(orderCount.rows[0].count);
outputProgress({
status: 'running',
operation: 'Starting time aggregates calculation',
current: processedCount,
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
// Create a temporary table for end-of-month inventory values
await connection.query(`
CREATE TEMPORARY TABLE IF NOT EXISTS temp_monthly_inventory AS
WITH months AS (
-- Generate all year/month combinations for the last 12 months
SELECT
EXTRACT(YEAR FROM month_date)::INTEGER as year,
EXTRACT(MONTH FROM month_date)::INTEGER as month,
month_date as start_date,
(month_date + INTERVAL '1 month'::interval - INTERVAL '1 day'::interval)::DATE as end_date
FROM (
SELECT generate_series(
DATE_TRUNC('month', CURRENT_DATE - INTERVAL '12 months'::interval)::DATE,
DATE_TRUNC('month', CURRENT_DATE)::DATE,
INTERVAL '1 month'::interval
) as month_date
) dates
),
monthly_inventory_calc AS (
SELECT
p.pid,
m.year,
m.month,
m.end_date,
p.stock_quantity as current_quantity,
-- Calculate sold during period (before end_date)
COALESCE(SUM(
CASE
WHEN o.date <= m.end_date THEN o.quantity
ELSE 0
END
), 0) as sold_after_end_date,
-- Calculate received during period (before end_date)
COALESCE(SUM(
CASE
WHEN po.received_date <= m.end_date THEN po.received
ELSE 0
END
), 0) as received_after_end_date,
p.cost_price
FROM
products p
CROSS JOIN
months m
LEFT JOIN
orders o ON p.pid = o.pid
AND o.canceled = false
AND o.date > m.end_date
AND o.date <= CURRENT_DATE
LEFT JOIN
purchase_orders po ON p.pid = po.pid
AND po.received_date IS NOT NULL
AND po.received_date > m.end_date
AND po.received_date <= CURRENT_DATE
GROUP BY
p.pid, m.year, m.month, m.end_date, p.stock_quantity, p.cost_price
)
SELECT
pid,
year,
month,
-- End of month quantity = current quantity - sold after + received after
GREATEST(0, current_quantity - sold_after_end_date + received_after_end_date) as end_of_month_quantity,
-- End of month inventory value
GREATEST(0, current_quantity - sold_after_end_date + received_after_end_date) * cost_price as end_of_month_value,
cost_price
FROM
monthly_inventory_calc
`);
processedCount = Math.floor(totalProducts * 0.40);
outputProgress({
status: 'running',
operation: 'Monthly inventory values calculated, processing time aggregates',
current: processedCount,
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
// Initial insert of time-based aggregates
await connection.query(`
INSERT INTO product_time_aggregates (
pid,
year,
month,
total_quantity_sold,
total_revenue,
total_cost,
order_count,
stock_received,
stock_ordered,
avg_price,
profit_margin,
inventory_value,
gmroi
)
WITH monthly_sales AS (
SELECT
o.pid,
EXTRACT(YEAR FROM o.date::timestamp with time zone)::INTEGER as year,
EXTRACT(MONTH FROM o.date::timestamp with time zone)::INTEGER as month,
SUM(o.quantity) as total_quantity_sold,
SUM((o.price - COALESCE(o.discount, 0)) * o.quantity) as total_revenue,
SUM(COALESCE(o.costeach, 0) * o.quantity) as total_cost,
COUNT(DISTINCT o.order_number) as order_count,
AVG(o.price - COALESCE(o.discount, 0)) as avg_price,
CASE
WHEN SUM((o.price - COALESCE(o.discount, 0)) * o.quantity) > 0
THEN ((SUM((o.price - COALESCE(o.discount, 0)) * o.quantity) - SUM(COALESCE(o.costeach, 0) * o.quantity))
/ SUM((o.price - COALESCE(o.discount, 0)) * o.quantity)) * 100
ELSE 0
END as profit_margin,
COUNT(DISTINCT DATE(o.date)) as active_days
FROM orders o
JOIN products p ON o.pid = p.pid
WHERE o.canceled = false
GROUP BY o.pid, EXTRACT(YEAR FROM o.date::timestamp with time zone), EXTRACT(MONTH FROM o.date::timestamp with time zone)
),
monthly_stock AS (
SELECT
pid,
EXTRACT(YEAR FROM date::timestamp with time zone)::INTEGER as year,
EXTRACT(MONTH FROM date::timestamp with time zone)::INTEGER as month,
SUM(received) as stock_received,
SUM(ordered) as stock_ordered
FROM purchase_orders
GROUP BY pid, EXTRACT(YEAR FROM date::timestamp with time zone), EXTRACT(MONTH FROM date::timestamp with time zone)
)
SELECT
COALESCE(s.pid, ms.pid, mi.pid) as pid,
COALESCE(s.year, ms.year, mi.year) as year,
COALESCE(s.month, ms.month, mi.month) as month,
COALESCE(s.total_quantity_sold, 0)::INTEGER as total_quantity_sold,
COALESCE(s.total_revenue, 0)::DECIMAL(10,3) as total_revenue,
COALESCE(s.total_cost, 0)::DECIMAL(10,3) as total_cost,
COALESCE(s.order_count, 0)::INTEGER as order_count,
COALESCE(ms.stock_received, 0)::INTEGER as stock_received,
COALESCE(ms.stock_ordered, 0)::INTEGER as stock_ordered,
COALESCE(s.avg_price, 0)::DECIMAL(10,3) as avg_price,
COALESCE(s.profit_margin, 0)::DECIMAL(10,3) as profit_margin,
COALESCE(mi.end_of_month_value, 0)::DECIMAL(10,3) as inventory_value,
CASE
WHEN COALESCE(mi.end_of_month_value, 0) > 0
THEN (COALESCE(s.total_revenue, 0) - COALESCE(s.total_cost, 0))
/ NULLIF(COALESCE(mi.end_of_month_value, 0), 0)
ELSE 0
END::DECIMAL(10,3) as gmroi
FROM (
SELECT * FROM monthly_sales s
UNION ALL
SELECT
pid,
year,
month,
0 as total_quantity_sold,
0 as total_revenue,
0 as total_cost,
0 as order_count,
NULL as avg_price,
0 as profit_margin,
0 as active_days
FROM monthly_stock ms
WHERE NOT EXISTS (
SELECT 1 FROM monthly_sales s2
WHERE s2.pid = ms.pid
AND s2.year = ms.year
AND s2.month = ms.month
)
UNION ALL
SELECT
pid,
year,
month,
0 as total_quantity_sold,
0 as total_revenue,
0 as total_cost,
0 as order_count,
NULL as avg_price,
0 as profit_margin,
0 as active_days
FROM temp_monthly_inventory mi
WHERE NOT EXISTS (
SELECT 1 FROM monthly_sales s3
WHERE s3.pid = mi.pid
AND s3.year = mi.year
AND s3.month = mi.month
)
AND NOT EXISTS (
SELECT 1 FROM monthly_stock ms3
WHERE ms3.pid = mi.pid
AND ms3.year = mi.year
AND ms3.month = mi.month
)
) s
LEFT JOIN monthly_stock ms
ON s.pid = ms.pid
AND s.year = ms.year
AND s.month = ms.month
LEFT JOIN temp_monthly_inventory mi
ON s.pid = mi.pid
AND s.year = mi.year
AND s.month = mi.month
ON CONFLICT (pid, year, month) DO UPDATE
SET
total_quantity_sold = EXCLUDED.total_quantity_sold,
total_revenue = EXCLUDED.total_revenue,
total_cost = EXCLUDED.total_cost,
order_count = EXCLUDED.order_count,
stock_received = EXCLUDED.stock_received,
stock_ordered = EXCLUDED.stock_ordered,
avg_price = EXCLUDED.avg_price,
profit_margin = EXCLUDED.profit_margin,
inventory_value = EXCLUDED.inventory_value,
gmroi = EXCLUDED.gmroi
`);
processedCount = Math.floor(totalProducts * 0.60);
outputProgress({
status: 'running',
operation: 'Base time aggregates calculated',
current: processedCount,
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
if (isCancelled) return {
processedProducts: processedCount,
processedOrders,
processedPurchaseOrders: 0,
success
};
// Clean up temporary tables
await connection.query('DROP TABLE IF EXISTS temp_monthly_inventory');
// If we get here, everything completed successfully
success = true;
// Update calculate_status
await connection.query(`
INSERT INTO calculate_status (module_name, last_calculation_timestamp)
VALUES ('time_aggregates', NOW())
ON CONFLICT (module_name) DO UPDATE
SET last_calculation_timestamp = NOW()
`);
return {
processedProducts: processedCount,
processedOrders,
processedPurchaseOrders: 0,
success
};
} catch (error) {
success = false;
logError(error, 'Error calculating time aggregates');
throw error;
} finally {
if (connection) {
try {
// Ensure temporary tables are cleaned up
await connection.query('DROP TABLE IF EXISTS temp_monthly_inventory');
} catch (err) {
console.error('Error cleaning up temporary tables:', err);
}
connection.release();
}
}
}
module.exports = calculateTimeAggregates;

View File

@@ -0,0 +1,39 @@
const { Pool } = require('pg');
const path = require('path');
require('dotenv').config({ path: path.resolve(__dirname, '../../..', '.env') });
// Database configuration
const dbConfig = {
host: process.env.DB_HOST,
user: process.env.DB_USER,
password: process.env.DB_PASSWORD,
database: process.env.DB_NAME,
port: process.env.DB_PORT || 5432,
ssl: process.env.DB_SSL === 'true',
// Add performance optimizations
max: 10, // connection pool max size
idleTimeoutMillis: 30000,
connectionTimeoutMillis: 60000
};
// Create a single pool instance to be reused
const pool = new Pool(dbConfig);
// Add event handlers for pool
pool.on('error', (err, client) => {
console.error('Unexpected error on idle client', err);
});
async function getConnection() {
return await pool.connect();
}
async function closePool() {
await pool.end();
}
module.exports = {
dbConfig,
getConnection,
closePool
};

View File

@@ -1,8 +1,12 @@
const { outputProgress, formatElapsedTime, estimateRemaining, calculateRate, logError } = require('./utils/progress');
const { getConnection } = require('./utils/db');
async function calculateVendorMetrics(startTime, totalProducts, processedCount, isCancelled = false) {
async function calculateVendorMetrics(startTime, totalProducts, processedCount = 0, isCancelled = false) {
const connection = await getConnection();
let success = false;
let processedOrders = 0;
let processedPurchaseOrders = 0;
try {
if (isCancelled) {
outputProgress({
@@ -20,9 +24,30 @@ async function calculateVendorMetrics(startTime, totalProducts, processedCount,
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
return processedCount;
return {
processedProducts: processedCount,
processedOrders,
processedPurchaseOrders,
success
};
}
// Get counts of records that will be processed
const [orderCountResult, poCountResult] = await Promise.all([
connection.query(`
SELECT COUNT(*) as count
FROM orders o
WHERE o.canceled = false
`),
connection.query(`
SELECT COUNT(*) as count
FROM purchase_orders po
WHERE po.status != 0
`)
]);
processedOrders = parseInt(orderCountResult.rows[0].count);
processedPurchaseOrders = parseInt(poCountResult.rows[0].count);
outputProgress({
status: 'running',
operation: 'Starting vendor metrics calculation',
@@ -41,7 +66,7 @@ async function calculateVendorMetrics(startTime, totalProducts, processedCount,
// First ensure all vendors exist in vendor_details
await connection.query(`
INSERT IGNORE INTO vendor_details (vendor, status, created_at, updated_at)
INSERT INTO vendor_details (vendor, status, created_at, updated_at)
SELECT DISTINCT
vendor,
'active' as status,
@@ -49,6 +74,7 @@ async function calculateVendorMetrics(startTime, totalProducts, processedCount,
NOW() as updated_at
FROM products
WHERE vendor IS NOT NULL
ON CONFLICT (vendor) DO NOTHING
`);
processedCount = Math.floor(totalProducts * 0.8);
@@ -68,7 +94,12 @@ async function calculateVendorMetrics(startTime, totalProducts, processedCount,
}
});
if (isCancelled) return processedCount;
if (isCancelled) return {
processedProducts: processedCount,
processedOrders,
processedPurchaseOrders,
success
};
// Now calculate vendor metrics
await connection.query(`
@@ -98,7 +129,7 @@ async function calculateVendorMetrics(startTime, totalProducts, processedCount,
FROM products p
JOIN orders o ON p.pid = o.pid
WHERE o.canceled = false
AND o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 12 MONTH)
AND o.date >= CURRENT_DATE - INTERVAL '12 months'
GROUP BY p.vendor
),
vendor_po AS (
@@ -108,12 +139,15 @@ async function calculateVendorMetrics(startTime, totalProducts, processedCount,
COUNT(DISTINCT po.id) as total_orders,
AVG(CASE
WHEN po.receiving_status = 40
THEN DATEDIFF(po.received_date, po.date)
AND po.received_date IS NOT NULL
AND po.date IS NOT NULL
THEN EXTRACT(EPOCH FROM (po.received_date::timestamp with time zone - po.date::timestamp with time zone)) / 86400.0
ELSE NULL
END) as avg_lead_time_days,
SUM(po.ordered * po.po_cost_price) as total_purchase_value
FROM products p
JOIN purchase_orders po ON p.pid = po.pid
WHERE po.date >= DATE_SUB(CURRENT_DATE, INTERVAL 12 MONTH)
WHERE po.date >= CURRENT_DATE - INTERVAL '12 months'
GROUP BY p.vendor
),
vendor_products AS (
@@ -158,20 +192,21 @@ async function calculateVendorMetrics(startTime, totalProducts, processedCount,
LEFT JOIN vendor_po vp ON vs.vendor = vp.vendor
LEFT JOIN vendor_products vpr ON vs.vendor = vpr.vendor
WHERE vs.vendor IS NOT NULL
ON DUPLICATE KEY UPDATE
total_revenue = VALUES(total_revenue),
total_orders = VALUES(total_orders),
total_late_orders = VALUES(total_late_orders),
avg_lead_time_days = VALUES(avg_lead_time_days),
on_time_delivery_rate = VALUES(on_time_delivery_rate),
order_fill_rate = VALUES(order_fill_rate),
avg_order_value = VALUES(avg_order_value),
active_products = VALUES(active_products),
total_products = VALUES(total_products),
total_purchase_value = VALUES(total_purchase_value),
avg_margin_percent = VALUES(avg_margin_percent),
status = VALUES(status),
last_calculated_at = VALUES(last_calculated_at)
ON CONFLICT (vendor) DO UPDATE
SET
total_revenue = EXCLUDED.total_revenue,
total_orders = EXCLUDED.total_orders,
total_late_orders = EXCLUDED.total_late_orders,
avg_lead_time_days = EXCLUDED.avg_lead_time_days,
on_time_delivery_rate = EXCLUDED.on_time_delivery_rate,
order_fill_rate = EXCLUDED.order_fill_rate,
avg_order_value = EXCLUDED.avg_order_value,
active_products = EXCLUDED.active_products,
total_products = EXCLUDED.total_products,
total_purchase_value = EXCLUDED.total_purchase_value,
avg_margin_percent = EXCLUDED.avg_margin_percent,
status = EXCLUDED.status,
last_calculated_at = EXCLUDED.last_calculated_at
`);
processedCount = Math.floor(totalProducts * 0.9);
@@ -191,7 +226,12 @@ async function calculateVendorMetrics(startTime, totalProducts, processedCount,
}
});
if (isCancelled) return processedCount;
if (isCancelled) return {
processedProducts: processedCount,
processedOrders,
processedPurchaseOrders,
success
};
// Calculate time-based metrics
await connection.query(`
@@ -209,23 +249,23 @@ async function calculateVendorMetrics(startTime, totalProducts, processedCount,
WITH monthly_orders AS (
SELECT
p.vendor,
YEAR(o.date) as year,
MONTH(o.date) as month,
EXTRACT(YEAR FROM o.date::timestamp with time zone) as year,
EXTRACT(MONTH FROM o.date::timestamp with time zone) as month,
COUNT(DISTINCT o.id) as total_orders,
SUM(o.quantity * o.price) as total_revenue,
SUM(o.quantity * (o.price - p.cost_price)) as total_margin
FROM products p
JOIN orders o ON p.pid = o.pid
WHERE o.canceled = false
AND o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 12 MONTH)
AND o.date >= CURRENT_DATE - INTERVAL '12 months'
AND p.vendor IS NOT NULL
GROUP BY p.vendor, YEAR(o.date), MONTH(o.date)
GROUP BY p.vendor, EXTRACT(YEAR FROM o.date::timestamp with time zone), EXTRACT(MONTH FROM o.date::timestamp with time zone)
),
monthly_po AS (
SELECT
p.vendor,
YEAR(po.date) as year,
MONTH(po.date) as month,
EXTRACT(YEAR FROM po.date::timestamp with time zone) as year,
EXTRACT(MONTH FROM po.date::timestamp with time zone) as month,
COUNT(DISTINCT po.id) as total_po,
COUNT(DISTINCT CASE
WHEN po.receiving_status = 40 AND po.received_date > po.expected_date
@@ -233,14 +273,17 @@ async function calculateVendorMetrics(startTime, totalProducts, processedCount,
END) as late_orders,
AVG(CASE
WHEN po.receiving_status = 40
THEN DATEDIFF(po.received_date, po.date)
AND po.received_date IS NOT NULL
AND po.date IS NOT NULL
THEN EXTRACT(EPOCH FROM (po.received_date::timestamp with time zone - po.date::timestamp with time zone)) / 86400.0
ELSE NULL
END) as avg_lead_time_days,
SUM(po.ordered * po.po_cost_price) as total_purchase_value
FROM products p
JOIN purchase_orders po ON p.pid = po.pid
WHERE po.date >= DATE_SUB(CURRENT_DATE, INTERVAL 12 MONTH)
WHERE po.date >= CURRENT_DATE - INTERVAL '12 months'
AND p.vendor IS NOT NULL
GROUP BY p.vendor, YEAR(po.date), MONTH(po.date)
GROUP BY p.vendor, EXTRACT(YEAR FROM po.date::timestamp with time zone), EXTRACT(MONTH FROM po.date::timestamp with time zone)
)
SELECT
mo.vendor,
@@ -276,13 +319,14 @@ async function calculateVendorMetrics(startTime, totalProducts, processedCount,
AND mp.year = mo.year
AND mp.month = mo.month
WHERE mo.vendor IS NULL
ON DUPLICATE KEY UPDATE
total_orders = VALUES(total_orders),
late_orders = VALUES(late_orders),
avg_lead_time_days = VALUES(avg_lead_time_days),
total_purchase_value = VALUES(total_purchase_value),
total_revenue = VALUES(total_revenue),
avg_margin_percent = VALUES(avg_margin_percent)
ON CONFLICT (vendor, year, month) DO UPDATE
SET
total_orders = EXCLUDED.total_orders,
late_orders = EXCLUDED.late_orders,
avg_lead_time_days = EXCLUDED.avg_lead_time_days,
total_purchase_value = EXCLUDED.total_purchase_value,
total_revenue = EXCLUDED.total_revenue,
avg_margin_percent = EXCLUDED.avg_margin_percent
`);
processedCount = Math.floor(totalProducts * 0.95);
@@ -302,8 +346,26 @@ async function calculateVendorMetrics(startTime, totalProducts, processedCount,
}
});
return processedCount;
// If we get here, everything completed successfully
success = true;
// Update calculate_status
await connection.query(`
INSERT INTO calculate_status (module_name, last_calculation_timestamp)
VALUES ('vendor_metrics', NOW())
ON CONFLICT (module_name) DO UPDATE
SET last_calculation_timestamp = NOW()
`);
return {
processedProducts: processedCount,
processedOrders,
processedPurchaseOrders,
success
};
} catch (error) {
success = false;
logError(error, 'Error calculating vendor metrics');
throw error;
} finally {

View File

@@ -1,4 +1,4 @@
const mysql = require('mysql2/promise');
const { Client } = require('pg');
const path = require('path');
const fs = require('fs');
require('dotenv').config({ path: path.resolve(__dirname, '../.env') });
@@ -8,7 +8,7 @@ const dbConfig = {
user: process.env.DB_USER,
password: process.env.DB_PASSWORD,
database: process.env.DB_NAME,
multipleStatements: true
port: process.env.DB_PORT || 5432
};
function outputProgress(data) {
@@ -34,11 +34,24 @@ const METRICS_TABLES = [
'sales_forecasts',
'temp_purchase_metrics',
'temp_sales_metrics',
'vendor_metrics', //before vendor_details for foreign key
'vendor_time_metrics', //before vendor_details for foreign key
'vendor_metrics',
'vendor_time_metrics',
'vendor_details'
];
// Tables to always protect from being dropped
const PROTECTED_TABLES = [
'users',
'permissions',
'user_permissions',
'calculate_history',
'import_history',
'ai_prompts',
'ai_validation_performance',
'templates',
'reusable_images'
];
// Split SQL into individual statements
function splitSQLStatements(sql) {
sql = sql.replace(/\r\n/g, '\n');
@@ -90,31 +103,35 @@ function splitSQLStatements(sql) {
}
async function resetMetrics() {
let connection;
let client;
try {
outputProgress({
operation: 'Starting metrics reset',
message: 'Connecting to database...'
});
connection = await mysql.createConnection(dbConfig);
await connection.beginTransaction();
client = new Client(dbConfig);
await client.connect();
// Explicitly begin a transaction
await client.query('BEGIN');
// First verify current state
const [initialTables] = await connection.query(`
SELECT TABLE_NAME as name
FROM information_schema.tables
WHERE TABLE_SCHEMA = DATABASE()
AND TABLE_NAME IN (?)
`, [METRICS_TABLES]);
const initialTables = await client.query(`
SELECT tablename as name
FROM pg_tables
WHERE schemaname = 'public'
AND tablename = ANY($1)
AND tablename NOT IN (SELECT unnest($2::text[]))
`, [METRICS_TABLES, PROTECTED_TABLES]);
outputProgress({
operation: 'Initial state',
message: `Found ${initialTables.length} existing metrics tables: ${initialTables.map(t => t.name).join(', ')}`
message: `Found ${initialTables.rows.length} existing metrics tables: ${initialTables.rows.map(t => t.name).join(', ')}`
});
// Disable foreign key checks at the start
await connection.query('SET FOREIGN_KEY_CHECKS = 0');
await client.query('SET session_replication_role = \'replica\'');
// Drop all metrics tables in reverse order to handle dependencies
outputProgress({
@@ -123,18 +140,28 @@ async function resetMetrics() {
});
for (const table of [...METRICS_TABLES].reverse()) {
// Skip protected tables
if (PROTECTED_TABLES.includes(table)) {
outputProgress({
operation: 'Protected table',
message: `Skipping protected table: ${table}`
});
continue;
}
try {
await connection.query(`DROP TABLE IF EXISTS ${table}`);
// Use NOWAIT to avoid hanging if there's a lock
await client.query(`DROP TABLE IF EXISTS "${table}" CASCADE`);
// Verify the table was actually dropped
const [checkDrop] = await connection.query(`
const checkDrop = await client.query(`
SELECT COUNT(*) as count
FROM information_schema.tables
WHERE TABLE_SCHEMA = DATABASE()
AND TABLE_NAME = ?
FROM pg_tables
WHERE schemaname = 'public'
AND tablename = $1
`, [table]);
if (checkDrop[0].count > 0) {
if (parseInt(checkDrop.rows[0].count) > 0) {
throw new Error(`Failed to drop table ${table} - table still exists`);
}
@@ -142,28 +169,43 @@ async function resetMetrics() {
operation: 'Table dropped',
message: `Successfully dropped table: ${table}`
});
// Commit after each table drop to ensure locks are released
await client.query('COMMIT');
// Start a new transaction for the next table
await client.query('BEGIN');
// Re-disable foreign key constraints for the new transaction
await client.query('SET session_replication_role = \'replica\'');
} catch (err) {
outputProgress({
status: 'error',
operation: 'Drop table error',
message: `Error dropping table ${table}: ${err.message}`
});
throw err;
await client.query('ROLLBACK');
// Re-start transaction for next table
await client.query('BEGIN');
await client.query('SET session_replication_role = \'replica\'');
}
}
// Verify all tables were dropped
const [afterDrop] = await connection.query(`
SELECT TABLE_NAME as name
FROM information_schema.tables
WHERE TABLE_SCHEMA = DATABASE()
AND TABLE_NAME IN (?)
const afterDrop = await client.query(`
SELECT tablename as name
FROM pg_tables
WHERE schemaname = 'public'
AND tablename = ANY($1)
`, [METRICS_TABLES]);
if (afterDrop.length > 0) {
throw new Error(`Failed to drop all tables. Remaining tables: ${afterDrop.map(t => t.name).join(', ')}`);
if (afterDrop.rows.length > 0) {
throw new Error(`Failed to drop all tables. Remaining tables: ${afterDrop.rows.map(t => t.name).join(', ')}`);
}
// Make sure we have a fresh transaction here
await client.query('COMMIT');
await client.query('BEGIN');
await client.query('SET session_replication_role = \'replica\'');
// Read metrics schema
outputProgress({
operation: 'Reading schema',
@@ -187,39 +229,26 @@ async function resetMetrics() {
for (let i = 0; i < statements.length; i++) {
const stmt = statements[i];
try {
await connection.query(stmt);
// Check for warnings
const [warnings] = await connection.query('SHOW WARNINGS');
if (warnings && warnings.length > 0) {
outputProgress({
status: 'warning',
operation: 'SQL Warning',
message: {
statement: i + 1,
warnings: warnings
}
});
}
const result = await client.query(stmt);
// If this is a CREATE TABLE statement, verify the table was created
if (stmt.trim().toLowerCase().startsWith('create table')) {
const tableName = stmt.match(/create\s+table\s+(?:if\s+not\s+exists\s+)?`?(\w+)`?/i)?.[1];
const tableName = stmt.match(/create\s+table\s+(?:if\s+not\s+exists\s+)?["]?(\w+)["]?/i)?.[1];
if (tableName) {
const [checkCreate] = await connection.query(`
SELECT TABLE_NAME as name, CREATE_TIME as created
FROM information_schema.tables
WHERE TABLE_SCHEMA = DATABASE()
AND TABLE_NAME = ?
const checkCreate = await client.query(`
SELECT tablename as name
FROM pg_tables
WHERE schemaname = 'public'
AND tablename = $1
`, [tableName]);
if (checkCreate.length === 0) {
if (checkCreate.rows.length === 0) {
throw new Error(`Failed to create table ${tableName} - table does not exist after CREATE statement`);
}
outputProgress({
operation: 'Table created',
message: `Successfully created table: ${tableName} at ${checkCreate[0].created}`
message: `Successfully created table: ${tableName}`
});
}
}
@@ -229,27 +258,40 @@ async function resetMetrics() {
message: {
statement: i + 1,
total: statements.length,
preview: stmt.substring(0, 100) + (stmt.length > 100 ? '...' : '')
preview: stmt.substring(0, 100) + (stmt.length > 100 ? '...' : ''),
rowCount: result.rowCount
}
});
// Commit every 10 statements to avoid long-running transactions
if (i > 0 && i % 10 === 0) {
await client.query('COMMIT');
await client.query('BEGIN');
await client.query('SET session_replication_role = \'replica\'');
}
} catch (sqlError) {
outputProgress({
status: 'error',
operation: 'SQL Error',
message: {
error: sqlError.message,
sqlState: sqlError.sqlState,
errno: sqlError.errno,
statement: stmt,
statementNumber: i + 1
}
});
await client.query('ROLLBACK');
throw sqlError;
}
}
// Final commit for any pending statements
await client.query('COMMIT');
// Start new transaction for final checks
await client.query('BEGIN');
// Re-enable foreign key checks after all tables are created
await connection.query('SET FOREIGN_KEY_CHECKS = 1');
await client.query('SET session_replication_role = \'origin\'');
// Verify metrics tables were created
outputProgress({
@@ -257,37 +299,38 @@ async function resetMetrics() {
message: 'Checking all metrics tables were created...'
});
const [metricsTablesResult] = await connection.query(`
SELECT
TABLE_NAME as name,
TABLE_ROWS as \`rows\`,
CREATE_TIME as created
FROM information_schema.tables
WHERE TABLE_SCHEMA = DATABASE()
AND TABLE_NAME IN (?)
const metricsTablesResult = await client.query(`
SELECT tablename as name
FROM pg_tables
WHERE schemaname = 'public'
AND tablename = ANY($1)
`, [METRICS_TABLES]);
outputProgress({
operation: 'Tables found',
message: `Found ${metricsTablesResult.length} tables: ${metricsTablesResult.map(t =>
`${t.name} (created: ${t.created})`
).join(', ')}`
message: `Found ${metricsTablesResult.rows.length} tables: ${metricsTablesResult.rows.map(t => t.name).join(', ')}`
});
const existingMetricsTables = metricsTablesResult.map(t => t.name);
const existingMetricsTables = metricsTablesResult.rows.map(t => t.name);
const missingMetricsTables = METRICS_TABLES.filter(t => !existingMetricsTables.includes(t));
if (missingMetricsTables.length > 0) {
// Do one final check of the actual tables
const [finalCheck] = await connection.query('SHOW TABLES');
const finalCheck = await client.query(`
SELECT tablename as name
FROM pg_tables
WHERE schemaname = 'public'
`);
outputProgress({
operation: 'Final table check',
message: `All database tables: ${finalCheck.map(t => Object.values(t)[0]).join(', ')}`
message: `All database tables: ${finalCheck.rows.map(t => t.name).join(', ')}`
});
await client.query('ROLLBACK');
throw new Error(`Failed to create metrics tables: ${missingMetricsTables.join(', ')}`);
}
await connection.commit();
// Commit final transaction
await client.query('COMMIT');
outputProgress({
status: 'complete',
@@ -302,17 +345,21 @@ async function resetMetrics() {
stack: error.stack
});
if (connection) {
await connection.rollback();
if (client) {
try {
await client.query('ROLLBACK');
} catch (rollbackError) {
console.error('Error during rollback:', rollbackError);
}
// Make sure to re-enable foreign key checks even if there's an error
await connection.query('SET FOREIGN_KEY_CHECKS = 1').catch(() => {});
await client.query('SET session_replication_role = \'origin\'').catch(() => {});
}
throw error;
} finally {
if (connection) {
if (client) {
// One final attempt to ensure foreign key checks are enabled
await connection.query('SET FOREIGN_KEY_CHECKS = 1').catch(() => {});
await connection.end();
await client.query('SET session_replication_role = \'origin\'').catch(() => {});
await client.end();
}
}
}

View File

@@ -0,0 +1,337 @@
/**
* This script updates the costeach values for existing orders from the original MySQL database
* without needing to run the full import process.
*/
const dotenv = require("dotenv");
const path = require("path");
const fs = require("fs");
const { setupConnections, closeConnections } = require('../scripts/import/utils');
const { outputProgress, formatElapsedTime } = require('./metrics/utils/progress');
dotenv.config({ path: path.join(__dirname, "../.env") });
// SSH configuration
const sshConfig = {
ssh: {
host: process.env.PROD_SSH_HOST,
port: process.env.PROD_SSH_PORT || 22,
username: process.env.PROD_SSH_USER,
privateKey: process.env.PROD_SSH_KEY_PATH
? fs.readFileSync(process.env.PROD_SSH_KEY_PATH)
: undefined,
compress: true, // Enable SSH compression
},
prodDbConfig: {
// MySQL config for production
host: process.env.PROD_DB_HOST || "localhost",
user: process.env.PROD_DB_USER,
password: process.env.PROD_DB_PASSWORD,
database: process.env.PROD_DB_NAME,
port: process.env.PROD_DB_PORT || 3306,
timezone: 'Z',
},
localDbConfig: {
// PostgreSQL config for local
host: process.env.DB_HOST,
user: process.env.DB_USER,
password: process.env.DB_PASSWORD,
database: process.env.DB_NAME,
port: process.env.DB_PORT || 5432,
ssl: process.env.DB_SSL === 'true',
connectionTimeoutMillis: 60000,
idleTimeoutMillis: 30000,
max: 10 // connection pool max size
}
};
async function updateOrderCosts() {
const startTime = Date.now();
let connections;
let updatedCount = 0;
let errorCount = 0;
try {
outputProgress({
status: "running",
operation: "Order costs update",
message: "Initializing SSH tunnel..."
});
connections = await setupConnections(sshConfig);
const { prodConnection, localConnection } = connections;
// 1. Get all orders from local database that need cost updates
outputProgress({
status: "running",
operation: "Order costs update",
message: "Getting orders from local database..."
});
const [orders] = await localConnection.query(`
SELECT DISTINCT order_number, pid
FROM orders
WHERE costeach = 0 OR costeach IS NULL
ORDER BY order_number
`);
if (!orders || !orders.rows || orders.rows.length === 0) {
console.log("No orders found that need cost updates");
return { updatedCount: 0, errorCount: 0 };
}
const totalOrders = orders.rows.length;
console.log(`Found ${totalOrders} orders that need cost updates`);
// Process in batches of 1000 orders
const BATCH_SIZE = 500;
for (let i = 0; i < orders.rows.length; i += BATCH_SIZE) {
try {
// Start transaction for this batch
await localConnection.beginTransaction();
const batch = orders.rows.slice(i, i + BATCH_SIZE);
const orderNumbers = [...new Set(batch.map(o => o.order_number))];
// 2. Fetch costs from production database for these orders
outputProgress({
status: "running",
operation: "Order costs update",
message: `Fetching costs for orders ${i + 1} to ${Math.min(i + BATCH_SIZE, totalOrders)} of ${totalOrders}`,
current: i,
total: totalOrders,
elapsed: formatElapsedTime((Date.now() - startTime) / 1000)
});
const [costs] = await prodConnection.query(`
SELECT
oc.orderid as order_number,
oc.pid,
oc.costeach
FROM order_costs oc
INNER JOIN (
SELECT
orderid,
pid,
MAX(id) as max_id
FROM order_costs
WHERE orderid IN (?)
AND pending = 0
GROUP BY orderid, pid
) latest ON oc.orderid = latest.orderid AND oc.pid = latest.pid AND oc.id = latest.max_id
`, [orderNumbers]);
// Create a map of costs for easy lookup
const costMap = {};
if (costs && costs.length) {
costs.forEach(c => {
costMap[`${c.order_number}-${c.pid}`] = c.costeach || 0;
});
}
// 3. Update costs in local database by batches
// Using a more efficient update approach with a temporary table
// Create a temporary table for each batch
await localConnection.query(`
DROP TABLE IF EXISTS temp_order_costs;
CREATE TEMP TABLE temp_order_costs (
order_number VARCHAR(50) NOT NULL,
pid BIGINT NOT NULL,
costeach DECIMAL(10,3) NOT NULL,
PRIMARY KEY (order_number, pid)
);
`);
// Insert cost data into the temporary table
const costEntries = [];
for (const order of batch) {
const key = `${order.order_number}-${order.pid}`;
if (key in costMap) {
costEntries.push({
order_number: order.order_number,
pid: order.pid,
costeach: costMap[key]
});
}
}
// Insert in sub-batches of 100
const DB_BATCH_SIZE = 50;
for (let j = 0; j < costEntries.length; j += DB_BATCH_SIZE) {
const subBatch = costEntries.slice(j, j + DB_BATCH_SIZE);
if (subBatch.length === 0) continue;
const placeholders = subBatch.map((_, idx) =>
`($${idx * 3 + 1}, $${idx * 3 + 2}, $${idx * 3 + 3})`
).join(',');
const values = subBatch.flatMap(item => [
item.order_number,
item.pid,
item.costeach
]);
await localConnection.query(`
INSERT INTO temp_order_costs (order_number, pid, costeach)
VALUES ${placeholders}
`, values);
}
// Perform bulk update from the temporary table
const [updateResult] = await localConnection.query(`
UPDATE orders o
SET costeach = t.costeach
FROM temp_order_costs t
WHERE o.order_number = t.order_number AND o.pid = t.pid
RETURNING o.id
`);
const batchUpdated = updateResult.rowCount || 0;
updatedCount += batchUpdated;
// Commit transaction for this batch
await localConnection.commit();
outputProgress({
status: "running",
operation: "Order costs update",
message: `Updated ${updatedCount} orders with costs from production (batch: ${batchUpdated})`,
current: i + batch.length,
total: totalOrders,
elapsed: formatElapsedTime((Date.now() - startTime) / 1000)
});
} catch (error) {
// If a batch fails, roll back that batch's transaction and continue
try {
await localConnection.rollback();
} catch (rollbackError) {
console.error("Error during batch rollback:", rollbackError);
}
console.error(`Error processing batch ${i}-${i + BATCH_SIZE}:`, error);
errorCount++;
}
}
// 4. For orders with no matching costs, set a default based on price
outputProgress({
status: "running",
operation: "Order costs update",
message: "Setting default costs for remaining orders..."
});
// Process remaining updates in smaller batches
const DEFAULT_BATCH_SIZE = 10000;
let totalDefaultUpdated = 0;
try {
// Start with a count query to determine how many records need the default update
const [countResult] = await localConnection.query(`
SELECT COUNT(*) as count FROM orders
WHERE (costeach = 0 OR costeach IS NULL)
`);
const totalToUpdate = parseInt(countResult.rows[0]?.count || 0);
if (totalToUpdate > 0) {
console.log(`Applying default cost to ${totalToUpdate} orders`);
// Apply the default in batches with separate transactions
for (let i = 0; i < totalToUpdate; i += DEFAULT_BATCH_SIZE) {
try {
await localConnection.beginTransaction();
const [defaultUpdates] = await localConnection.query(`
WITH orders_to_update AS (
SELECT id FROM orders
WHERE (costeach = 0 OR costeach IS NULL)
LIMIT ${DEFAULT_BATCH_SIZE}
)
UPDATE orders o
SET costeach = price * 0.5
FROM orders_to_update otu
WHERE o.id = otu.id
RETURNING o.id
`);
const batchDefaultUpdated = defaultUpdates.rowCount || 0;
totalDefaultUpdated += batchDefaultUpdated;
await localConnection.commit();
outputProgress({
status: "running",
operation: "Order costs update",
message: `Applied default costs to ${totalDefaultUpdated} of ${totalToUpdate} orders`,
current: totalDefaultUpdated,
total: totalToUpdate,
elapsed: formatElapsedTime((Date.now() - startTime) / 1000)
});
} catch (error) {
try {
await localConnection.rollback();
} catch (rollbackError) {
console.error("Error during default update rollback:", rollbackError);
}
console.error(`Error applying default costs batch ${i}-${i + DEFAULT_BATCH_SIZE}:`, error);
errorCount++;
}
}
}
} catch (error) {
console.error("Error counting or updating remaining orders:", error);
errorCount++;
}
updatedCount += totalDefaultUpdated;
const endTime = Date.now();
const totalSeconds = (endTime - startTime) / 1000;
outputProgress({
status: "complete",
operation: "Order costs update",
message: `Updated ${updatedCount} orders (${totalDefaultUpdated} with default values) in ${formatElapsedTime(totalSeconds)}`,
elapsed: formatElapsedTime(totalSeconds)
});
return {
status: "complete",
updatedCount,
errorCount
};
} catch (error) {
console.error("Error during order costs update:", error);
return {
status: "error",
error: error.message,
updatedCount,
errorCount
};
} finally {
if (connections) {
await closeConnections(connections).catch(err => {
console.error("Error closing connections:", err);
});
}
}
}
// Run the script only if this is the main module
if (require.main === module) {
updateOrderCosts().then((results) => {
console.log('Cost update completed:', results);
// Force exit after a small delay to ensure all logs are written
setTimeout(() => process.exit(0), 500);
}).catch((error) => {
console.error("Unhandled error:", error);
// Force exit with error code after a small delay
setTimeout(() => process.exit(1), 500);
});
}
// Export the function for use in other scripts
module.exports = updateOrderCosts;

File diff suppressed because it is too large Load Diff

View File

@@ -18,12 +18,19 @@
"author": "",
"license": "ISC",
"dependencies": {
"@types/diff": "^7.0.1",
"axios": "^1.8.1",
"bcrypt": "^5.1.1",
"commander": "^13.1.0",
"cors": "^2.8.5",
"csv-parse": "^5.6.0",
"diff": "^7.0.0",
"dotenv": "^16.4.7",
"express": "^4.18.2",
"multer": "^1.4.5-lts.1",
"mysql2": "^3.12.0",
"openai": "^4.85.3",
"pg": "^8.14.1",
"pm2": "^5.3.0",
"ssh2": "^1.16.0",
"uuid": "^9.0.1"

View File

@@ -0,0 +1,817 @@
// run-all-updates.js
const path = require('path');
const fs = require('fs');
const { Pool } = require('pg'); // Assuming you use 'pg'
// --- Configuration ---
// Toggle these constants to enable/disable specific steps for testing
const RUN_DAILY_SNAPSHOTS = true;
const RUN_PRODUCT_METRICS = true;
const RUN_PERIODIC_METRICS = true;
const RUN_BRAND_METRICS = true;
const RUN_VENDOR_METRICS = true;
const RUN_CATEGORY_METRICS = true;
// Maximum execution time for the entire sequence (e.g., 90 minutes)
const MAX_EXECUTION_TIME_TOTAL = 90 * 60 * 1000;
// Maximum execution time per individual SQL step (e.g., 30 minutes)
const MAX_EXECUTION_TIME_PER_STEP = 30 * 60 * 1000;
// Query cancellation timeout
const CANCEL_QUERY_AFTER_SECONDS = 5;
// --- End Configuration ---
// Change working directory to script directory
process.chdir(path.dirname(__filename));
// Log script path for debugging
console.log('Script running from:', __dirname);
// Try to load environment variables from multiple locations
const envPaths = [
path.resolve(__dirname, '../..', '.env'), // Two levels up (inventory/.env)
path.resolve(__dirname, '..', '.env'), // One level up (inventory-server/.env)
path.resolve(__dirname, '.env'), // Same directory
'/var/www/html/inventory/.env' // Server absolute path
];
let envLoaded = false;
for (const envPath of envPaths) {
if (fs.existsSync(envPath)) {
console.log(`Loading environment from: ${envPath}`);
require('dotenv').config({ path: envPath });
envLoaded = true;
break;
}
}
if (!envLoaded) {
console.warn('WARNING: Could not find .env file in any of the expected locations.');
console.warn('Checked paths:', envPaths);
}
// --- Database Setup ---
// Make sure we have the required DB credentials
if (!process.env.DB_HOST && !process.env.DATABASE_URL) {
console.error('WARNING: Neither DB_HOST nor DATABASE_URL environment variables found');
}
// Only validate individual parameters if not using connection string
if (!process.env.DATABASE_URL) {
if (!process.env.DB_USER) console.error('WARNING: DB_USER environment variable is missing');
if (!process.env.DB_NAME) console.error('WARNING: DB_NAME environment variable is missing');
// Password must be a string for PostgreSQL SCRAM authentication
if (!process.env.DB_PASSWORD || typeof process.env.DB_PASSWORD !== 'string') {
console.error('WARNING: DB_PASSWORD environment variable is missing or not a string');
}
}
// Configure database connection to match individual scripts
let dbConfig;
// Check if a DATABASE_URL exists (common in production environments)
if (process.env.DATABASE_URL && typeof process.env.DATABASE_URL === 'string') {
console.log('Using DATABASE_URL for connection');
dbConfig = {
connectionString: process.env.DATABASE_URL,
ssl: process.env.DB_SSL === 'true' ? { rejectUnauthorized: false } : false,
// Add performance optimizations
max: 10, // connection pool max size
idleTimeoutMillis: 30000,
connectionTimeoutMillis: 60000,
// Set timeouts for long-running queries
statement_timeout: 1800000, // 30 minutes
query_timeout: 1800000 // 30 minutes
};
} else {
// Use individual connection parameters
dbConfig = {
host: process.env.DB_HOST,
user: process.env.DB_USER,
password: process.env.DB_PASSWORD,
database: process.env.DB_NAME,
port: process.env.DB_PORT || 5432,
ssl: process.env.DB_SSL === 'true',
// Add performance optimizations
max: 10, // connection pool max size
idleTimeoutMillis: 30000,
connectionTimeoutMillis: 60000,
// Set timeouts for long-running queries
statement_timeout: 1800000, // 30 minutes
query_timeout: 1800000 // 30 minutes
};
}
// Try to load from utils DB module as a last resort
try {
if (!process.env.DB_HOST && !process.env.DATABASE_URL) {
console.log('Attempting to load DB config from individual script modules...');
const dbModule = require('./metrics-new/utils/db');
if (dbModule && dbModule.dbConfig) {
console.log('Found DB config in individual script module');
dbConfig = {
...dbModule.dbConfig,
// Add performance optimizations if not present
max: dbModule.dbConfig.max || 10,
idleTimeoutMillis: dbModule.dbConfig.idleTimeoutMillis || 30000,
connectionTimeoutMillis: dbModule.dbConfig.connectionTimeoutMillis || 60000,
statement_timeout: 1800000,
query_timeout: 1800000
};
}
}
} catch (err) {
console.warn('Could not load DB config from individual script modules:', err.message);
}
// Debug log connection info (without password)
console.log('DB Connection Info:', {
connectionString: dbConfig.connectionString ? 'PROVIDED' : undefined,
host: dbConfig.host,
user: dbConfig.user,
database: dbConfig.database,
port: dbConfig.port,
ssl: dbConfig.ssl ? 'ENABLED' : 'DISABLED',
password: (dbConfig.password || dbConfig.connectionString) ? '****' : 'MISSING' // Only show if credentials exist
});
const pool = new Pool(dbConfig);
const getConnection = () => {
return pool.connect();
};
const closePool = () => {
console.log("Closing database connection pool.");
return pool.end();
};
// --- Progress Utilities ---
// Using functions directly instead of globals
const progressUtils = require('./metrics-new/utils/progress'); // Assuming utils/progress.js exports these
// --- State & Cancellation ---
let isCancelled = false;
let currentStep = ''; // Track which step is running for cancellation message
let overallStartTime = null;
let mainTimeoutHandle = null;
let stepTimeoutHandle = null;
let combinedHistoryId = null; // ID for the combined history record
async function cancelCalculation(reason = 'cancelled by user') {
if (isCancelled) return; // Prevent multiple cancellations
isCancelled = true;
console.log(`Calculation ${reason}. Attempting to cancel active step: ${currentStep}`);
// Clear timeouts
if (mainTimeoutHandle) clearTimeout(mainTimeoutHandle);
if (stepTimeoutHandle) clearTimeout(stepTimeoutHandle);
// Attempt to cancel the long-running query in Postgres
let conn = null;
try {
console.log(`Attempting to cancel queries running longer than ${CANCEL_QUERY_AFTER_SECONDS} seconds...`);
conn = await getConnection();
const result = await conn.query(`
SELECT pg_cancel_backend(pid)
FROM pg_stat_activity
WHERE query_start < now() - interval '${CANCEL_QUERY_AFTER_SECONDS} seconds'
AND application_name = 'node-metrics-calculator' -- Match specific app name
AND state = 'active' -- Only cancel active queries
AND query NOT LIKE '%pg_cancel_backend%'
AND pid <> pg_backend_pid(); -- Don't cancel self
`);
console.log(`Sent ${result.rowCount} cancellation signal(s).`);
// Update the combined history record to show cancellation
if (combinedHistoryId) {
const totalDuration = Math.round((Date.now() - overallStartTime) / 1000);
await conn.query(`
UPDATE calculate_history
SET
status = 'cancelled'::calculation_status,
end_time = NOW(),
duration_seconds = $1::integer,
error_message = $2::text
WHERE id = $3::integer;
`, [totalDuration, `Calculation ${reason} during step: ${currentStep}`, combinedHistoryId]);
console.log(`Updated combined history record ${combinedHistoryId} with cancellation status`);
}
conn.release();
} catch (err) {
console.error('Error during database query cancellation:', err.message);
if (conn) {
try { conn.release(); } catch (e) { console.error("Error releasing cancellation connection", e); }
}
// Proceed with script termination attempt even if DB cancel fails
} finally {
// Update progress to show cancellation
progressUtils.outputProgress({
status: 'cancelled',
operation: `Calculation ${reason} during step: ${currentStep}`,
current: 0, // Reset progress indicators
total: 100,
elapsed: overallStartTime ? progressUtils.formatElapsedTime(overallStartTime) : 'N/A',
remaining: null,
rate: 0,
percentage: '0', // Or keep last known percentage?
timing: {
start_time: overallStartTime ? new Date(overallStartTime).toISOString() : 'N/A',
end_time: new Date().toISOString(),
elapsed_seconds: overallStartTime ? Math.round((Date.now() - overallStartTime) / 1000) : 0
}
});
}
// Note: We don't force exit here anymore. We let the main function's error
// handling catch the cancellation error thrown by executeSqlStep or the timeout.
return {
success: true, // Indicates cancellation was initiated
message: `Calculation ${reason}`
};
}
// Handle SIGINT (Ctrl+C) and SIGTERM (kill) signals
process.on('SIGINT', () => {
console.log('\nReceived SIGINT (Ctrl+C).');
cancelCalculation('cancelled by user (SIGINT)');
// Give cancellation a moment to propagate before force-exiting if needed
setTimeout(() => process.exit(1), 2000);
});
process.on('SIGTERM', () => {
console.log('Received SIGTERM.');
cancelCalculation('cancelled by system (SIGTERM)');
// Give cancellation a moment to propagate before force-exiting if needed
setTimeout(() => process.exit(1), 2000);
});
// Add error handlers for uncaught exceptions/rejections
process.on('uncaughtException', (error) => {
console.error('Uncaught Exception:', error);
// Attempt graceful shutdown/logging if possible, then exit
cancelCalculation('failed due to uncaught exception').finally(() => {
closePool().finally(() => process.exit(1));
});
});
process.on('unhandledRejection', (reason, promise) => {
console.error('Unhandled Rejection at:', promise, 'reason:', reason);
// Attempt graceful shutdown/logging if possible, then exit
cancelCalculation('failed due to unhandled rejection').finally(() => {
closePool().finally(() => process.exit(1));
});
});
// --- Core Logic ---
/**
* Ensures all products have entries in the settings_product table
* This is important after importing new products
*/
async function syncSettingsProductTable() {
let conn = null;
try {
currentStep = 'Syncing settings_product table';
progressUtils.outputProgress({
operation: 'Syncing product settings',
message: 'Ensuring all products have settings entries'
});
conn = await getConnection();
// Get counts before sync
const beforeCounts = await conn.query(`
SELECT
(SELECT COUNT(*) FROM products) AS products_count,
(SELECT COUNT(*) FROM settings_product) AS settings_count
`);
const productsCount = parseInt(beforeCounts.rows[0].products_count);
const settingsCount = parseInt(beforeCounts.rows[0].settings_count);
progressUtils.outputProgress({
operation: 'Settings product sync',
message: `Found ${productsCount} products and ${settingsCount} settings entries`
});
// Insert missing product settings
const result = await conn.query(`
INSERT INTO settings_product (
pid,
lead_time_days,
days_of_stock,
safety_stock,
forecast_method,
exclude_from_forecast
)
SELECT
p.pid,
CAST(NULL AS INTEGER),
CAST(NULL AS INTEGER),
COALESCE((SELECT setting_value::int FROM settings_global WHERE setting_key = 'default_safety_stock_units'), 0),
CAST(NULL AS VARCHAR),
FALSE
FROM
public.products p
WHERE
NOT EXISTS (
SELECT 1 FROM settings_product sp WHERE sp.pid = p.pid
)
ON CONFLICT (pid) DO NOTHING
`);
// Get counts after sync
const afterCounts = await conn.query(`
SELECT COUNT(*) AS settings_count FROM settings_product
`);
const newSettingsCount = parseInt(afterCounts.rows[0].settings_count);
const addedCount = newSettingsCount - settingsCount;
progressUtils.outputProgress({
operation: 'Settings product sync',
message: `Added ${addedCount} new settings entries. Now have ${newSettingsCount} total entries.`,
status: 'complete'
});
conn.release();
return addedCount;
} catch (err) {
progressUtils.outputProgress({
status: 'error',
operation: 'Settings product sync failed',
error: err.message
});
if (conn) conn.release();
throw err;
}
}
/**
* Executes a single SQL calculation step.
* @param {object} config - Configuration for the step.
* @param {string} config.name - User-friendly name of the step.
* @param {string} config.sqlFile - Path to the SQL file.
* @param {string} config.historyType - Type identifier for calculate_history.
* @param {string} config.statusModule - Module name for calculate_status.
* @param {object} progress - Progress utility functions.
* @returns {Promise<{success: boolean, message: string, duration: number}>}
*/
async function executeSqlStep(config, progress) {
if (isCancelled) throw new Error(`Calculation skipped step ${config.name} due to prior cancellation.`);
currentStep = config.name; // Update global state
console.log(`\n--- Starting Step: ${config.name} ---`);
const stepStartTime = Date.now();
let connection = null;
// Set timeout for this specific step
if (stepTimeoutHandle) clearTimeout(stepTimeoutHandle); // Clear previous step's timeout
stepTimeoutHandle = setTimeout(() => {
// Don't exit directly, throw an error to be caught by the main loop
const timeoutError = new Error(`Step "${config.name}" timed out after ${MAX_EXECUTION_TIME_PER_STEP / 1000} seconds.`);
cancelCalculation(`timed out during step: ${config.name}`); // Initiate cancellation process
// The error will likely be thrown before cancelCalculation fully completes,
// but cancelCalculation attempts to stop the query.
// The main catch block will handle cleanup.
}, MAX_EXECUTION_TIME_PER_STEP);
try {
// 1. Read SQL File
const sqlFilePath = path.resolve(__dirname, config.sqlFile);
if (!fs.existsSync(sqlFilePath)) {
throw new Error(`SQL file not found: ${sqlFilePath}`);
}
const sqlQuery = fs.readFileSync(sqlFilePath, 'utf8');
console.log(`Read SQL file: ${config.sqlFile}`);
// Check for potential parameter references that might cause issues
const parameterMatches = sqlQuery.match(/\$\d+(?!\:\:)/g);
if (parameterMatches && parameterMatches.length > 0) {
console.warn(`WARNING: Found ${parameterMatches.length} untyped parameters in SQL: ${parameterMatches.slice(0, 5).join(', ')}${parameterMatches.length > 5 ? '...' : ''}`);
console.warn('These might cause "could not determine data type of parameter" errors.');
}
// 2. Get Database Connection
connection = await getConnection();
console.log("Database connection acquired.");
// 3. Ensure calculate_status table exists
await connection.query(`
CREATE TABLE IF NOT EXISTS calculate_status (
module_name TEXT PRIMARY KEY,
last_calculation_timestamp TIMESTAMP WITH TIME ZONE NOT NULL DEFAULT CURRENT_TIMESTAMP
);
`);
// 4. Initial Progress Update
progress.outputProgress({
status: 'running',
operation: `Starting: ${config.name}`,
current: 0, total: 100,
elapsed: progress.formatElapsedTime(stepStartTime),
remaining: 'Calculating...', rate: 0, percentage: '0',
timing: { start_time: new Date(stepStartTime).toISOString() }
});
// 5. Execute the Main SQL Query
progress.outputProgress({
status: 'running',
operation: `Executing SQL: ${config.name}`,
current: 25, total: 100,
elapsed: progress.formatElapsedTime(stepStartTime),
remaining: 'Executing...', rate: 0, percentage: '25',
timing: { start_time: new Date(stepStartTime).toISOString() }
});
console.log(`Executing SQL for ${config.name}...`);
try {
// Try executing exactly as individual scripts do
console.log('Executing SQL with simple query method...');
await connection.query(sqlQuery);
} catch (sqlError) {
if (sqlError.message.includes('could not determine data type of parameter')) {
console.log('Simple query failed with parameter type error, trying alternative method...');
try {
// Execute with explicit text mode to avoid parameter confusion
await connection.query({
text: sqlQuery,
rowMode: 'text'
});
} catch (altError) {
console.error('Alternative execution method also failed:', altError.message);
throw altError; // Re-throw the alternative error
}
} else {
console.error('SQL Execution Error:', sqlError.message);
if (sqlError.position) {
// If the error has a position, try to show the relevant part of the SQL query
const position = parseInt(sqlError.position, 10);
const startPos = Math.max(0, position - 100);
const endPos = Math.min(sqlQuery.length, position + 100);
console.error('SQL Error Context:');
console.error('...' + sqlQuery.substring(startPos, position) + ' [ERROR HERE] ' + sqlQuery.substring(position, endPos) + '...');
}
throw sqlError; // Re-throw to be caught by the main try/catch
}
}
// Check for cancellation immediately after query finishes
if (isCancelled) throw new Error(`Calculation cancelled during SQL execution for ${config.name}`);
console.log(`SQL execution finished for ${config.name}.`);
// 6. Update Status table only
await connection.query(`
INSERT INTO calculate_status (module_name, last_calculation_timestamp)
VALUES ($1::text, NOW())
ON CONFLICT (module_name) DO UPDATE
SET last_calculation_timestamp = EXCLUDED.last_calculation_timestamp;
`, [config.statusModule]);
const stepDuration = Math.round((Date.now() - stepStartTime) / 1000);
// 7. Final Progress Update for Step
progress.outputProgress({
status: 'complete',
operation: `Completed: ${config.name}`,
current: 100, total: 100,
elapsed: progress.formatElapsedTime(stepStartTime),
remaining: '0s', rate: 0, percentage: '100',
timing: {
start_time: new Date(stepStartTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: stepDuration
}
});
console.log(`--- Finished Step: ${config.name} (Duration: ${progress.formatElapsedTime(stepStartTime)}) ---`);
return {
success: true,
message: `${config.name} completed successfully`,
duration: stepDuration
};
} catch (error) {
clearTimeout(stepTimeoutHandle); // Clear timeout on error
const errorEndTime = Date.now();
const errorDuration = Math.round((errorEndTime - stepStartTime) / 1000);
const finalStatus = isCancelled ? 'cancelled' : 'failed';
const errorMessage = error.message || 'Unknown error';
console.error(`--- ERROR in Step: ${config.name} ---`);
console.error(error); // Log the full error
console.error(`------------------------------------`);
// Update progress file with error/cancellation
progress.outputProgress({
status: finalStatus,
operation: `Error in ${config.name}: ${errorMessage.split('\n')[0]}`, // Show first line of error
current: 50, total: 100, // Indicate partial completion
elapsed: progress.formatElapsedTime(stepStartTime),
remaining: null, rate: 0, percentage: '50',
timing: {
start_time: new Date(stepStartTime).toISOString(),
end_time: new Date(errorEndTime).toISOString(),
elapsed_seconds: errorDuration
}
});
// Rethrow the error to be caught by the main runCalculations function
throw error; // Add context if needed: new Error(`Step ${config.name} failed: ${errorMessage}`)
} finally {
clearTimeout(stepTimeoutHandle); // Ensure timeout is cleared
currentStep = ''; // Reset current step
if (connection) {
try {
await connection.release();
console.log("Database connection released.");
} catch (releaseError) {
console.error("Error releasing database connection:", releaseError);
}
}
}
}
/**
* Main function to run all calculation steps sequentially.
*/
async function runAllCalculations() {
overallStartTime = Date.now();
isCancelled = false; // Reset cancellation flag at start
// Overall timeout for the entire script
mainTimeoutHandle = setTimeout(() => {
console.error(`--- OVERALL TIMEOUT REACHED (${MAX_EXECUTION_TIME_TOTAL / 1000}s) ---`);
cancelCalculation(`overall timeout reached`);
// The process should exit via the unhandled rejection/exception handlers
// or the SIGTERM/SIGINT handlers after cancellation attempt.
}, MAX_EXECUTION_TIME_TOTAL);
const steps = [
{
run: RUN_DAILY_SNAPSHOTS,
name: 'Daily Snapshots Update',
sqlFile: 'metrics-new/update_daily_snapshots.sql',
historyType: 'daily_snapshots',
statusModule: 'daily_snapshots'
},
{
run: RUN_PRODUCT_METRICS,
name: 'Product Metrics Update',
sqlFile: 'metrics-new/update_product_metrics.sql', // ASSUMING the initial population is now part of a regular update
historyType: 'product_metrics',
statusModule: 'product_metrics'
},
{
run: RUN_PERIODIC_METRICS,
name: 'Periodic Metrics Update',
sqlFile: 'metrics-new/update_periodic_metrics.sql',
historyType: 'periodic_metrics',
statusModule: 'periodic_metrics'
},
{
run: RUN_BRAND_METRICS,
name: 'Brand Metrics Update',
sqlFile: 'metrics-new/calculate_brand_metrics.sql',
historyType: 'brand_metrics',
statusModule: 'brand_metrics'
},
{
run: RUN_VENDOR_METRICS,
name: 'Vendor Metrics Update',
sqlFile: 'metrics-new/calculate_vendor_metrics.sql',
historyType: 'vendor_metrics',
statusModule: 'vendor_metrics'
},
{
run: RUN_CATEGORY_METRICS,
name: 'Category Metrics Update',
sqlFile: 'metrics-new/calculate_category_metrics.sql',
historyType: 'category_metrics',
statusModule: 'category_metrics'
}
];
// Build a list of steps we will actually run
const stepsToRun = steps.filter(step => step.run);
const stepNames = stepsToRun.map(step => step.name);
const sqlFiles = stepsToRun.map(step => step.sqlFile);
let overallSuccess = true;
let connection = null;
try {
// Create a single history record before starting all calculations
try {
connection = await getConnection();
// Ensure calculate_history table exists (basic structure)
await connection.query(`
CREATE TABLE IF NOT EXISTS calculate_history (
id SERIAL PRIMARY KEY,
start_time TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP,
end_time TIMESTAMP WITH TIME ZONE,
duration_seconds INTEGER,
status TEXT, -- Will be altered to enum if needed below
error_message TEXT,
additional_info JSONB
);
`);
// Ensure the calculation_status enum type exists if needed
await connection.query(`
DO $$
BEGIN
IF NOT EXISTS (SELECT 1 FROM pg_type WHERE typname = 'calculation_status') THEN
CREATE TYPE calculation_status AS ENUM ('running', 'completed', 'failed', 'cancelled');
-- If needed, alter the existing table to use the enum
ALTER TABLE calculate_history
ALTER COLUMN status TYPE calculation_status
USING status::calculation_status;
END IF;
END
$$;
`);
// Mark any previous running combined calculations as cancelled
await connection.query(`
UPDATE calculate_history
SET
status = 'cancelled'::calculation_status,
end_time = NOW(),
duration_seconds = EXTRACT(EPOCH FROM (NOW() - start_time))::INTEGER,
error_message = 'Previous calculation was not completed properly or was superseded.'
WHERE status = 'running'::calculation_status AND additional_info->>'type' = 'combined_metrics';
`);
// Create a single history record for this run
const historyResult = await connection.query(`
INSERT INTO calculate_history (status, additional_info)
VALUES ('running'::calculation_status, jsonb_build_object(
'type', 'combined_metrics',
'steps', $1::jsonb,
'sql_files', $2::jsonb
))
RETURNING id;
`, [JSON.stringify(stepNames), JSON.stringify(sqlFiles)]);
combinedHistoryId = historyResult.rows[0].id;
console.log(`Created combined history record ID: ${combinedHistoryId}`);
connection.release();
} catch (historyError) {
console.error('Error creating combined history record:', historyError);
if (connection) connection.release();
// Continue without history tracking if it fails
}
// First, sync the settings_product table to ensure all products have entries
progressUtils.outputProgress({
operation: 'Starting metrics calculation',
message: 'Preparing product settings...'
});
try {
const addedCount = await syncSettingsProductTable();
progressUtils.outputProgress({
operation: 'Preparation complete',
message: `Added ${addedCount} missing product settings entries`,
status: 'complete'
});
} catch (syncError) {
console.error('Warning: Failed to sync product settings, continuing with metrics calculations:', syncError);
// Don't fail the entire process if settings sync fails
}
// Track completed steps
const completedSteps = [];
// Now run the calculation steps
for (const step of steps) {
if (step.run) {
if (isCancelled) {
console.log(`Skipping step "${step.name}" due to cancellation.`);
overallSuccess = false; // Mark as not fully successful if steps are skipped due to cancel
continue; // Skip to next step
}
// Pass the progress utilities to the step executor
const result = await executeSqlStep(step, progressUtils);
if (result.success) {
completedSteps.push({
name: step.name,
duration: result.duration,
status: 'completed'
});
}
} else {
console.log(`Skipping step "${step.name}" (disabled by configuration).`);
}
}
// If we finished naturally (no errors thrown out)
clearTimeout(mainTimeoutHandle); // Clear the main timeout
// Update the combined history record on successful completion
if (combinedHistoryId) {
try {
connection = await getConnection();
const totalDuration = Math.round((Date.now() - overallStartTime) / 1000);
await connection.query(`
UPDATE calculate_history
SET
end_time = NOW(),
duration_seconds = $1::integer,
status = $2::calculation_status,
additional_info = additional_info || jsonb_build_object('completed_steps', $3::jsonb)
WHERE id = $4::integer;
`, [
totalDuration,
isCancelled ? 'cancelled' : 'completed',
JSON.stringify(completedSteps),
combinedHistoryId
]);
connection.release();
} catch (historyError) {
console.error('Error updating combined history record on completion:', historyError);
if (connection) connection.release();
}
}
if (isCancelled) {
console.log("\n--- Calculation finished with cancellation ---");
overallSuccess = false;
} else {
console.log("\n--- All enabled calculations finished successfully ---");
progressUtils.clearProgress(); // Clear progress only on full success
}
} catch (error) {
clearTimeout(mainTimeoutHandle); // Clear the main timeout
console.error("\n--- SCRIPT EXECUTION FAILED ---");
// Error details were already logged by executeSqlStep or global handlers
overallSuccess = false;
// Update the combined history record on error
if (combinedHistoryId) {
try {
connection = await getConnection();
const totalDuration = Math.round((Date.now() - overallStartTime) / 1000);
await connection.query(`
UPDATE calculate_history
SET
end_time = NOW(),
duration_seconds = $1::integer,
status = $2::calculation_status,
error_message = $3::text
WHERE id = $4::integer;
`, [
totalDuration,
isCancelled ? 'cancelled' : 'failed',
error.message.substring(0, 1000),
combinedHistoryId
]);
connection.release();
} catch (historyError) {
console.error('Error updating combined history record on error:', historyError);
if (connection) connection.release();
}
}
} finally {
await closePool();
console.log(`Total execution time: ${progressUtils.formatElapsedTime(overallStartTime)}`);
process.exit(overallSuccess ? 0 : 1);
}
}
// --- Script Execution ---
if (require.main === module) {
runAllCalculations();
} else {
// Export functions if needed as a module (e.g., for testing or API)
module.exports = {
runAllCalculations,
cancelCalculation,
syncSettingsProductTable,
// Expose individual steps if useful, wrapping them slightly
runDailySnapshots: () => executeSqlStep({ name: 'Daily Snapshots Update', sqlFile: 'update_daily_snapshots.sql', historyType: 'daily_snapshots', statusModule: 'daily_snapshots' }, progressUtils),
runProductMetrics: () => executeSqlStep({ name: 'Product Metrics Update', sqlFile: 'update_product_metrics.sql', historyType: 'product_metrics', statusModule: 'product_metrics' }, progressUtils),
runPeriodicMetrics: () => executeSqlStep({ name: 'Periodic Metrics Update', sqlFile: 'update_periodic_metrics.sql', historyType: 'periodic_metrics', statusModule: 'periodic_metrics' }, progressUtils),
runBrandMetrics: () => executeSqlStep({ name: 'Brand Metrics Update', sqlFile: 'calculate_brand_metrics.sql', historyType: 'brand_metrics', statusModule: 'brand_metrics' }, progressUtils),
runVendorMetrics: () => executeSqlStep({ name: 'Vendor Metrics Update', sqlFile: 'calculate_vendor_metrics.sql', historyType: 'vendor_metrics', statusModule: 'vendor_metrics' }, progressUtils),
runCategoryMetrics: () => executeSqlStep({ name: 'Category Metrics Update', sqlFile: 'calculate_category_metrics.sql', historyType: 'category_metrics', statusModule: 'category_metrics' }, progressUtils),
getProgress: progressUtils.getProgress
};
}

View File

@@ -1,441 +0,0 @@
const path = require('path');
// Change working directory to script directory
process.chdir(path.dirname(__filename));
require('dotenv').config({ path: path.resolve(__dirname, '..', '.env') });
// Configuration flags for controlling which metrics to calculate
// Set to 1 to skip the corresponding calculation, 0 to run it
const SKIP_PRODUCT_METRICS = 1;
const SKIP_TIME_AGGREGATES = 1;
const SKIP_FINANCIAL_METRICS = 1;
const SKIP_VENDOR_METRICS = 1;
const SKIP_CATEGORY_METRICS = 1;
const SKIP_BRAND_METRICS = 1;
const SKIP_SALES_FORECASTS = 0;
// Add error handler for uncaught exceptions
process.on('uncaughtException', (error) => {
console.error('Uncaught Exception:', error);
process.exit(1);
});
// Add error handler for unhandled promise rejections
process.on('unhandledRejection', (reason, promise) => {
console.error('Unhandled Rejection at:', promise, 'reason:', reason);
process.exit(1);
});
const progress = require('./metrics/utils/progress');
console.log('Progress module loaded:', {
modulePath: require.resolve('./metrics/utils/progress'),
exports: Object.keys(progress),
currentDir: process.cwd(),
scriptDir: __dirname
});
// Store progress functions in global scope to ensure availability
global.formatElapsedTime = progress.formatElapsedTime;
global.estimateRemaining = progress.estimateRemaining;
global.calculateRate = progress.calculateRate;
global.outputProgress = progress.outputProgress;
global.clearProgress = progress.clearProgress;
global.getProgress = progress.getProgress;
global.logError = progress.logError;
const { getConnection, closePool } = require('./metrics/utils/db');
const calculateProductMetrics = require('./metrics/product-metrics');
const calculateTimeAggregates = require('./metrics/time-aggregates');
const calculateFinancialMetrics = require('./metrics/financial-metrics');
const calculateVendorMetrics = require('./metrics/vendor-metrics');
const calculateCategoryMetrics = require('./metrics/category-metrics');
const calculateBrandMetrics = require('./metrics/brand-metrics');
const calculateSalesForecasts = require('./metrics/sales-forecasts');
// Add cancel handler
let isCancelled = false;
function cancelCalculation() {
isCancelled = true;
global.clearProgress();
// Format as SSE event
const event = {
progress: {
status: 'cancelled',
operation: 'Calculation cancelled',
current: 0,
total: 0,
elapsed: null,
remaining: null,
rate: 0,
timestamp: Date.now()
}
};
process.stdout.write(JSON.stringify(event) + '\n');
process.exit(0);
}
// Handle SIGTERM signal for cancellation
process.on('SIGTERM', cancelCalculation);
// Update the main calculation function to use the new modular structure
async function calculateMetrics() {
let connection;
const startTime = Date.now();
let processedCount = 0;
let totalProducts = 0;
try {
// Add debug logging for the progress functions
console.log('Debug - Progress functions:', {
formatElapsedTime: typeof global.formatElapsedTime,
estimateRemaining: typeof global.estimateRemaining,
calculateRate: typeof global.calculateRate,
startTime: startTime
});
try {
const elapsed = global.formatElapsedTime(startTime);
console.log('Debug - formatElapsedTime test successful:', elapsed);
} catch (err) {
console.error('Debug - Error testing formatElapsedTime:', err);
throw err;
}
isCancelled = false;
connection = await getConnection();
try {
global.outputProgress({
status: 'running',
operation: 'Starting metrics calculation',
current: 0,
total: 100,
elapsed: '0s',
remaining: 'Calculating...',
rate: 0,
percentage: '0',
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
// Get total number of products
const [countResult] = await connection.query('SELECT COUNT(*) as total FROM products')
.catch(err => {
global.logError(err, 'Failed to count products');
throw err;
});
totalProducts = countResult[0].total;
if (!SKIP_PRODUCT_METRICS) {
processedCount = await calculateProductMetrics(startTime, totalProducts);
} else {
console.log('Skipping product metrics calculation...');
processedCount = Math.floor(totalProducts * 0.6);
global.outputProgress({
status: 'running',
operation: 'Skipping product metrics calculation',
current: processedCount,
total: totalProducts,
elapsed: global.formatElapsedTime(startTime),
remaining: global.estimateRemaining(startTime, processedCount, totalProducts),
rate: global.calculateRate(startTime, processedCount),
percentage: '60',
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
}
// Calculate time-based aggregates
if (!SKIP_TIME_AGGREGATES) {
processedCount = await calculateTimeAggregates(startTime, totalProducts, processedCount);
} else {
console.log('Skipping time aggregates calculation');
}
// Calculate financial metrics
if (!SKIP_FINANCIAL_METRICS) {
processedCount = await calculateFinancialMetrics(startTime, totalProducts, processedCount);
} else {
console.log('Skipping financial metrics calculation');
}
// Calculate vendor metrics
if (!SKIP_VENDOR_METRICS) {
processedCount = await calculateVendorMetrics(startTime, totalProducts, processedCount);
} else {
console.log('Skipping vendor metrics calculation');
}
// Calculate category metrics
if (!SKIP_CATEGORY_METRICS) {
processedCount = await calculateCategoryMetrics(startTime, totalProducts, processedCount);
} else {
console.log('Skipping category metrics calculation');
}
// Calculate brand metrics
if (!SKIP_BRAND_METRICS) {
processedCount = await calculateBrandMetrics(startTime, totalProducts, processedCount);
} else {
console.log('Skipping brand metrics calculation');
}
// Calculate sales forecasts
if (!SKIP_SALES_FORECASTS) {
processedCount = await calculateSalesForecasts(startTime, totalProducts, processedCount);
} else {
console.log('Skipping sales forecasts calculation');
}
// Calculate ABC classification
outputProgress({
status: 'running',
operation: 'Starting ABC classification',
current: processedCount,
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
if (isCancelled) return processedCount;
const [abcConfig] = await connection.query('SELECT a_threshold, b_threshold FROM abc_classification_config WHERE id = 1');
const abcThresholds = abcConfig[0] || { a_threshold: 20, b_threshold: 50 };
// First, create and populate the rankings table with an index
await connection.query('DROP TEMPORARY TABLE IF EXISTS temp_revenue_ranks');
await connection.query(`
CREATE TEMPORARY TABLE temp_revenue_ranks (
pid BIGINT NOT NULL,
total_revenue DECIMAL(10,3),
rank_num INT,
total_count INT,
PRIMARY KEY (pid),
INDEX (rank_num)
) ENGINE=MEMORY
`);
outputProgress({
status: 'running',
operation: 'Creating revenue rankings',
current: processedCount,
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
if (isCancelled) return processedCount;
await connection.query(`
INSERT INTO temp_revenue_ranks
SELECT
pid,
total_revenue,
@rank := @rank + 1 as rank_num,
@total_count := @rank as total_count
FROM (
SELECT pid, total_revenue
FROM product_metrics
WHERE total_revenue > 0
ORDER BY total_revenue DESC
) ranked,
(SELECT @rank := 0) r
`);
// Get total count for percentage calculation
const [rankingCount] = await connection.query('SELECT MAX(rank_num) as total_count FROM temp_revenue_ranks');
const totalCount = rankingCount[0].total_count || 1;
const max_rank = totalCount; // Store max_rank for use in classification
outputProgress({
status: 'running',
operation: 'Updating ABC classifications',
current: processedCount,
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
if (isCancelled) return processedCount;
// Process updates in batches
let abcProcessedCount = 0;
const batchSize = 5000;
while (true) {
if (isCancelled) return processedCount;
// First get a batch of PIDs that need updating
const [pids] = await connection.query(`
SELECT pm.pid
FROM product_metrics pm
LEFT JOIN temp_revenue_ranks tr ON pm.pid = tr.pid
WHERE pm.abc_class IS NULL
OR pm.abc_class !=
CASE
WHEN tr.rank_num IS NULL THEN 'C'
WHEN (tr.rank_num / ?) * 100 <= ? THEN 'A'
WHEN (tr.rank_num / ?) * 100 <= ? THEN 'B'
ELSE 'C'
END
LIMIT ?
`, [max_rank, abcThresholds.a_threshold,
max_rank, abcThresholds.b_threshold,
batchSize]);
if (pids.length === 0) {
break;
}
// Then update just those PIDs
const [result] = await connection.query(`
UPDATE product_metrics pm
LEFT JOIN temp_revenue_ranks tr ON pm.pid = tr.pid
SET pm.abc_class =
CASE
WHEN tr.rank_num IS NULL THEN 'C'
WHEN (tr.rank_num / ?) * 100 <= ? THEN 'A'
WHEN (tr.rank_num / ?) * 100 <= ? THEN 'B'
ELSE 'C'
END,
pm.last_calculated_at = NOW()
WHERE pm.pid IN (?)
`, [max_rank, abcThresholds.a_threshold,
max_rank, abcThresholds.b_threshold,
pids.map(row => row.pid)]);
abcProcessedCount += result.affectedRows;
processedCount = Math.floor(totalProducts * (0.99 + (abcProcessedCount / totalCount) * 0.01));
outputProgress({
status: 'running',
operation: 'ABC classification progress',
current: processedCount,
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
// Small delay between batches to allow other transactions
await new Promise(resolve => setTimeout(resolve, 100));
}
// Clean up
await connection.query('DROP TEMPORARY TABLE IF EXISTS temp_revenue_ranks');
// Final success message
outputProgress({
status: 'complete',
operation: 'Metrics calculation complete',
current: totalProducts,
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: '0s',
rate: calculateRate(startTime, totalProducts),
percentage: '100',
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
// Clear progress file on successful completion
global.clearProgress();
} catch (error) {
if (isCancelled) {
global.outputProgress({
status: 'cancelled',
operation: 'Calculation cancelled',
current: processedCount,
total: totalProducts || 0,
elapsed: global.formatElapsedTime(startTime),
remaining: null,
rate: global.calculateRate(startTime, processedCount),
percentage: ((processedCount / (totalProducts || 1)) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
} else {
global.outputProgress({
status: 'error',
operation: 'Error: ' + error.message,
current: processedCount,
total: totalProducts || 0,
elapsed: global.formatElapsedTime(startTime),
remaining: null,
rate: global.calculateRate(startTime, processedCount),
percentage: ((processedCount / (totalProducts || 1)) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
}
throw error;
} finally {
if (connection) {
connection.release();
}
}
} finally {
// Close the connection pool when we're done
await closePool();
}
}
// Export both functions and progress checker
module.exports = calculateMetrics;
module.exports.cancelCalculation = cancelCalculation;
module.exports.getProgress = global.getProgress;
// Run directly if called from command line
if (require.main === module) {
calculateMetrics().catch(error => {
if (!error.message.includes('Operation cancelled')) {
console.error('Error:', error);
}
process.exit(1);
});
}

View File

@@ -0,0 +1,115 @@
const path = require('path');
const { spawn } = require('child_process');
function outputProgress(data) {
if (!data.status) {
data = {
status: 'running',
...data
};
}
console.log(JSON.stringify(data));
}
function runScript(scriptPath) {
return new Promise((resolve, reject) => {
const child = spawn('node', [scriptPath], {
stdio: ['inherit', 'pipe', 'pipe'],
env: {
...process.env,
PGHOST: process.env.DB_HOST,
PGUSER: process.env.DB_USER,
PGPASSWORD: process.env.DB_PASSWORD,
PGDATABASE: process.env.DB_NAME,
PGPORT: process.env.DB_PORT || '5432'
}
});
let output = '';
child.stdout.on('data', (data) => {
const lines = data.toString().split('\n');
lines.filter(line => line.trim()).forEach(line => {
try {
console.log(line); // Pass through the JSON output
output += line + '\n';
} catch (e) {
console.log(line); // If not JSON, just log it directly
}
});
});
child.stderr.on('data', (data) => {
console.error(data.toString());
});
child.on('close', (code) => {
if (code !== 0) {
reject(new Error(`Script ${scriptPath} exited with code ${code}`));
} else {
resolve(output);
}
});
child.on('error', (err) => {
reject(err);
});
});
}
async function fullReset() {
try {
// Step 1: Reset Database
outputProgress({
operation: 'Starting full reset',
message: 'Step 1/3: Resetting database...'
});
await runScript(path.join(__dirname, 'reset-db.js'));
outputProgress({
status: 'complete',
operation: 'Database reset step complete',
message: 'Database reset finished, moving to import...'
});
// Step 2: Import from Production
outputProgress({
operation: 'Starting import',
message: 'Step 2/3: Importing from production...'
});
await runScript(path.join(__dirname, 'import-from-prod.js'));
outputProgress({
status: 'complete',
operation: 'Import step complete',
message: 'Import finished, moving to metrics calculation...'
});
// Step 3: Calculate Metrics
outputProgress({
operation: 'Starting metrics calculation',
message: 'Step 3/3: Calculating metrics...'
});
await runScript(path.join(__dirname, 'calculate-metrics-new.js'));
// Final completion message
outputProgress({
status: 'complete',
operation: 'Full reset complete',
message: 'Successfully completed all steps: database reset, import, and metrics calculation'
});
} catch (error) {
outputProgress({
status: 'error',
operation: 'Full reset failed',
error: error.message,
stack: error.stack
});
process.exit(1);
}
}
// Run if called directly
if (require.main === module) {
fullReset();
}
module.exports = fullReset;

View File

@@ -0,0 +1,100 @@
const path = require('path');
const { spawn } = require('child_process');
function outputProgress(data) {
if (!data.status) {
data = {
status: 'running',
...data
};
}
console.log(JSON.stringify(data));
}
function runScript(scriptPath) {
return new Promise((resolve, reject) => {
const child = spawn('node', [scriptPath], {
stdio: ['inherit', 'pipe', 'pipe']
});
let output = '';
child.stdout.on('data', (data) => {
const lines = data.toString().split('\n');
lines.filter(line => line.trim()).forEach(line => {
try {
console.log(line); // Pass through the JSON output
output += line + '\n';
} catch (e) {
console.log(line); // If not JSON, just log it directly
}
});
});
child.stderr.on('data', (data) => {
console.error(data.toString());
});
child.on('close', (code) => {
if (code !== 0) {
reject(new Error(`Script ${scriptPath} exited with code ${code}`));
} else {
resolve(output);
}
});
child.on('error', (err) => {
reject(err);
});
});
}
async function fullUpdate() {
try {
// Step 1: Import from Production
outputProgress({
operation: 'Starting full update',
message: 'Step 1/2: Importing from production...'
});
await runScript(path.join(__dirname, 'import-from-prod.js'));
outputProgress({
status: 'complete',
operation: 'Import step complete',
message: 'Import finished, moving to metrics calculation...'
});
// Step 2: Calculate Metrics
outputProgress({
operation: 'Starting metrics calculation',
message: 'Step 2/2: Calculating metrics...'
});
await runScript(path.join(__dirname, 'calculate-metrics-new.js'));
outputProgress({
status: 'complete',
operation: 'Metrics step complete',
message: 'Metrics calculation finished'
});
// Final completion message
outputProgress({
status: 'complete',
operation: 'Full update complete',
message: 'Successfully completed all steps: import and metrics calculation'
});
} catch (error) {
outputProgress({
status: 'error',
operation: 'Full update failed',
error: error.message,
stack: error.stack
});
process.exit(1);
}
}
// Run if called directly
if (require.main === module) {
fullUpdate();
}
module.exports = fullUpdate;

View File

@@ -1,11 +1,12 @@
const dotenv = require("dotenv");
const path = require("path");
const { outputProgress, formatElapsedTime } = require('./metrics/utils/progress');
const { outputProgress, formatElapsedTime } = require('./metrics-new/utils/progress');
const { setupConnections, closeConnections } = require('./import/utils');
const importCategories = require('./import/categories');
const { importProducts } = require('./import/products');
const importOrders = require('./import/orders');
const importPurchaseOrders = require('./import/purchase-orders');
const importHistoricalData = require('./import/historical-data');
dotenv.config({ path: path.join(__dirname, "../.env") });
@@ -14,12 +15,12 @@ const IMPORT_CATEGORIES = true;
const IMPORT_PRODUCTS = true;
const IMPORT_ORDERS = true;
const IMPORT_PURCHASE_ORDERS = true;
const IMPORT_HISTORICAL_DATA = false;
// Add flag for incremental updates
const INCREMENTAL_UPDATE = process.env.INCREMENTAL_UPDATE !== 'false'; // Default to true unless explicitly set to false
// SSH configuration
// In import-from-prod.js
const sshConfig = {
ssh: {
host: process.env.PROD_SSH_HOST,
@@ -31,29 +32,25 @@ const sshConfig = {
compress: true, // Enable SSH compression
},
prodDbConfig: {
// MySQL config for production
host: process.env.PROD_DB_HOST || "localhost",
user: process.env.PROD_DB_USER,
password: process.env.PROD_DB_PASSWORD,
database: process.env.PROD_DB_NAME,
port: process.env.PROD_DB_PORT || 3306,
timezone: 'Z',
timezone: '-05:00', // Production DB always stores times in EST (UTC-5) regardless of DST
},
localDbConfig: {
// PostgreSQL config for local
host: process.env.DB_HOST,
user: process.env.DB_USER,
password: process.env.DB_PASSWORD,
database: process.env.DB_NAME,
multipleStatements: true,
waitForConnections: true,
connectionLimit: 10,
queueLimit: 0,
namedPlaceholders: true,
connectTimeout: 60000,
enableKeepAlive: true,
keepAliveInitialDelay: 10000,
compress: true,
timezone: 'Z',
stringifyObjects: false,
port: process.env.DB_PORT || 5432,
ssl: process.env.DB_SSL === 'true',
connectionTimeoutMillis: 60000,
idleTimeoutMillis: 30000,
max: 10 // connection pool max size
}
};
@@ -83,7 +80,8 @@ async function main() {
IMPORT_CATEGORIES,
IMPORT_PRODUCTS,
IMPORT_ORDERS,
IMPORT_PURCHASE_ORDERS
IMPORT_PURCHASE_ORDERS,
IMPORT_HISTORICAL_DATA
].filter(Boolean).length;
try {
@@ -108,49 +106,52 @@ async function main() {
SET
status = 'cancelled',
end_time = NOW(),
duration_seconds = TIMESTAMPDIFF(SECOND, start_time, NOW()),
duration_seconds = EXTRACT(EPOCH FROM (NOW() - start_time))::INTEGER,
error_message = 'Previous import was not completed properly'
WHERE status = 'running'
`);
// Initialize sync_status table if it doesn't exist
await localConnection.query(`
CREATE TABLE IF NOT EXISTS sync_status (
table_name VARCHAR(50) PRIMARY KEY,
last_sync_timestamp TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
last_sync_id BIGINT,
INDEX idx_last_sync (last_sync_timestamp)
);
`);
// Create import history record for the overall session
const [historyResult] = await localConnection.query(`
INSERT INTO import_history (
table_name,
start_time,
is_incremental,
status,
additional_info
) VALUES (
'all_tables',
NOW(),
?,
'running',
JSON_OBJECT(
'categories_enabled', ?,
'products_enabled', ?,
'orders_enabled', ?,
'purchase_orders_enabled', ?
)
)
`, [INCREMENTAL_UPDATE, IMPORT_CATEGORIES, IMPORT_PRODUCTS, IMPORT_ORDERS, IMPORT_PURCHASE_ORDERS]);
importHistoryId = historyResult.insertId;
try {
const [historyResult] = await localConnection.query(`
INSERT INTO import_history (
table_name,
start_time,
is_incremental,
status,
additional_info
) VALUES (
'all_tables',
NOW(),
$1::boolean,
'running',
jsonb_build_object(
'categories_enabled', $2::boolean,
'products_enabled', $3::boolean,
'orders_enabled', $4::boolean,
'purchase_orders_enabled', $5::boolean,
'historical_data_enabled', $6::boolean
)
) RETURNING id
`, [INCREMENTAL_UPDATE, IMPORT_CATEGORIES, IMPORT_PRODUCTS, IMPORT_ORDERS, IMPORT_PURCHASE_ORDERS, IMPORT_HISTORICAL_DATA]);
importHistoryId = historyResult.rows[0].id;
} catch (error) {
console.error("Error creating import history record:", error);
outputProgress({
status: "error",
operation: "Import process",
message: "Failed to create import history record",
error: error.message
});
throw error;
}
const results = {
categories: null,
products: null,
orders: null,
purchaseOrders: null
purchaseOrders: null,
historicalData: null
};
let totalRecordsAdded = 0;
@@ -162,8 +163,8 @@ async function main() {
if (isImportCancelled) throw new Error("Import cancelled");
completedSteps++;
console.log('Categories import result:', results.categories);
totalRecordsAdded += results.categories?.recordsAdded || 0;
totalRecordsUpdated += results.categories?.recordsUpdated || 0;
totalRecordsAdded += parseInt(results.categories?.recordsAdded || 0);
totalRecordsUpdated += parseInt(results.categories?.recordsUpdated || 0);
}
if (IMPORT_PRODUCTS) {
@@ -171,8 +172,8 @@ async function main() {
if (isImportCancelled) throw new Error("Import cancelled");
completedSteps++;
console.log('Products import result:', results.products);
totalRecordsAdded += results.products?.recordsAdded || 0;
totalRecordsUpdated += results.products?.recordsUpdated || 0;
totalRecordsAdded += parseInt(results.products?.recordsAdded || 0);
totalRecordsUpdated += parseInt(results.products?.recordsUpdated || 0);
}
if (IMPORT_ORDERS) {
@@ -180,17 +181,60 @@ async function main() {
if (isImportCancelled) throw new Error("Import cancelled");
completedSteps++;
console.log('Orders import result:', results.orders);
totalRecordsAdded += results.orders?.recordsAdded || 0;
totalRecordsUpdated += results.orders?.recordsUpdated || 0;
totalRecordsAdded += parseInt(results.orders?.recordsAdded || 0);
totalRecordsUpdated += parseInt(results.orders?.recordsUpdated || 0);
}
if (IMPORT_PURCHASE_ORDERS) {
results.purchaseOrders = await importPurchaseOrders(prodConnection, localConnection, INCREMENTAL_UPDATE);
if (isImportCancelled) throw new Error("Import cancelled");
completedSteps++;
console.log('Purchase orders import result:', results.purchaseOrders);
totalRecordsAdded += results.purchaseOrders?.recordsAdded || 0;
totalRecordsUpdated += results.purchaseOrders?.recordsUpdated || 0;
try {
results.purchaseOrders = await importPurchaseOrders(prodConnection, localConnection, INCREMENTAL_UPDATE);
if (isImportCancelled) throw new Error("Import cancelled");
completedSteps++;
console.log('Purchase orders import result:', results.purchaseOrders);
// Handle potential error status
if (results.purchaseOrders?.status === 'error') {
console.error('Purchase orders import had an error:', results.purchaseOrders.error);
} else {
totalRecordsAdded += parseInt(results.purchaseOrders?.recordsAdded || 0);
totalRecordsUpdated += parseInt(results.purchaseOrders?.recordsUpdated || 0);
}
} catch (error) {
console.error('Error during purchase orders import:', error);
// Continue with other imports, don't fail the whole process
results.purchaseOrders = {
status: 'error',
error: error.message,
recordsAdded: 0,
recordsUpdated: 0
};
}
}
if (IMPORT_HISTORICAL_DATA) {
try {
results.historicalData = await importHistoricalData(prodConnection, localConnection, INCREMENTAL_UPDATE);
if (isImportCancelled) throw new Error("Import cancelled");
completedSteps++;
console.log('Historical data import result:', results.historicalData);
// Handle potential error status
if (results.historicalData?.status === 'error') {
console.error('Historical data import had an error:', results.historicalData.error);
} else {
totalRecordsAdded += parseInt(results.historicalData?.recordsAdded || 0);
totalRecordsUpdated += parseInt(results.historicalData?.recordsUpdated || 0);
}
} catch (error) {
console.error('Error during historical data import:', error);
// Continue with other imports, don't fail the whole process
results.historicalData = {
status: 'error',
error: error.message,
recordsAdded: 0,
recordsUpdated: 0
};
}
}
const endTime = Date.now();
@@ -201,33 +245,37 @@ async function main() {
UPDATE import_history
SET
end_time = NOW(),
duration_seconds = ?,
records_added = ?,
records_updated = ?,
duration_seconds = $1,
records_added = $2,
records_updated = $3,
status = 'completed',
additional_info = JSON_OBJECT(
'categories_enabled', ?,
'products_enabled', ?,
'orders_enabled', ?,
'purchase_orders_enabled', ?,
'categories_result', CAST(? AS JSON),
'products_result', CAST(? AS JSON),
'orders_result', CAST(? AS JSON),
'purchase_orders_result', CAST(? AS JSON)
additional_info = jsonb_build_object(
'categories_enabled', $4::boolean,
'products_enabled', $5::boolean,
'orders_enabled', $6::boolean,
'purchase_orders_enabled', $7::boolean,
'historical_data_enabled', $8::boolean,
'categories_result', COALESCE($9::jsonb, 'null'::jsonb),
'products_result', COALESCE($10::jsonb, 'null'::jsonb),
'orders_result', COALESCE($11::jsonb, 'null'::jsonb),
'purchase_orders_result', COALESCE($12::jsonb, 'null'::jsonb),
'historical_data_result', COALESCE($13::jsonb, 'null'::jsonb)
)
WHERE id = ?
WHERE id = $14
`, [
totalElapsedSeconds,
totalRecordsAdded,
totalRecordsUpdated,
parseInt(totalRecordsAdded),
parseInt(totalRecordsUpdated),
IMPORT_CATEGORIES,
IMPORT_PRODUCTS,
IMPORT_ORDERS,
IMPORT_PURCHASE_ORDERS,
IMPORT_HISTORICAL_DATA,
JSON.stringify(results.categories),
JSON.stringify(results.products),
JSON.stringify(results.orders),
JSON.stringify(results.purchaseOrders),
JSON.stringify(results.historicalData),
importHistoryId
]);
@@ -259,10 +307,10 @@ async function main() {
UPDATE import_history
SET
end_time = NOW(),
duration_seconds = ?,
status = ?,
error_message = ?
WHERE id = ?
duration_seconds = $1,
status = $2,
error_message = $3
WHERE id = $4
`, [totalElapsedSeconds, error.message === "Import cancelled" ? 'cancelled' : 'failed', error.message, importHistoryId]);
}
@@ -288,16 +336,23 @@ async function main() {
throw error;
} finally {
if (connections) {
await closeConnections(connections);
await closeConnections(connections).catch(err => {
console.error("Error closing connections:", err);
});
}
}
}
// Run the import only if this is the main module
if (require.main === module) {
main().catch((error) => {
main().then((results) => {
console.log('Import completed successfully:', results);
// Force exit after a small delay to ensure all logs are written
setTimeout(() => process.exit(0), 500);
}).catch((error) => {
console.error("Unhandled error in main process:", error);
process.exit(1);
// Force exit with error code after a small delay
setTimeout(() => process.exit(1), 500);
});
}

View File

@@ -1,4 +1,4 @@
const { outputProgress, formatElapsedTime } = require('../metrics/utils/progress');
const { outputProgress, formatElapsedTime } = require('../metrics-new/utils/progress');
async function importCategories(prodConnection, localConnection) {
outputProgress({
@@ -9,170 +9,192 @@ async function importCategories(prodConnection, localConnection) {
const startTime = Date.now();
const typeOrder = [10, 20, 11, 21, 12, 13];
let totalInserted = 0;
let totalUpdated = 0;
let skippedCategories = [];
try {
// Process each type in order with its own query
// Start a single transaction for the entire import
await localConnection.query('BEGIN');
// Temporarily disable the trigger that's causing problems
await localConnection.query('ALTER TABLE categories DISABLE TRIGGER update_categories_updated_at');
// Process each type in order with its own savepoint
for (const type of typeOrder) {
const [categories] = await prodConnection.query(
`
SELECT
pc.cat_id,
pc.name,
pc.type,
CASE
WHEN pc.type IN (10, 20) THEN NULL -- Top level categories should have no parent
WHEN pc.master_cat_id IS NULL THEN NULL
ELSE pc.master_cat_id
END as parent_id,
pc.combined_name as description
FROM product_categories pc
WHERE pc.type = ?
ORDER BY pc.cat_id
`,
[type]
);
try {
// Create a savepoint for this type
await localConnection.query(`SAVEPOINT category_type_${type}`);
if (categories.length === 0) continue;
console.log(`\nProcessing ${categories.length} type ${type} categories`);
if (type === 10) {
console.log("Type 10 categories:", JSON.stringify(categories, null, 2));
}
// For types that can have parents (11, 21, 12, 13), verify parent existence
let categoriesToInsert = categories;
if (![10, 20].includes(type)) {
// Get all parent IDs
const parentIds = [
...new Set(
categories.map((c) => c.parent_id).filter((id) => id !== null)
),
];
// Check which parents exist
const [existingParents] = await localConnection.query(
"SELECT cat_id FROM categories WHERE cat_id IN (?)",
[parentIds]
);
const existingParentIds = new Set(existingParents.map((p) => p.cat_id));
// Filter categories and track skipped ones
categoriesToInsert = categories.filter(
(cat) =>
cat.parent_id === null || existingParentIds.has(cat.parent_id)
);
const invalidCategories = categories.filter(
(cat) =>
cat.parent_id !== null && !existingParentIds.has(cat.parent_id)
// Production query remains MySQL compatible
const [categories] = await prodConnection.query(
`
SELECT
pc.cat_id,
pc.name,
pc.type,
CASE
WHEN pc.type IN (10, 20) THEN NULL -- Top level categories should have no parent
WHEN pc.master_cat_id IS NULL THEN NULL
ELSE pc.master_cat_id
END as parent_id,
pc.combined_name as description
FROM product_categories pc
WHERE pc.type = ?
ORDER BY pc.cat_id
`,
[type]
);
if (invalidCategories.length > 0) {
const skippedInfo = invalidCategories.map((c) => ({
id: c.cat_id,
name: c.name,
type: c.type,
missing_parent: c.parent_id,
}));
skippedCategories.push(...skippedInfo);
console.log(
"\nSkipping categories with missing parents:",
invalidCategories
.map(
(c) =>
`${c.cat_id} - ${c.name} (missing parent: ${c.parent_id})`
)
.join("\n")
);
}
if (categoriesToInsert.length === 0) {
console.log(
`No valid categories of type ${type} to insert - all had missing parents`
);
if (categories.length === 0) {
await localConnection.query(`RELEASE SAVEPOINT category_type_${type}`);
continue;
}
console.log(`Processing ${categories.length} type ${type} categories`);
// For types that can have parents (11, 21, 12, 13), we'll proceed directly
// No need to check for parent existence since we process in hierarchical order
let categoriesToInsert = categories;
if (categoriesToInsert.length === 0) {
console.log(`No valid categories of type ${type} to insert`);
await localConnection.query(`RELEASE SAVEPOINT category_type_${type}`);
continue;
}
// PostgreSQL upsert query with parameterized values
const values = categoriesToInsert.flatMap((cat) => [
cat.cat_id,
cat.name,
cat.type,
cat.parent_id,
cat.description,
'active',
new Date(),
new Date()
]);
const placeholders = categoriesToInsert
.map((_, i) => `($${i * 8 + 1}, $${i * 8 + 2}, $${i * 8 + 3}, $${i * 8 + 4}, $${i * 8 + 5}, $${i * 8 + 6}, $${i * 8 + 7}, $${i * 8 + 8})`)
.join(',');
// Insert categories with ON CONFLICT clause for PostgreSQL
const query = `
WITH inserted_categories AS (
INSERT INTO categories (
cat_id, name, type, parent_id, description, status, created_at, updated_at
)
VALUES ${placeholders}
ON CONFLICT (cat_id) DO UPDATE SET
name = EXCLUDED.name,
type = EXCLUDED.type,
parent_id = EXCLUDED.parent_id,
description = EXCLUDED.description,
status = EXCLUDED.status,
updated_at = EXCLUDED.updated_at
RETURNING
cat_id,
CASE
WHEN xmax = 0 THEN true
ELSE false
END as is_insert
)
SELECT
COUNT(*) as total,
COUNT(*) FILTER (WHERE is_insert) as inserted,
COUNT(*) FILTER (WHERE NOT is_insert) as updated
FROM inserted_categories`;
const result = await localConnection.query(query, values);
// Get the first result since query returns an array
const queryResult = Array.isArray(result) ? result[0] : result;
if (!queryResult || !queryResult.rows || !queryResult.rows[0]) {
console.error('Query failed to return results');
throw new Error('Query did not return expected results');
}
const total = parseInt(queryResult.rows[0].total) || 0;
const inserted = parseInt(queryResult.rows[0].inserted) || 0;
const updated = parseInt(queryResult.rows[0].updated) || 0;
console.log(`Total: ${total}, Inserted: ${inserted}, Updated: ${updated}`);
totalInserted += inserted;
totalUpdated += updated;
// Release the savepoint for this type
await localConnection.query(`RELEASE SAVEPOINT category_type_${type}`);
outputProgress({
status: "running",
operation: "Categories import",
message: `Imported ${inserted} (updated ${updated}) categories of type ${type}`,
current: totalInserted + totalUpdated,
total: categories.length,
elapsed: formatElapsedTime((Date.now() - startTime) / 1000),
});
} catch (error) {
// Rollback to the savepoint for this type
await localConnection.query(`ROLLBACK TO SAVEPOINT category_type_${type}`);
throw error;
}
console.log(
`Inserting ${categoriesToInsert.length} type ${type} categories`
);
const placeholders = categoriesToInsert
.map(() => "(?, ?, ?, ?, ?, ?, CURRENT_TIMESTAMP, CURRENT_TIMESTAMP)")
.join(",");
const values = categoriesToInsert.flatMap((cat) => [
cat.cat_id,
cat.name,
cat.type,
cat.parent_id,
cat.description,
"active",
]);
// Insert categories and create relationships in one query to avoid race conditions
await localConnection.query(
`
INSERT INTO categories (cat_id, name, type, parent_id, description, status, created_at, updated_at)
VALUES ${placeholders}
ON DUPLICATE KEY UPDATE
name = VALUES(name),
type = VALUES(type),
parent_id = VALUES(parent_id),
description = VALUES(description),
status = VALUES(status),
updated_at = CURRENT_TIMESTAMP
`,
values
);
totalInserted += categoriesToInsert.length;
outputProgress({
status: "running",
operation: "Categories import",
current: totalInserted,
total: totalInserted,
elapsed: formatElapsedTime((Date.now() - startTime) / 1000),
});
}
// After all imports, if we skipped any categories, throw an error
if (skippedCategories.length > 0) {
const error = new Error(
"Categories import completed with errors - some categories were skipped due to missing parents"
);
error.skippedCategories = skippedCategories;
throw error;
}
// Commit the entire transaction - we'll do this even if we have skipped categories
await localConnection.query('COMMIT');
// Update sync status
await localConnection.query(`
INSERT INTO sync_status (table_name, last_sync_timestamp)
VALUES ('categories', NOW())
ON CONFLICT (table_name) DO UPDATE SET
last_sync_timestamp = NOW()
`);
// Re-enable the trigger
await localConnection.query('ALTER TABLE categories ENABLE TRIGGER update_categories_updated_at');
outputProgress({
status: "complete",
operation: "Categories import completed",
current: totalInserted,
total: totalInserted,
current: totalInserted + totalUpdated,
total: totalInserted + totalUpdated,
duration: formatElapsedTime((Date.now() - startTime) / 1000),
warnings: skippedCategories.length > 0 ? {
message: "Some categories were skipped due to missing parents",
skippedCategories
} : undefined
});
return {
status: "complete",
totalImported: totalInserted
recordsAdded: totalInserted,
recordsUpdated: totalUpdated,
totalRecords: totalInserted + totalUpdated,
warnings: skippedCategories.length > 0 ? {
message: "Some categories were skipped due to missing parents",
skippedCategories
} : undefined
};
} catch (error) {
console.error("Error importing categories:", error);
if (error.skippedCategories) {
console.error(
"Skipped categories:",
JSON.stringify(error.skippedCategories, null, 2)
);
// Only rollback if we haven't committed yet
try {
await localConnection.query('ROLLBACK');
// Make sure we re-enable the trigger even if there was an error
await localConnection.query('ALTER TABLE categories ENABLE TRIGGER update_categories_updated_at');
} catch (rollbackError) {
console.error("Error during rollback:", rollbackError);
}
outputProgress({
status: "error",
operation: "Categories import failed",
error: error.message,
skippedCategories: error.skippedCategories
error: error.message
});
throw error;

View File

@@ -0,0 +1,961 @@
const { outputProgress, formatElapsedTime, estimateRemaining, calculateRate } = require('../metrics-new/utils/progress');
const fs = require('fs');
const path = require('path');
const { pipeline } = require('stream');
const { promisify } = require('util');
// Configuration constants to control which tables get imported
const IMPORT_PRODUCT_CURRENT_PRICES = false;
const IMPORT_DAILY_INVENTORY = false;
const IMPORT_PRODUCT_STAT_HISTORY = true;
// For product stat history, limit to more recent data for faster initial import
const USE_RECENT_MONTHS = 12; // Just use the most recent months for product_stat_history
/**
* Validates a date from MySQL before inserting it into PostgreSQL
* @param {string|Date|null} mysqlDate - Date string or object from MySQL
* @returns {string|null} Valid date string or null if invalid
*/
function validateDate(mysqlDate) {
// Handle null, undefined, or empty values
if (!mysqlDate) {
return null;
}
// Convert to string if it's not already
const dateStr = String(mysqlDate);
// Handle MySQL zero dates and empty values
if (dateStr === '0000-00-00' ||
dateStr === '0000-00-00 00:00:00' ||
dateStr.indexOf('0000-00-00') !== -1 ||
dateStr === '') {
return null;
}
// Check if the date is valid
const date = new Date(mysqlDate);
// If the date is invalid or suspiciously old (pre-1970), return null
if (isNaN(date.getTime()) || date.getFullYear() < 1970) {
return null;
}
return mysqlDate;
}
/**
* Imports historical data from MySQL to PostgreSQL
*/
async function importHistoricalData(
prodConnection,
localConnection,
options = {}
) {
const {
incrementalUpdate = true,
oneYearAgo = new Date(new Date().setFullYear(new Date().getFullYear() - 1))
} = options;
const oneYearAgoStr = oneYearAgo.toISOString().split('T')[0];
const startTime = Date.now();
// Use larger batch sizes to improve performance
const BATCH_SIZE = 5000; // For fetching from small tables
const INSERT_BATCH_SIZE = 500; // For inserting to small tables
const LARGE_BATCH_SIZE = 10000; // For fetching from large tables
const LARGE_INSERT_BATCH_SIZE = 1000; // For inserting to large tables
// Calculate date for recent data
const recentDateStr = new Date(
new Date().setMonth(new Date().getMonth() - USE_RECENT_MONTHS)
).toISOString().split('T')[0];
console.log(`Starting import with:
- One year ago date: ${oneYearAgoStr}
- Recent months date: ${recentDateStr} (for product_stat_history)
- Incremental update: ${incrementalUpdate}
- Standard batch size: ${BATCH_SIZE}
- Standard insert batch size: ${INSERT_BATCH_SIZE}
- Large table batch size: ${LARGE_BATCH_SIZE}
- Large table insert batch size: ${LARGE_INSERT_BATCH_SIZE}
- Import product_current_prices: ${IMPORT_PRODUCT_CURRENT_PRICES}
- Import daily_inventory: ${IMPORT_DAILY_INVENTORY}
- Import product_stat_history: ${IMPORT_PRODUCT_STAT_HISTORY}`);
try {
// Get last sync time for incremental updates
const lastSyncTimes = {};
if (incrementalUpdate) {
try {
const syncResult = await localConnection.query(`
SELECT table_name, last_sync_timestamp
FROM sync_status
WHERE table_name IN (
'imported_product_current_prices',
'imported_daily_inventory',
'imported_product_stat_history'
)
`);
// Add check for rows existence and type
if (syncResult && Array.isArray(syncResult.rows)) {
for (const row of syncResult.rows) {
lastSyncTimes[row.table_name] = row.last_sync_timestamp;
console.log(`Last sync time for ${row.table_name}: ${row.last_sync_timestamp}`);
}
} else {
console.warn('Sync status query did not return expected rows. Proceeding without last sync times.');
}
} catch (error) {
console.error('Error fetching sync status:', error);
}
}
// Determine how many tables will be imported
const tablesCount = [
IMPORT_PRODUCT_CURRENT_PRICES,
IMPORT_DAILY_INVENTORY,
IMPORT_PRODUCT_STAT_HISTORY
].filter(Boolean).length;
// Run all imports sequentially for better reliability
console.log(`Starting sequential imports for ${tablesCount} tables...`);
outputProgress({
status: "running",
operation: "Historical data import",
message: `Starting sequential imports for ${tablesCount} tables...`,
current: 0,
total: tablesCount,
elapsed: formatElapsedTime(startTime)
});
let progressCount = 0;
let productCurrentPricesResult = { recordsAdded: 0, recordsUpdated: 0, totalProcessed: 0, errors: [] };
let dailyInventoryResult = { recordsAdded: 0, recordsUpdated: 0, totalProcessed: 0, errors: [] };
let productStatHistoryResult = { recordsAdded: 0, recordsUpdated: 0, totalProcessed: 0, errors: [] };
// Import product current prices
if (IMPORT_PRODUCT_CURRENT_PRICES) {
console.log('Importing product current prices...');
productCurrentPricesResult = await importProductCurrentPrices(
prodConnection,
localConnection,
oneYearAgoStr,
lastSyncTimes['imported_product_current_prices'],
BATCH_SIZE,
INSERT_BATCH_SIZE,
incrementalUpdate,
startTime
);
progressCount++;
outputProgress({
status: "running",
operation: "Historical data import",
message: `Completed import ${progressCount} of ${tablesCount}`,
current: progressCount,
total: tablesCount,
elapsed: formatElapsedTime(startTime)
});
}
// Import daily inventory
if (IMPORT_DAILY_INVENTORY) {
console.log('Importing daily inventory...');
dailyInventoryResult = await importDailyInventory(
prodConnection,
localConnection,
oneYearAgoStr,
lastSyncTimes['imported_daily_inventory'],
BATCH_SIZE,
INSERT_BATCH_SIZE,
incrementalUpdate,
startTime
);
progressCount++;
outputProgress({
status: "running",
operation: "Historical data import",
message: `Completed import ${progressCount} of ${tablesCount}`,
current: progressCount,
total: tablesCount,
elapsed: formatElapsedTime(startTime)
});
}
// Import product stat history - using optimized approach
if (IMPORT_PRODUCT_STAT_HISTORY) {
console.log('Importing product stat history...');
productStatHistoryResult = await importProductStatHistory(
prodConnection,
localConnection,
recentDateStr, // Use more recent date for this massive table
lastSyncTimes['imported_product_stat_history'],
LARGE_BATCH_SIZE,
LARGE_INSERT_BATCH_SIZE,
incrementalUpdate,
startTime,
USE_RECENT_MONTHS // Pass the recent months constant
);
progressCount++;
outputProgress({
status: "running",
operation: "Historical data import",
message: `Completed import ${progressCount} of ${tablesCount}`,
current: progressCount,
total: tablesCount,
elapsed: formatElapsedTime(startTime)
});
}
// Aggregate results
const totalRecordsAdded =
productCurrentPricesResult.recordsAdded +
dailyInventoryResult.recordsAdded +
productStatHistoryResult.recordsAdded;
const totalRecordsUpdated =
productCurrentPricesResult.recordsUpdated +
dailyInventoryResult.recordsUpdated +
productStatHistoryResult.recordsUpdated;
const totalProcessed =
productCurrentPricesResult.totalProcessed +
dailyInventoryResult.totalProcessed +
productStatHistoryResult.totalProcessed;
const allErrors = [
...productCurrentPricesResult.errors,
...dailyInventoryResult.errors,
...productStatHistoryResult.errors
];
// Log import summary
console.log(`
Historical data import complete:
-------------------------------
Records added: ${totalRecordsAdded}
Records updated: ${totalRecordsUpdated}
Total processed: ${totalProcessed}
Errors: ${allErrors.length}
Time taken: ${formatElapsedTime(startTime)}
`);
// Final progress update
outputProgress({
status: "complete",
operation: "Historical data import",
message: `Import complete. Added: ${totalRecordsAdded}, Updated: ${totalRecordsUpdated}, Errors: ${allErrors.length}`,
current: tablesCount,
total: tablesCount,
elapsed: formatElapsedTime(startTime)
});
// Log any errors
if (allErrors.length > 0) {
console.log('Errors encountered during import:');
console.log(JSON.stringify(allErrors, null, 2));
}
// Calculate duration
const endTime = Date.now();
const durationSeconds = Math.round((endTime - startTime) / 1000);
const finalStatus = allErrors.length === 0 ? 'complete' : 'failed';
const errorMessage = allErrors.length > 0 ? JSON.stringify(allErrors) : null;
// Update import history
await localConnection.query(`
INSERT INTO import_history (
table_name,
end_time,
duration_seconds,
records_added,
records_updated,
is_incremental,
status,
error_message,
additional_info
)
VALUES ($1, NOW(), $2, $3, $4, $5, $6, $7, $8)
`, [
'historical_data_combined',
durationSeconds,
totalRecordsAdded,
totalRecordsUpdated,
incrementalUpdate,
finalStatus,
errorMessage,
JSON.stringify({
totalProcessed,
tablesImported: {
imported_product_current_prices: IMPORT_PRODUCT_CURRENT_PRICES,
imported_daily_inventory: IMPORT_DAILY_INVENTORY,
imported_product_stat_history: IMPORT_PRODUCT_STAT_HISTORY
}
})
]);
// Return summary
return {
recordsAdded: totalRecordsAdded,
recordsUpdated: totalRecordsUpdated,
totalProcessed,
errors: allErrors,
timeTaken: formatElapsedTime(startTime)
};
} catch (error) {
console.error('Error importing historical data:', error);
// Final progress update on error
outputProgress({
status: "failed",
operation: "Historical data import",
message: `Import failed: ${error.message}`,
elapsed: formatElapsedTime(startTime)
});
throw error;
}
}
/**
* Imports product_current_prices data from MySQL to PostgreSQL
*/
async function importProductCurrentPrices(
prodConnection,
localConnection,
oneYearAgoStr,
lastSyncTime,
batchSize,
insertBatchSize,
incrementalUpdate,
startTime
) {
let recordsAdded = 0;
let recordsUpdated = 0;
let totalProcessed = 0;
let errors = [];
let offset = 0;
let allProcessed = false;
try {
// Get total count for progress reporting
const [countResult] = await prodConnection.query(`
SELECT COUNT(*) as total
FROM product_current_prices
WHERE (date_active >= ? OR date_deactive >= ?)
${incrementalUpdate && lastSyncTime ? `AND date_deactive > ?` : ''}
`, [oneYearAgoStr, oneYearAgoStr, ...(incrementalUpdate && lastSyncTime ? [lastSyncTime] : [])]);
const totalCount = countResult[0].total;
outputProgress({
status: "running",
operation: "Historical data import - Product Current Prices",
message: `Found ${totalCount} records to process`,
current: 0,
total: totalCount,
elapsed: formatElapsedTime(startTime)
});
// Process in batches for better performance
while (!allProcessed) {
try {
// Fetch batch from production
const [rows] = await prodConnection.query(`
SELECT
price_id,
pid,
qty_buy,
is_min_qty_buy,
price_each,
qty_limit,
no_promo,
checkout_offer,
active,
date_active,
date_deactive
FROM product_current_prices
WHERE (date_active >= ? OR date_deactive >= ?)
${incrementalUpdate && lastSyncTime ? `AND date_deactive > ?` : ''}
ORDER BY price_id
LIMIT ? OFFSET ?
`, [
oneYearAgoStr,
oneYearAgoStr,
...(incrementalUpdate && lastSyncTime ? [lastSyncTime] : []),
batchSize,
offset
]);
if (rows.length === 0) {
allProcessed = true;
break;
}
// Process rows in smaller batches for better performance
for (let i = 0; i < rows.length; i += insertBatchSize) {
const batch = rows.slice(i, i + insertBatchSize);
if (batch.length === 0) continue;
try {
// Build parameterized query to handle NULL values properly
const values = [];
const placeholders = [];
let placeholderIndex = 1;
for (const row of batch) {
const rowPlaceholders = [
`$${placeholderIndex++}`,
`$${placeholderIndex++}`,
`$${placeholderIndex++}`,
`$${placeholderIndex++}`,
`$${placeholderIndex++}`,
`$${placeholderIndex++}`,
`$${placeholderIndex++}`,
`$${placeholderIndex++}`,
`$${placeholderIndex++}`,
`$${placeholderIndex++}`,
`$${placeholderIndex++}`
];
placeholders.push(`(${rowPlaceholders.join(', ')})`);
values.push(
row.price_id,
row.pid,
row.qty_buy,
row.is_min_qty_buy ? true : false,
row.price_each,
row.qty_limit, // PostgreSQL will handle null values properly
row.no_promo ? true : false,
row.checkout_offer ? true : false,
row.active ? true : false,
validateDate(row.date_active),
validateDate(row.date_deactive)
);
}
// Execute batch insert
const result = await localConnection.query(`
WITH ins AS (
INSERT INTO imported_product_current_prices (
price_id, pid, qty_buy, is_min_qty_buy, price_each, qty_limit,
no_promo, checkout_offer, active, date_active, date_deactive
)
VALUES ${placeholders.join(',\n')}
ON CONFLICT (price_id) DO UPDATE SET
pid = EXCLUDED.pid,
qty_buy = EXCLUDED.qty_buy,
is_min_qty_buy = EXCLUDED.is_min_qty_buy,
price_each = EXCLUDED.price_each,
qty_limit = EXCLUDED.qty_limit,
no_promo = EXCLUDED.no_promo,
checkout_offer = EXCLUDED.checkout_offer,
active = EXCLUDED.active,
date_active = EXCLUDED.date_active,
date_deactive = EXCLUDED.date_deactive,
updated = CURRENT_TIMESTAMP
RETURNING (xmax = 0) AS inserted
)
SELECT
COUNT(*) FILTER (WHERE inserted) AS inserted_count,
COUNT(*) FILTER (WHERE NOT inserted) AS updated_count
FROM ins
`, values);
// Safely update counts based on the result
if (result && result.rows && result.rows.length > 0) {
const insertedCount = parseInt(result.rows[0].inserted_count || 0);
const updatedCount = parseInt(result.rows[0].updated_count || 0);
recordsAdded += insertedCount;
recordsUpdated += updatedCount;
}
} catch (error) {
console.error(`Error in batch import of product_current_prices at offset ${i}:`, error);
errors.push({
table: 'imported_product_current_prices',
batchOffset: i,
batchSize: batch.length,
error: error.message
});
}
}
totalProcessed += rows.length;
offset += rows.length;
// Update progress
outputProgress({
status: "running",
operation: "Historical data import - Product Current Prices",
message: `Processed ${totalProcessed} of ${totalCount} records`,
current: totalProcessed,
total: totalCount,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, totalProcessed, totalCount),
rate: calculateRate(startTime, totalProcessed)
});
} catch (error) {
console.error('Error in batch import of product_current_prices:', error);
errors.push({
table: 'imported_product_current_prices',
error: error.message,
offset: offset,
batchSize: batchSize
});
// Try to continue with next batch
offset += batchSize;
}
}
// Update sync status
await localConnection.query(`
INSERT INTO sync_status (table_name, last_sync_timestamp)
VALUES ('imported_product_current_prices', NOW())
ON CONFLICT (table_name) DO UPDATE SET
last_sync_timestamp = NOW()
`);
return { recordsAdded, recordsUpdated, totalProcessed, errors };
} catch (error) {
console.error('Error in product current prices import:', error);
return {
recordsAdded,
recordsUpdated,
totalProcessed,
errors: [...errors, {
table: 'imported_product_current_prices',
error: error.message
}]
};
}
}
/**
* Imports daily_inventory data from MySQL to PostgreSQL
*/
async function importDailyInventory(
prodConnection,
localConnection,
oneYearAgoStr,
lastSyncTime,
batchSize,
insertBatchSize,
incrementalUpdate,
startTime
) {
let recordsAdded = 0;
let recordsUpdated = 0;
let totalProcessed = 0;
let errors = [];
let offset = 0;
let allProcessed = false;
try {
// Get total count for progress reporting
const [countResult] = await prodConnection.query(`
SELECT COUNT(*) as total
FROM daily_inventory
WHERE date >= ?
${incrementalUpdate && lastSyncTime ? `AND stamp > ?` : ''}
`, [oneYearAgoStr, ...(incrementalUpdate && lastSyncTime ? [lastSyncTime] : [])]);
const totalCount = countResult[0].total;
outputProgress({
status: "running",
operation: "Historical data import - Daily Inventory",
message: `Found ${totalCount} records to process`,
current: 0,
total: totalCount,
elapsed: formatElapsedTime(startTime)
});
// Process in batches for better performance
while (!allProcessed) {
try {
// Fetch batch from production
const [rows] = await prodConnection.query(`
SELECT
date,
pid,
amountsold,
times_sold,
qtyreceived,
price,
costeach,
stamp
FROM daily_inventory
WHERE date >= ?
${incrementalUpdate && lastSyncTime ? `AND stamp > ?` : ''}
ORDER BY date, pid
LIMIT ? OFFSET ?
`, [
oneYearAgoStr,
...(incrementalUpdate && lastSyncTime ? [lastSyncTime] : []),
batchSize,
offset
]);
if (rows.length === 0) {
allProcessed = true;
break;
}
// Process rows in smaller batches for better performance
for (let i = 0; i < rows.length; i += insertBatchSize) {
const batch = rows.slice(i, i + insertBatchSize);
if (batch.length === 0) continue;
try {
// Build parameterized query to handle NULL values properly
const values = [];
const placeholders = [];
let placeholderIndex = 1;
for (const row of batch) {
const rowPlaceholders = [
`$${placeholderIndex++}`,
`$${placeholderIndex++}`,
`$${placeholderIndex++}`,
`$${placeholderIndex++}`,
`$${placeholderIndex++}`,
`$${placeholderIndex++}`,
`$${placeholderIndex++}`,
`$${placeholderIndex++}`
];
placeholders.push(`(${rowPlaceholders.join(', ')})`);
values.push(
validateDate(row.date),
row.pid,
row.amountsold || 0,
row.times_sold || 0,
row.qtyreceived || 0,
row.price || 0,
row.costeach || 0,
validateDate(row.stamp)
);
}
// Execute batch insert
const result = await localConnection.query(`
WITH ins AS (
INSERT INTO imported_daily_inventory (
date, pid, amountsold, times_sold, qtyreceived, price, costeach, stamp
)
VALUES ${placeholders.join(',\n')}
ON CONFLICT (date, pid) DO UPDATE SET
amountsold = EXCLUDED.amountsold,
times_sold = EXCLUDED.times_sold,
qtyreceived = EXCLUDED.qtyreceived,
price = EXCLUDED.price,
costeach = EXCLUDED.costeach,
stamp = EXCLUDED.stamp,
updated = CURRENT_TIMESTAMP
RETURNING (xmax = 0) AS inserted
)
SELECT
COUNT(*) FILTER (WHERE inserted) AS inserted_count,
COUNT(*) FILTER (WHERE NOT inserted) AS updated_count
FROM ins
`, values);
// Safely update counts based on the result
if (result && result.rows && result.rows.length > 0) {
const insertedCount = parseInt(result.rows[0].inserted_count || 0);
const updatedCount = parseInt(result.rows[0].updated_count || 0);
recordsAdded += insertedCount;
recordsUpdated += updatedCount;
}
} catch (error) {
console.error(`Error in batch import of daily_inventory at offset ${i}:`, error);
errors.push({
table: 'imported_daily_inventory',
batchOffset: i,
batchSize: batch.length,
error: error.message
});
}
}
totalProcessed += rows.length;
offset += rows.length;
// Update progress
outputProgress({
status: "running",
operation: "Historical data import - Daily Inventory",
message: `Processed ${totalProcessed} of ${totalCount} records`,
current: totalProcessed,
total: totalCount,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, totalProcessed, totalCount),
rate: calculateRate(startTime, totalProcessed)
});
} catch (error) {
console.error('Error in batch import of daily_inventory:', error);
errors.push({
table: 'imported_daily_inventory',
error: error.message,
offset: offset,
batchSize: batchSize
});
// Try to continue with next batch
offset += batchSize;
}
}
// Update sync status
await localConnection.query(`
INSERT INTO sync_status (table_name, last_sync_timestamp)
VALUES ('imported_daily_inventory', NOW())
ON CONFLICT (table_name) DO UPDATE SET
last_sync_timestamp = NOW()
`);
return { recordsAdded, recordsUpdated, totalProcessed, errors };
} catch (error) {
console.error('Error in daily inventory import:', error);
return {
recordsAdded,
recordsUpdated,
totalProcessed,
errors: [...errors, {
table: 'imported_daily_inventory',
error: error.message
}]
};
}
}
/**
* Imports product_stat_history data from MySQL to PostgreSQL
* Using fast direct inserts without conflict checking
*/
async function importProductStatHistory(
prodConnection,
localConnection,
recentDateStr, // Use more recent date instead of one year ago
lastSyncTime,
batchSize,
insertBatchSize,
incrementalUpdate,
startTime,
recentMonths // Add parameter for recent months
) {
let recordsAdded = 0;
let recordsUpdated = 0;
let totalProcessed = 0;
let errors = [];
let offset = 0;
let allProcessed = false;
let lastRateCheck = Date.now();
let lastProcessed = 0;
try {
// Get total count for progress reporting
const [countResult] = await prodConnection.query(`
SELECT COUNT(*) as total
FROM product_stat_history
WHERE date >= ?
${incrementalUpdate && lastSyncTime ? `AND date > ?` : ''}
`, [recentDateStr, ...(incrementalUpdate && lastSyncTime ? [lastSyncTime] : [])]);
const totalCount = countResult[0].total;
console.log(`Found ${totalCount} records to process in product_stat_history (using recent date: ${recentDateStr})`);
// Progress indicator
outputProgress({
status: "running",
operation: "Historical data import - Product Stat History",
message: `Found ${totalCount} records to process (last ${recentMonths} months only)`,
current: 0,
total: totalCount,
elapsed: formatElapsedTime(startTime)
});
// If not incremental, truncate the table first for better performance
if (!incrementalUpdate) {
console.log('Truncating imported_product_stat_history for full import...');
await localConnection.query('TRUNCATE TABLE imported_product_stat_history');
} else if (lastSyncTime) {
// For incremental updates, delete records that will be reimported
console.log(`Deleting records from imported_product_stat_history since ${lastSyncTime}...`);
await localConnection.query('DELETE FROM imported_product_stat_history WHERE date > $1', [lastSyncTime]);
}
// Process in batches for better performance
while (!allProcessed) {
try {
// Fetch batch from production with minimal filtering and no sorting
const [rows] = await prodConnection.query(`
SELECT
pid,
date,
COALESCE(score, 0) as score,
COALESCE(score2, 0) as score2,
COALESCE(qty_in_baskets, 0) as qty_in_baskets,
COALESCE(qty_sold, 0) as qty_sold,
COALESCE(notifies_set, 0) as notifies_set,
COALESCE(visibility_score, 0) as visibility_score,
COALESCE(health_score, 0) as health_score,
COALESCE(sold_view_score, 0) as sold_view_score
FROM product_stat_history
WHERE date >= ?
${incrementalUpdate && lastSyncTime ? `AND date > ?` : ''}
LIMIT ? OFFSET ?
`, [
recentDateStr,
...(incrementalUpdate && lastSyncTime ? [lastSyncTime] : []),
batchSize,
offset
]);
if (rows.length === 0) {
allProcessed = true;
break;
}
// Process rows in smaller batches for better performance
for (let i = 0; i < rows.length; i += insertBatchSize) {
const batch = rows.slice(i, i + insertBatchSize);
if (batch.length === 0) continue;
try {
// Build parameterized query to handle NULL values properly
const values = [];
const placeholders = [];
let placeholderIndex = 1;
for (const row of batch) {
const rowPlaceholders = [
`$${placeholderIndex++}`,
`$${placeholderIndex++}`,
`$${placeholderIndex++}`,
`$${placeholderIndex++}`,
`$${placeholderIndex++}`,
`$${placeholderIndex++}`,
`$${placeholderIndex++}`,
`$${placeholderIndex++}`,
`$${placeholderIndex++}`,
`$${placeholderIndex++}`
];
placeholders.push(`(${rowPlaceholders.join(', ')})`);
values.push(
row.pid,
validateDate(row.date),
row.score,
row.score2,
row.qty_in_baskets,
row.qty_sold,
row.notifies_set,
row.visibility_score,
row.health_score,
row.sold_view_score
);
}
// Execute direct batch insert without conflict checking
await localConnection.query(`
INSERT INTO imported_product_stat_history (
pid, date, score, score2, qty_in_baskets, qty_sold, notifies_set,
visibility_score, health_score, sold_view_score
)
VALUES ${placeholders.join(',\n')}
`, values);
// All inserts are new records when using this approach
recordsAdded += batch.length;
} catch (error) {
console.error(`Error in batch insert of product_stat_history at offset ${i}:`, error);
errors.push({
table: 'imported_product_stat_history',
batchOffset: i,
batchSize: batch.length,
error: error.message
});
}
}
totalProcessed += rows.length;
offset += rows.length;
// Calculate current rate every 10 seconds or 100,000 records
const now = Date.now();
if (now - lastRateCheck > 10000 || totalProcessed - lastProcessed > 100000) {
const timeElapsed = (now - lastRateCheck) / 1000; // seconds
const recordsProcessed = totalProcessed - lastProcessed;
const currentRate = Math.round(recordsProcessed / timeElapsed);
console.log(`Current import rate: ${currentRate} records/second`);
lastRateCheck = now;
lastProcessed = totalProcessed;
}
// Update progress
outputProgress({
status: "running",
operation: "Historical data import - Product Stat History",
message: `Processed ${totalProcessed} of ${totalCount} records`,
current: totalProcessed,
total: totalCount,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, totalProcessed, totalCount),
rate: calculateRate(startTime, totalProcessed)
});
} catch (error) {
console.error('Error in batch import of product_stat_history:', error);
errors.push({
table: 'imported_product_stat_history',
error: error.message,
offset: offset,
batchSize: batchSize
});
// Try to continue with next batch
offset += batchSize;
}
}
// Update sync status
await localConnection.query(`
INSERT INTO sync_status (table_name, last_sync_timestamp)
VALUES ('imported_product_stat_history', NOW())
ON CONFLICT (table_name) DO UPDATE SET
last_sync_timestamp = NOW()
`);
return { recordsAdded, recordsUpdated, totalProcessed, errors };
} catch (error) {
console.error('Error in product stat history import:', error);
return {
recordsAdded,
recordsUpdated,
totalProcessed,
errors: [...errors, {
table: 'imported_product_stat_history',
error: error.message
}]
};
}
}
module.exports = importHistoricalData;

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -1,5 +1,6 @@
const mysql = require("mysql2/promise");
const { Client } = require("ssh2");
const { Pool } = require('pg');
const dotenv = require("dotenv");
const path = require("path");
@@ -41,23 +42,90 @@ async function setupSshTunnel(sshConfig) {
async function setupConnections(sshConfig) {
const tunnel = await setupSshTunnel(sshConfig);
// Setup MySQL connection for production
const prodConnection = await mysql.createConnection({
...sshConfig.prodDbConfig,
stream: tunnel.stream,
});
const localConnection = await mysql.createPool({
...sshConfig.localDbConfig,
waitForConnections: true,
connectionLimit: 10,
queueLimit: 0
});
// Setup PostgreSQL connection pool for local
const localPool = new Pool(sshConfig.localDbConfig);
return {
ssh: tunnel.ssh,
prodConnection,
localConnection
// Test the PostgreSQL connection
try {
const client = await localPool.connect();
await client.query('SELECT NOW()');
client.release();
console.log('PostgreSQL connection successful');
} catch (err) {
console.error('PostgreSQL connection error:', err);
throw err;
}
// Create a wrapper for the PostgreSQL pool to match MySQL interface
const localConnection = {
_client: null,
_transactionActive: false,
query: async (text, params) => {
// If we're not in a transaction, use the pool directly
if (!localConnection._transactionActive) {
const client = await localPool.connect();
try {
const result = await client.query(text, params);
return [result];
} finally {
client.release();
}
}
// If we're in a transaction, use the dedicated client
if (!localConnection._client) {
throw new Error('No active transaction client');
}
const result = await localConnection._client.query(text, params);
return [result];
},
beginTransaction: async () => {
if (localConnection._transactionActive) {
throw new Error('Transaction already active');
}
localConnection._client = await localPool.connect();
await localConnection._client.query('BEGIN');
localConnection._transactionActive = true;
},
commit: async () => {
if (!localConnection._transactionActive) {
throw new Error('No active transaction to commit');
}
await localConnection._client.query('COMMIT');
localConnection._client.release();
localConnection._client = null;
localConnection._transactionActive = false;
},
rollback: async () => {
if (!localConnection._transactionActive) {
throw new Error('No active transaction to rollback');
}
await localConnection._client.query('ROLLBACK');
localConnection._client.release();
localConnection._client = null;
localConnection._transactionActive = false;
},
end: async () => {
if (localConnection._client) {
localConnection._client.release();
localConnection._client = null;
}
await localPool.end();
}
};
return { prodConnection, localConnection, tunnel };
}
// Helper function to close connections

View File

@@ -0,0 +1,677 @@
const path = require('path');
const fs = require('fs');
const os = require('os'); // For detecting CPU cores
// Get the base directory (the directory containing the inventory-server folder)
const baseDir = path.resolve(__dirname, '../../..');
// Load environment variables from the inventory-server directory
require('dotenv').config({ path: path.resolve(__dirname, '../..', '.env') });
// Configure statement timeout (30 minutes)
const PG_STATEMENT_TIMEOUT_MS = 1800000;
// Add error handler for uncaught exceptions
process.on('uncaughtException', (error) => {
console.error('Uncaught Exception:', error);
process.exit(1);
});
// Add error handler for unhandled promise rejections
process.on('unhandledRejection', (reason, promise) => {
console.error('Unhandled Rejection at:', promise, 'reason:', reason);
process.exit(1);
});
// Load progress module
const progress = require('../utils/progress');
// Store progress functions in global scope to ensure availability
global.formatElapsedTime = progress.formatElapsedTime;
global.estimateRemaining = progress.estimateRemaining;
global.calculateRate = progress.calculateRate;
global.outputProgress = progress.outputProgress;
global.clearProgress = progress.clearProgress;
global.getProgress = progress.getProgress;
global.logError = progress.logError;
// Load database module
const { getConnection, closePool } = require('../utils/db');
// Add cancel handler
let isCancelled = false;
let runningQueryPromise = null;
function cancelCalculation() {
if (!isCancelled) {
isCancelled = true;
console.log('Calculation has been cancelled by user');
// Store the query promise to potentially cancel it
const queryToCancel = runningQueryPromise;
if (queryToCancel) {
console.log('Attempting to cancel the running query...');
}
// Force-terminate any query that's been running for more than 5 seconds
try {
const connection = getConnection();
connection.then(async (conn) => {
try {
// Identify and terminate long-running queries from our application
await conn.query(`
SELECT pg_cancel_backend(pid)
FROM pg_stat_activity
WHERE query_start < now() - interval '5 seconds'
AND application_name = 'populate_metrics'
AND query NOT LIKE '%pg_cancel_backend%'
`);
// Release connection
conn.release();
} catch (err) {
console.error('Error during force cancellation:', err);
conn.release();
}
}).catch(err => {
console.error('Could not get connection for cancellation:', err);
});
} catch (err) {
console.error('Failed to terminate running queries:', err);
}
}
return {
success: true,
message: 'Calculation has been cancelled'
};
}
// Handle SIGTERM signal for cancellation
process.on('SIGTERM', cancelCalculation);
process.on('SIGINT', cancelCalculation);
const calculateInitialMetrics = (client, onProgress) => {
return client.query(`
-- Truncate the existing metrics tables to ensure clean data
TRUNCATE TABLE public.daily_product_snapshots;
TRUNCATE TABLE public.product_metrics;
-- First let's create daily snapshots for all products with order activity
WITH SalesData AS (
SELECT
p.pid,
p.sku,
o.date::date AS order_date,
-- Count orders to ensure we only include products with real activity
COUNT(o.id) as order_count,
-- Aggregate Sales (Quantity > 0, Status not Canceled/Returned)
COALESCE(SUM(CASE WHEN o.quantity > 0 AND COALESCE(o.status, 'pending') NOT IN ('canceled', 'returned') THEN o.quantity ELSE 0 END), 0) AS units_sold,
COALESCE(SUM(CASE WHEN o.quantity > 0 AND COALESCE(o.status, 'pending') NOT IN ('canceled', 'returned') THEN o.price * o.quantity ELSE 0 END), 0.00) AS gross_revenue_unadjusted,
COALESCE(SUM(CASE WHEN o.quantity > 0 AND COALESCE(o.status, 'pending') NOT IN ('canceled', 'returned') THEN o.discount ELSE 0 END), 0.00) AS discounts,
COALESCE(SUM(CASE WHEN o.quantity > 0 AND COALESCE(o.status, 'pending') NOT IN ('canceled', 'returned') THEN COALESCE(o.costeach, p.landing_cost_price, p.cost_price) * o.quantity ELSE 0 END), 0.00) AS cogs,
COALESCE(SUM(CASE WHEN o.quantity > 0 AND COALESCE(o.status, 'pending') NOT IN ('canceled', 'returned') THEN p.regular_price * o.quantity ELSE 0 END), 0.00) AS gross_regular_revenue,
-- Aggregate Returns (Quantity < 0 or Status = Returned)
COALESCE(SUM(CASE WHEN o.quantity < 0 OR COALESCE(o.status, 'pending') = 'returned' THEN ABS(o.quantity) ELSE 0 END), 0) AS units_returned,
COALESCE(SUM(CASE WHEN o.quantity < 0 OR COALESCE(o.status, 'pending') = 'returned' THEN o.price * ABS(o.quantity) ELSE 0 END), 0.00) AS returns_revenue
FROM public.products p
LEFT JOIN public.orders o ON p.pid = o.pid
GROUP BY p.pid, p.sku, o.date::date
HAVING COUNT(o.id) > 0 -- Only include products with actual orders
),
ReceivingData AS (
SELECT
r.pid,
r.received_date::date AS receiving_date,
-- Count receiving documents to ensure we only include products with real activity
COUNT(DISTINCT r.receiving_id) as receiving_count,
-- Calculate received quantity for this day
SUM(r.received_quantity) AS units_received,
-- Calculate received cost for this day
SUM(r.received_quantity * r.unit_cost) AS cost_received
FROM public.receivings r
GROUP BY r.pid, r.received_date::date
HAVING COUNT(DISTINCT r.receiving_id) > 0 OR SUM(r.received_quantity) > 0
),
-- Get current stock quantities
StockData AS (
SELECT
p.pid,
p.stock_quantity,
COALESCE(p.landing_cost_price, p.cost_price, 0.00) as effective_cost_price,
COALESCE(p.price, 0.00) as current_price,
COALESCE(p.regular_price, 0.00) as current_regular_price
FROM public.products p
),
-- Combine sales and receiving dates to get all activity dates
DatePidCombos AS (
SELECT DISTINCT pid, order_date AS activity_date FROM SalesData
UNION
SELECT DISTINCT pid, receiving_date FROM ReceivingData
),
-- Insert daily snapshots for all product-date combinations
SnapshotInsert AS (
INSERT INTO public.daily_product_snapshots (
snapshot_date,
pid,
sku,
eod_stock_quantity,
eod_stock_cost,
eod_stock_retail,
eod_stock_gross,
stockout_flag,
units_sold,
units_returned,
gross_revenue,
discounts,
returns_revenue,
net_revenue,
cogs,
gross_regular_revenue,
profit,
units_received,
cost_received,
calculation_timestamp
)
SELECT
d.activity_date AS snapshot_date,
d.pid,
p.sku,
-- Use current stock as approximation, since historical stock data is not available
s.stock_quantity AS eod_stock_quantity,
s.stock_quantity * s.effective_cost_price AS eod_stock_cost,
s.stock_quantity * s.current_price AS eod_stock_retail,
s.stock_quantity * s.current_regular_price AS eod_stock_gross,
(s.stock_quantity <= 0) AS stockout_flag,
-- Sales metrics
COALESCE(sd.units_sold, 0),
COALESCE(sd.units_returned, 0),
COALESCE(sd.gross_revenue_unadjusted, 0.00),
COALESCE(sd.discounts, 0.00),
COALESCE(sd.returns_revenue, 0.00),
COALESCE(sd.gross_revenue_unadjusted, 0.00) - COALESCE(sd.discounts, 0.00) AS net_revenue,
COALESCE(sd.cogs, 0.00),
COALESCE(sd.gross_regular_revenue, 0.00),
(COALESCE(sd.gross_revenue_unadjusted, 0.00) - COALESCE(sd.discounts, 0.00)) - COALESCE(sd.cogs, 0.00) AS profit,
-- Receiving metrics
COALESCE(rd.units_received, 0),
COALESCE(rd.cost_received, 0.00),
now() -- calculation timestamp
FROM DatePidCombos d
JOIN public.products p ON d.pid = p.pid
LEFT JOIN SalesData sd ON d.pid = sd.pid AND d.activity_date = sd.order_date
LEFT JOIN ReceivingData rd ON d.pid = rd.pid AND d.activity_date = rd.receiving_date
LEFT JOIN StockData s ON d.pid = s.pid
RETURNING pid, snapshot_date
),
-- Now build the aggregated product metrics from the daily snapshots
MetricsInsert AS (
INSERT INTO public.product_metrics (
pid,
sku,
current_stock_quantity,
current_stock_cost,
current_stock_retail,
current_stock_msrp,
is_out_of_stock,
total_units_sold,
total_units_returned,
return_rate,
gross_revenue,
total_discounts,
total_returns,
net_revenue,
total_cogs,
total_gross_revenue,
total_profit,
profit_margin,
avg_daily_units,
reorder_point,
reorder_alert,
days_of_supply,
sales_velocity,
sales_velocity_score,
rank_by_revenue,
rank_by_quantity,
rank_by_profit,
total_received_quantity,
total_received_cost,
last_sold_date,
last_received_date,
days_since_last_sale,
days_since_last_received,
calculation_timestamp
)
SELECT
p.pid,
p.sku,
p.stock_quantity AS current_stock_quantity,
p.stock_quantity * COALESCE(p.landing_cost_price, p.cost_price, 0) AS current_stock_cost,
p.stock_quantity * COALESCE(p.price, 0) AS current_stock_retail,
p.stock_quantity * COALESCE(p.regular_price, 0) AS current_stock_msrp,
(p.stock_quantity <= 0) AS is_out_of_stock,
-- Aggregate metrics
COALESCE(SUM(ds.units_sold), 0) AS total_units_sold,
COALESCE(SUM(ds.units_returned), 0) AS total_units_returned,
CASE
WHEN COALESCE(SUM(ds.units_sold), 0) > 0
THEN COALESCE(SUM(ds.units_returned), 0)::float / NULLIF(COALESCE(SUM(ds.units_sold), 0), 0)
ELSE 0
END AS return_rate,
COALESCE(SUM(ds.gross_revenue), 0) AS gross_revenue,
COALESCE(SUM(ds.discounts), 0) AS total_discounts,
COALESCE(SUM(ds.returns_revenue), 0) AS total_returns,
COALESCE(SUM(ds.net_revenue), 0) AS net_revenue,
COALESCE(SUM(ds.cogs), 0) AS total_cogs,
COALESCE(SUM(ds.gross_regular_revenue), 0) AS total_gross_revenue,
COALESCE(SUM(ds.profit), 0) AS total_profit,
CASE
WHEN COALESCE(SUM(ds.net_revenue), 0) > 0
THEN COALESCE(SUM(ds.profit), 0) / NULLIF(COALESCE(SUM(ds.net_revenue), 0), 0)
ELSE 0
END AS profit_margin,
-- Calculate average daily units
COALESCE(AVG(ds.units_sold), 0) AS avg_daily_units,
-- Calculate reorder point (simplified, can be enhanced with lead time and safety stock)
CEILING(COALESCE(AVG(ds.units_sold) * 14, 0)) AS reorder_point,
(p.stock_quantity <= CEILING(COALESCE(AVG(ds.units_sold) * 14, 0))) AS reorder_alert,
-- Days of supply based on average daily sales
CASE
WHEN COALESCE(AVG(ds.units_sold), 0) > 0
THEN p.stock_quantity / NULLIF(COALESCE(AVG(ds.units_sold), 0), 0)
ELSE NULL
END AS days_of_supply,
-- Sales velocity (average units sold per day over last 30 days)
(SELECT COALESCE(AVG(recent.units_sold), 0)
FROM public.daily_product_snapshots recent
WHERE recent.pid = p.pid
AND recent.snapshot_date >= CURRENT_DATE - INTERVAL '30 days'
) AS sales_velocity,
-- Placeholder for sales velocity score (can be calculated based on velocity)
0 AS sales_velocity_score,
-- Will be updated later by ranking procedure
0 AS rank_by_revenue,
0 AS rank_by_quantity,
0 AS rank_by_profit,
-- Receiving data
COALESCE(SUM(ds.units_received), 0) AS total_received_quantity,
COALESCE(SUM(ds.cost_received), 0) AS total_received_cost,
-- Date metrics
(SELECT MAX(sd.snapshot_date)
FROM public.daily_product_snapshots sd
WHERE sd.pid = p.pid AND sd.units_sold > 0
) AS last_sold_date,
(SELECT MAX(rd.snapshot_date)
FROM public.daily_product_snapshots rd
WHERE rd.pid = p.pid AND rd.units_received > 0
) AS last_received_date,
-- Calculate days since last sale/received
CASE
WHEN (SELECT MAX(sd.snapshot_date)
FROM public.daily_product_snapshots sd
WHERE sd.pid = p.pid AND sd.units_sold > 0) IS NOT NULL
THEN (CURRENT_DATE - (SELECT MAX(sd.snapshot_date)
FROM public.daily_product_snapshots sd
WHERE sd.pid = p.pid AND sd.units_sold > 0))::integer
ELSE NULL
END AS days_since_last_sale,
CASE
WHEN (SELECT MAX(rd.snapshot_date)
FROM public.daily_product_snapshots rd
WHERE rd.pid = p.pid AND rd.units_received > 0) IS NOT NULL
THEN (CURRENT_DATE - (SELECT MAX(rd.snapshot_date)
FROM public.daily_product_snapshots rd
WHERE rd.pid = p.pid AND rd.units_received > 0))::integer
ELSE NULL
END AS days_since_last_received,
now() -- calculation timestamp
FROM public.products p
LEFT JOIN public.daily_product_snapshots ds ON p.pid = ds.pid
GROUP BY p.pid, p.sku, p.stock_quantity, p.landing_cost_price, p.cost_price, p.price, p.regular_price
)
-- Update the calculate_status table
INSERT INTO public.calculate_status (module_name, last_calculation_timestamp)
VALUES
('daily_snapshots', now()),
('product_metrics', now())
ON CONFLICT (module_name) DO UPDATE
SET last_calculation_timestamp = now();
-- Finally, update the ranks for products
UPDATE public.product_metrics pm SET
rank_by_revenue = rev_ranks.rank
FROM (
SELECT pid, RANK() OVER (ORDER BY net_revenue DESC) AS rank
FROM public.product_metrics
WHERE net_revenue > 0
) rev_ranks
WHERE pm.pid = rev_ranks.pid;
UPDATE public.product_metrics pm SET
rank_by_quantity = qty_ranks.rank
FROM (
SELECT pid, RANK() OVER (ORDER BY total_units_sold DESC) AS rank
FROM public.product_metrics
WHERE total_units_sold > 0
) qty_ranks
WHERE pm.pid = qty_ranks.pid;
UPDATE public.product_metrics pm SET
rank_by_profit = profit_ranks.rank
FROM (
SELECT pid, RANK() OVER (ORDER BY total_profit DESC) AS rank
FROM public.product_metrics
WHERE total_profit > 0
) profit_ranks
WHERE pm.pid = profit_ranks.pid;
-- Return count of products with metrics
SELECT COUNT(*) AS product_count FROM public.product_metrics
`);
};
async function populateInitialMetrics() {
let connection;
const startTime = Date.now();
let calculateHistoryId;
try {
// Clean up any previously running calculations
connection = await getConnection({
// Add performance-related settings
application_name: 'populate_metrics',
statement_timeout: PG_STATEMENT_TIMEOUT_MS, // 30 min timeout per statement
});
// Ensure the calculate_status table exists and has the correct structure
await connection.query(`
CREATE TABLE IF NOT EXISTS calculate_status (
module_name TEXT PRIMARY KEY,
last_calculation_timestamp TIMESTAMP WITH TIME ZONE NOT NULL DEFAULT CURRENT_TIMESTAMP
)
`);
await connection.query(`
UPDATE calculate_history
SET
status = 'cancelled',
end_time = NOW(),
duration_seconds = EXTRACT(EPOCH FROM (NOW() - start_time))::INTEGER,
error_message = 'Previous calculation was not completed properly'
WHERE status = 'running' AND additional_info->>'type' = 'populate_initial_metrics'
`);
// Create history record for this calculation
const historyResult = await connection.query(`
INSERT INTO calculate_history (
start_time,
status,
additional_info
) VALUES (
NOW(),
'running',
jsonb_build_object(
'type', 'populate_initial_metrics',
'sql_file', 'populate_initial_product_metrics.sql'
)
) RETURNING id
`);
calculateHistoryId = historyResult.rows[0].id;
// Initialize progress
global.outputProgress({
status: 'running',
operation: 'Starting initial product metrics population',
current: 0,
total: 100,
elapsed: '0s',
remaining: 'Calculating... (this may take a while)',
rate: 0,
percentage: '0',
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
},
historyId: calculateHistoryId
});
// Prepare the database - analyze tables
global.outputProgress({
status: 'running',
operation: 'Analyzing database tables for better query performance',
current: 2,
total: 100,
elapsed: global.formatElapsedTime(startTime),
remaining: 'Analyzing...',
rate: 0,
percentage: '2',
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
},
historyId: calculateHistoryId
});
// Enable better query planning and parallel operations
await connection.query(`
-- Analyze tables for better query planning
ANALYZE public.products;
ANALYZE public.purchase_orders;
ANALYZE public.daily_product_snapshots;
ANALYZE public.orders;
-- Enable parallel operations
SET LOCAL enable_parallel_append = on;
SET LOCAL enable_parallel_hash = on;
SET LOCAL max_parallel_workers_per_gather = 4;
-- Larger work memory for complex sorts/joins
SET LOCAL work_mem = '128MB';
`).catch(err => {
// Non-fatal if analyze fails
console.warn('Failed to analyze tables (non-fatal):', err.message);
});
// Execute the SQL query
global.outputProgress({
status: 'running',
operation: 'Executing initial metrics SQL query',
current: 5,
total: 100,
elapsed: global.formatElapsedTime(startTime),
remaining: 'Calculating... (this could take several hours with 150M+ records)',
rate: 0,
percentage: '5',
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
},
historyId: calculateHistoryId
});
// Read the SQL file
const sqlFilePath = path.resolve(__dirname, 'populate_initial_product_metrics.sql');
console.log('Base directory:', baseDir);
console.log('Script directory:', __dirname);
console.log('SQL file path:', sqlFilePath);
console.log('Current working directory:', process.cwd());
if (!fs.existsSync(sqlFilePath)) {
throw new Error(`SQL file not found at ${sqlFilePath}`);
}
// Read and clean up the SQL (Slightly more robust cleaning)
const sqlQuery = fs.readFileSync(sqlFilePath, 'utf8')
.replace(/\r\n/g, '\n') // Handle Windows endings
.replace(/\r/g, '\n') // Handle old Mac endings
.trim(); // Remove leading/trailing whitespace VERY IMPORTANT
// Log details again AFTER cleaning
console.log('SQL Query length (cleaned):', sqlQuery.length);
console.log('SQL Query structure validation:');
console.log('- Contains DO block:', sqlQuery.includes('DO $$') || sqlQuery.includes('DO $')); // Check both types of tag start
console.log('- Contains BEGIN:', sqlQuery.includes('BEGIN'));
console.log('- Contains END:', sqlQuery.includes('END $$;') || sqlQuery.includes('END $')); // Check both types of tag end
console.log('- First 50 chars:', JSON.stringify(sqlQuery.slice(0, 50)));
console.log('- Last 100 chars (cleaned):', JSON.stringify(sqlQuery.slice(-100)));
// Final check to ensure clean SQL ending
if (!sqlQuery.endsWith('END $$;')) {
console.warn('WARNING: SQL does not end with "END $$;". This might cause issues.');
console.log('Exact ending:', JSON.stringify(sqlQuery.slice(-20)));
}
// Execute the script
console.log('Starting initial product metrics population...');
// Track the query promise for potential cancellation
runningQueryPromise = connection.query({
text: sqlQuery,
rowMode: 'array'
});
await runningQueryPromise;
runningQueryPromise = null;
// Update progress to 100%
global.outputProgress({
status: 'complete',
operation: 'Initial product metrics population complete',
current: 100,
total: 100,
elapsed: global.formatElapsedTime(startTime),
remaining: '0s',
rate: 0,
percentage: '100',
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
},
historyId: calculateHistoryId
});
// Update history with completion
await connection.query(`
UPDATE calculate_history
SET
end_time = NOW(),
duration_seconds = $1,
status = 'completed'
WHERE id = $2
`, [Math.round((Date.now() - startTime) / 1000), calculateHistoryId]);
// Clear progress file on successful completion
global.clearProgress();
return {
success: true,
message: 'Initial product metrics population completed successfully',
duration: Math.round((Date.now() - startTime) / 1000)
};
} catch (error) {
const endTime = Date.now();
const totalElapsedSeconds = Math.round((endTime - startTime) / 1000);
// Enhanced error logging
console.error('Error details:', {
message: error.message,
code: error.code,
hint: error.hint,
position: error.position,
detail: error.detail,
where: error.where ? error.where.substring(0, 500) + '...' : undefined, // Truncate to avoid huge logs
severity: error.severity,
file: error.file,
line: error.line,
routine: error.routine
});
// Update history with error
if (connection && calculateHistoryId) {
await connection.query(`
UPDATE calculate_history
SET
end_time = NOW(),
duration_seconds = $1,
status = $2,
error_message = $3
WHERE id = $4
`, [
totalElapsedSeconds,
isCancelled ? 'cancelled' : 'failed',
error.message,
calculateHistoryId
]);
}
if (isCancelled) {
global.outputProgress({
status: 'cancelled',
operation: 'Calculation cancelled',
current: 50,
total: 100,
elapsed: global.formatElapsedTime(startTime),
remaining: null,
rate: 0,
percentage: '50',
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: totalElapsedSeconds
},
historyId: calculateHistoryId
});
} else {
global.outputProgress({
status: 'error',
operation: 'Error during initial product metrics population',
message: error.message,
current: 0,
total: 100,
elapsed: global.formatElapsedTime(startTime),
remaining: null,
rate: 0,
percentage: '0',
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: totalElapsedSeconds
},
historyId: calculateHistoryId
});
}
console.error('Error during initial product metrics population:', error);
return {
success: false,
error: error.message,
duration: totalElapsedSeconds
};
} finally {
if (connection) {
connection.release();
}
await closePool();
}
}
// Start population process
populateInitialMetrics()
.then(result => {
if (result.success) {
console.log(`Initial product metrics population completed successfully in ${result.duration} seconds`);
process.exit(0);
} else {
console.error(`Initial product metrics population failed: ${result.error}`);
process.exit(1);
}
})
.catch(err => {
console.error('Unexpected error:', err);
process.exit(1);
});

View File

@@ -0,0 +1,444 @@
-- Description: Performs the first population OR full recalculation of the product_metrics table based on
-- historically backfilled daily_product_snapshots and current product/PO data.
-- Calculates all metrics considering the full available history up to 'yesterday'.
-- Run ONCE after backfill_historical_snapshots_final.sql completes successfully.
-- Dependencies: Core import tables (products, purchase_orders, receivings), daily_product_snapshots (historically populated),
-- configuration tables (settings_*), product_metrics table must exist.
-- Frequency: Run ONCE.
DO $$
DECLARE
_module_name VARCHAR := 'product_metrics_population'; -- Generic name
_start_time TIMESTAMPTZ := clock_timestamp();
-- Calculate metrics AS OF the end of the last fully completed day
_calculation_date DATE := CURRENT_DATE - INTERVAL '1 day';
BEGIN
RAISE NOTICE 'Running % module. Calculating AS OF: %. Start Time: %', _module_name, _calculation_date, _start_time;
-- Optional: Consider TRUNCATE if you want a completely fresh start,
-- otherwise ON CONFLICT will update existing rows if this is rerun.
-- TRUNCATE TABLE public.product_metrics;
RAISE NOTICE 'Populating product_metrics table. This may take some time...';
-- CTEs to gather necessary information AS OF _calculation_date
WITH CurrentInfo AS (
-- Fetches current product details, including costs/prices used for forecasting & fallbacks
SELECT
p.pid, p.sku, p.title, p.brand, p.vendor, COALESCE(p.image_175, p.image) as image_url,
p.visible as is_visible, p.replenishable,
COALESCE(p.price, 0.00) as current_price, COALESCE(p.regular_price, 0.00) as current_regular_price,
COALESCE(p.cost_price, 0.00) as current_cost_price,
COALESCE(p.landing_cost_price, p.cost_price, 0.00) as current_effective_cost, -- Use landing if available, else cost
p.stock_quantity as current_stock, -- Use actual current stock for forecast base
p.created_at, p.first_received, p.date_last_sold,
p.moq,
p.uom,
p.total_sold as historical_total_sold -- Add historical total_sold from products table
FROM public.products p
),
OnOrderInfo AS (
-- Calculates current on-order quantities and costs
SELECT
pid,
SUM(ordered) AS on_order_qty,
SUM(ordered * po_cost_price) AS on_order_cost,
MIN(expected_date) AS earliest_expected_date
FROM public.purchase_orders
-- Use the most common statuses representing active, unfulfilled POs
WHERE status IN ('created', 'ordered', 'preordered', 'electronically_sent', 'electronically_ready_send', 'receiving_started')
AND status NOT IN ('canceled', 'done')
GROUP BY pid
),
HistoricalDates AS (
-- Determines key historical dates from orders and receivings
SELECT
p.pid,
MIN(o.date)::date AS date_first_sold,
MAX(o.date)::date AS max_order_date, -- Used as fallback for date_last_sold
MIN(r.received_date)::date AS date_first_received_calc,
MAX(r.received_date)::date AS date_last_received_calc
FROM public.products p
LEFT JOIN public.orders o ON p.pid = o.pid AND o.quantity > 0 AND o.status NOT IN ('canceled', 'returned')
LEFT JOIN public.receivings r ON p.pid = r.pid
GROUP BY p.pid
),
SnapshotAggregates AS (
-- Aggregates metrics from historical snapshots up to the _calculation_date
SELECT
pid,
-- Rolling periods relative to _calculation_date
SUM(CASE WHEN snapshot_date BETWEEN _calculation_date - INTERVAL '6 days' AND _calculation_date THEN units_sold ELSE 0 END) AS sales_7d,
SUM(CASE WHEN snapshot_date BETWEEN _calculation_date - INTERVAL '6 days' AND _calculation_date THEN net_revenue ELSE 0 END) AS revenue_7d,
SUM(CASE WHEN snapshot_date BETWEEN _calculation_date - INTERVAL '13 days' AND _calculation_date THEN units_sold ELSE 0 END) AS sales_14d,
SUM(CASE WHEN snapshot_date BETWEEN _calculation_date - INTERVAL '13 days' AND _calculation_date THEN net_revenue ELSE 0 END) AS revenue_14d,
SUM(CASE WHEN snapshot_date BETWEEN _calculation_date - INTERVAL '29 days' AND _calculation_date THEN units_sold ELSE 0 END) AS sales_30d,
SUM(CASE WHEN snapshot_date BETWEEN _calculation_date - INTERVAL '29 days' AND _calculation_date THEN net_revenue ELSE 0 END) AS revenue_30d,
SUM(CASE WHEN snapshot_date BETWEEN _calculation_date - INTERVAL '29 days' AND _calculation_date THEN cogs ELSE 0 END) AS cogs_30d,
SUM(CASE WHEN snapshot_date BETWEEN _calculation_date - INTERVAL '29 days' AND _calculation_date THEN profit ELSE 0 END) AS profit_30d,
SUM(CASE WHEN snapshot_date BETWEEN _calculation_date - INTERVAL '29 days' AND _calculation_date THEN units_returned ELSE 0 END) AS returns_units_30d,
SUM(CASE WHEN snapshot_date BETWEEN _calculation_date - INTERVAL '29 days' AND _calculation_date THEN returns_revenue ELSE 0 END) AS returns_revenue_30d,
SUM(CASE WHEN snapshot_date BETWEEN _calculation_date - INTERVAL '29 days' AND _calculation_date THEN discounts ELSE 0 END) AS discounts_30d,
SUM(CASE WHEN snapshot_date BETWEEN _calculation_date - INTERVAL '29 days' AND _calculation_date THEN gross_revenue ELSE 0 END) AS gross_revenue_30d,
SUM(CASE WHEN snapshot_date BETWEEN _calculation_date - INTERVAL '29 days' AND _calculation_date THEN gross_regular_revenue ELSE 0 END) AS gross_regular_revenue_30d,
SUM(CASE WHEN snapshot_date BETWEEN _calculation_date - INTERVAL '29 days' AND _calculation_date AND stockout_flag THEN 1 ELSE 0 END) AS stockout_days_30d,
SUM(CASE WHEN snapshot_date BETWEEN _calculation_date - INTERVAL '364 days' AND _calculation_date THEN units_sold ELSE 0 END) AS sales_365d,
SUM(CASE WHEN snapshot_date BETWEEN _calculation_date - INTERVAL '364 days' AND _calculation_date THEN net_revenue ELSE 0 END) AS revenue_365d,
SUM(CASE WHEN snapshot_date BETWEEN _calculation_date - INTERVAL '29 days' AND _calculation_date THEN units_received ELSE 0 END) AS received_qty_30d,
SUM(CASE WHEN snapshot_date BETWEEN _calculation_date - INTERVAL '29 days' AND _calculation_date THEN cost_received ELSE 0 END) AS received_cost_30d,
-- Averages over the last 30 days ending _calculation_date
AVG(CASE WHEN snapshot_date BETWEEN _calculation_date - INTERVAL '29 days' AND _calculation_date THEN eod_stock_quantity END) AS avg_stock_units_30d,
AVG(CASE WHEN snapshot_date BETWEEN _calculation_date - INTERVAL '29 days' AND _calculation_date THEN eod_stock_cost END) AS avg_stock_cost_30d,
AVG(CASE WHEN snapshot_date BETWEEN _calculation_date - INTERVAL '29 days' AND _calculation_date THEN eod_stock_retail END) AS avg_stock_retail_30d,
AVG(CASE WHEN snapshot_date BETWEEN _calculation_date - INTERVAL '29 days' AND _calculation_date THEN eod_stock_gross END) AS avg_stock_gross_30d,
-- Lifetime (Using historical total from products table)
(SELECT total_sold FROM public.products WHERE public.products.pid = daily_product_snapshots.pid) AS lifetime_sales,
COALESCE(
-- Option 1: Use 30-day average price if available
CASE WHEN SUM(CASE WHEN snapshot_date >= _calculation_date - INTERVAL '29 days' AND snapshot_date <= _calculation_date THEN units_sold ELSE 0 END) > 0 THEN
(SELECT total_sold FROM public.products WHERE public.products.pid = daily_product_snapshots.pid) * (
SUM(CASE WHEN snapshot_date >= _calculation_date - INTERVAL '29 days' AND snapshot_date <= _calculation_date THEN net_revenue ELSE 0 END) /
NULLIF(SUM(CASE WHEN snapshot_date >= _calculation_date - INTERVAL '29 days' AND snapshot_date <= _calculation_date THEN units_sold ELSE 0 END), 0)
)
ELSE NULL END,
-- Option 2: Try 365-day average price if available
CASE WHEN SUM(CASE WHEN snapshot_date >= _calculation_date - INTERVAL '364 days' AND snapshot_date <= _calculation_date THEN units_sold ELSE 0 END) > 0 THEN
(SELECT total_sold FROM public.products WHERE public.products.pid = daily_product_snapshots.pid) * (
SUM(CASE WHEN snapshot_date >= _calculation_date - INTERVAL '364 days' AND snapshot_date <= _calculation_date THEN net_revenue ELSE 0 END) /
NULLIF(SUM(CASE WHEN snapshot_date >= _calculation_date - INTERVAL '364 days' AND snapshot_date <= _calculation_date THEN units_sold ELSE 0 END), 0)
)
ELSE NULL END,
-- Option 3: Use current price from products table
(SELECT total_sold * price FROM public.products WHERE public.products.pid = daily_product_snapshots.pid),
-- Option 4: Use regular price if current price might be zero
(SELECT total_sold * regular_price FROM public.products WHERE public.products.pid = daily_product_snapshots.pid),
-- Final fallback: Use accumulated revenue (less accurate for old products)
SUM(net_revenue)
) AS lifetime_revenue,
-- Yesterday (Sales for the specific _calculation_date)
SUM(CASE WHEN snapshot_date = _calculation_date THEN units_sold ELSE 0 END) as yesterday_sales
FROM public.daily_product_snapshots
WHERE snapshot_date <= _calculation_date -- Ensure we only use data up to the calculation point
GROUP BY pid
),
FirstPeriodMetrics AS (
-- Calculates sales/revenue for first X days after first sale date
-- Uses HistoricalDates CTE to get the first sale date
SELECT
pid, date_first_sold,
SUM(CASE WHEN snapshot_date BETWEEN date_first_sold AND date_first_sold + INTERVAL '6 days' THEN units_sold ELSE 0 END) AS first_7_days_sales,
SUM(CASE WHEN snapshot_date BETWEEN date_first_sold AND date_first_sold + INTERVAL '6 days' THEN net_revenue ELSE 0 END) AS first_7_days_revenue,
SUM(CASE WHEN snapshot_date BETWEEN date_first_sold AND date_first_sold + INTERVAL '29 days' THEN units_sold ELSE 0 END) AS first_30_days_sales,
SUM(CASE WHEN snapshot_date BETWEEN date_first_sold AND date_first_sold + INTERVAL '29 days' THEN net_revenue ELSE 0 END) AS first_30_days_revenue,
SUM(CASE WHEN snapshot_date BETWEEN date_first_sold AND date_first_sold + INTERVAL '59 days' THEN units_sold ELSE 0 END) AS first_60_days_sales,
SUM(CASE WHEN snapshot_date BETWEEN date_first_sold AND date_first_sold + INTERVAL '59 days' THEN net_revenue ELSE 0 END) AS first_60_days_revenue,
SUM(CASE WHEN snapshot_date BETWEEN date_first_sold AND date_first_sold + INTERVAL '89 days' THEN units_sold ELSE 0 END) AS first_90_days_sales,
SUM(CASE WHEN snapshot_date BETWEEN date_first_sold AND date_first_sold + INTERVAL '89 days' THEN net_revenue ELSE 0 END) AS first_90_days_revenue
FROM public.daily_product_snapshots ds
JOIN HistoricalDates hd USING(pid)
WHERE date_first_sold IS NOT NULL
AND snapshot_date >= date_first_sold -- Only consider snapshots after first sale
AND snapshot_date <= _calculation_date -- Only up to the overall calculation date
GROUP BY pid, date_first_sold
),
Settings AS (
-- Fetches effective configuration settings (Product > Vendor > Global)
SELECT
p.pid,
COALESCE(sp.lead_time_days, sv.default_lead_time_days, (SELECT setting_value FROM settings_global WHERE setting_key = 'default_lead_time_days')::int, 14) AS effective_lead_time,
COALESCE(sp.days_of_stock, sv.default_days_of_stock, (SELECT setting_value FROM settings_global WHERE setting_key = 'default_days_of_stock')::int, 30) AS effective_days_of_stock,
COALESCE(sp.safety_stock, (SELECT setting_value::int FROM settings_global WHERE setting_key = 'default_safety_stock_units'), 0) AS effective_safety_stock,
COALESCE(sp.exclude_from_forecast, FALSE) AS exclude_forecast
FROM public.products p
LEFT JOIN public.settings_product sp ON p.pid = sp.pid
LEFT JOIN public.settings_vendor sv ON p.vendor = sv.vendor
),
AvgLeadTime AS (
-- Calculate Average Lead Time by joining purchase_orders with receivings
SELECT
po.pid,
AVG(GREATEST(1,
CASE
WHEN r.received_date IS NOT NULL AND po.date IS NOT NULL
THEN (r.received_date::date - po.date::date)
ELSE 1
END
))::int AS avg_lead_time_days_calc
FROM public.purchase_orders po
JOIN public.receivings r ON r.pid = po.pid
WHERE po.status = 'done' -- Completed POs
AND r.received_date IS NOT NULL
AND po.date IS NOT NULL
AND r.received_date >= po.date
GROUP BY po.pid
),
RankedForABC AS (
-- Ranks products based on the configured ABC metric (using historical data)
SELECT
p.pid,
CASE COALESCE((SELECT setting_value FROM settings_global WHERE setting_key = 'abc_calculation_basis'), 'revenue_30d')
WHEN 'sales_30d' THEN COALESCE(sa.sales_30d, 0)
WHEN 'lifetime_revenue' THEN COALESCE(sa.lifetime_revenue, 0)::numeric
ELSE COALESCE(sa.revenue_30d, 0) -- Default to revenue_30d
END AS metric_value
FROM public.products p -- Use products as the base
JOIN SnapshotAggregates sa ON p.pid = sa.pid
WHERE p.replenishable = TRUE -- Only rank replenishable products
AND (CASE COALESCE((SELECT setting_value FROM settings_global WHERE setting_key = 'abc_calculation_basis'), 'revenue_30d')
WHEN 'sales_30d' THEN COALESCE(sa.sales_30d, 0)
WHEN 'lifetime_revenue' THEN COALESCE(sa.lifetime_revenue, 0)::numeric
ELSE COALESCE(sa.revenue_30d, 0)
END) > 0 -- Only include products with non-zero contribution
),
CumulativeABC AS (
-- Calculates cumulative metric values for ABC ranking
SELECT
pid, metric_value,
SUM(metric_value) OVER (ORDER BY metric_value DESC NULLS LAST ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) as cumulative_metric,
SUM(metric_value) OVER () as total_metric
FROM RankedForABC
),
FinalABC AS (
-- Assigns A, B, or C class based on thresholds
SELECT
pid,
CASE
WHEN cumulative_metric / NULLIF(total_metric, 0) <= COALESCE((SELECT setting_value::numeric FROM settings_global WHERE setting_key = 'abc_revenue_threshold_a'), 0.8) THEN 'A'::char(1)
WHEN cumulative_metric / NULLIF(total_metric, 0) <= COALESCE((SELECT setting_value::numeric FROM settings_global WHERE setting_key = 'abc_revenue_threshold_b'), 0.95) THEN 'B'::char(1)
ELSE 'C'::char(1)
END AS abc_class_calc
FROM CumulativeABC
)
-- Final INSERT/UPDATE statement using all the prepared CTEs
INSERT INTO public.product_metrics (
pid, last_calculated, sku, title, brand, vendor, image_url, is_visible, is_replenishable,
current_price, current_regular_price, current_cost_price, current_landing_cost_price,
current_stock, current_stock_cost, current_stock_retail, current_stock_gross,
on_order_qty, on_order_cost, on_order_retail, earliest_expected_date,
date_created, date_first_received, date_last_received, date_first_sold, date_last_sold, age_days,
sales_7d, revenue_7d, sales_14d, revenue_14d, sales_30d, revenue_30d, cogs_30d, profit_30d,
returns_units_30d, returns_revenue_30d, discounts_30d, gross_revenue_30d, gross_regular_revenue_30d,
stockout_days_30d, sales_365d, revenue_365d,
avg_stock_units_30d, avg_stock_cost_30d, avg_stock_retail_30d, avg_stock_gross_30d,
received_qty_30d, received_cost_30d,
lifetime_sales, lifetime_revenue,
first_7_days_sales, first_7_days_revenue, first_30_days_sales, first_30_days_revenue,
first_60_days_sales, first_60_days_revenue, first_90_days_sales, first_90_days_revenue,
asp_30d, acp_30d, avg_ros_30d, avg_sales_per_day_30d,
margin_30d, markup_30d, gmroi_30d, stockturn_30d, return_rate_30d, discount_rate_30d,
stockout_rate_30d, markdown_30d, markdown_rate_30d, sell_through_30d,
avg_lead_time_days, abc_class,
sales_velocity_daily, config_lead_time, config_days_of_stock, config_safety_stock,
planning_period_days, lead_time_forecast_units, days_of_stock_forecast_units,
planning_period_forecast_units, lead_time_closing_stock, days_of_stock_closing_stock,
replenishment_needed_raw, replenishment_units, replenishment_cost, replenishment_retail, replenishment_profit,
to_order_units, forecast_lost_sales_units, forecast_lost_revenue,
stock_cover_in_days, po_cover_in_days, sells_out_in_days, replenish_date,
overstocked_units, overstocked_cost, overstocked_retail, is_old_stock,
yesterday_sales
)
SELECT
-- Select columns in order, joining all CTEs by pid
ci.pid, _start_time, ci.sku, ci.title, ci.brand, ci.vendor, ci.image_url, ci.is_visible, ci.replenishable,
ci.current_price, ci.current_regular_price, ci.current_cost_price, ci.current_effective_cost,
ci.current_stock, (ci.current_stock * COALESCE(ci.current_effective_cost, 0.00))::numeric(12,2), (ci.current_stock * COALESCE(ci.current_price, 0.00))::numeric(12,2), (ci.current_stock * COALESCE(ci.current_regular_price, 0.00))::numeric(12,2),
COALESCE(ooi.on_order_qty, 0), COALESCE(ooi.on_order_cost, 0.00)::numeric(12,2), (COALESCE(ooi.on_order_qty, 0) * COALESCE(ci.current_price, 0.00))::numeric(12,2), ooi.earliest_expected_date,
-- Fix type issue with date calculation - properly cast timestamps to dates before arithmetic
ci.created_at::date,
COALESCE(ci.first_received::date, hd.date_first_received_calc),
hd.date_last_received_calc,
hd.date_first_sold,
COALESCE(ci.date_last_sold, hd.max_order_date),
-- Fix timestamp + integer error by ensuring we work only with dates
CASE
WHEN LEAST(ci.created_at::date, COALESCE(hd.date_first_sold, ci.created_at::date)) IS NOT NULL
THEN (_calculation_date::date - LEAST(ci.created_at::date, COALESCE(hd.date_first_sold, ci.created_at::date)))::int
ELSE NULL
END,
COALESCE(sa.sales_7d, 0), COALESCE(sa.revenue_7d, 0), COALESCE(sa.sales_14d, 0), COALESCE(sa.revenue_14d, 0), COALESCE(sa.sales_30d, 0), COALESCE(sa.revenue_30d, 0), COALESCE(sa.cogs_30d, 0), COALESCE(sa.profit_30d, 0),
COALESCE(sa.returns_units_30d, 0), COALESCE(sa.returns_revenue_30d, 0), COALESCE(sa.discounts_30d, 0), COALESCE(sa.gross_revenue_30d, 0), COALESCE(sa.gross_regular_revenue_30d, 0),
COALESCE(sa.stockout_days_30d, 0), COALESCE(sa.sales_365d, 0), COALESCE(sa.revenue_365d, 0),
sa.avg_stock_units_30d, sa.avg_stock_cost_30d, sa.avg_stock_retail_30d, sa.avg_stock_gross_30d, -- Averages can be NULL if no data
COALESCE(sa.received_qty_30d, 0), COALESCE(sa.received_cost_30d, 0),
COALESCE(sa.lifetime_sales, 0), COALESCE(sa.lifetime_revenue, 0),
fpm.first_7_days_sales, fpm.first_7_days_revenue, fpm.first_30_days_sales, fpm.first_30_days_revenue,
fpm.first_60_days_sales, fpm.first_60_days_revenue, fpm.first_90_days_sales, fpm.first_90_days_revenue,
-- Calculated KPIs (using COALESCE on inputs where appropriate)
sa.revenue_30d / NULLIF(sa.sales_30d, 0) AS asp_30d,
sa.cogs_30d / NULLIF(sa.sales_30d, 0) AS acp_30d,
sa.profit_30d / NULLIF(sa.sales_30d, 0) AS avg_ros_30d,
COALESCE(sa.sales_30d, 0) / 30.0 AS avg_sales_per_day_30d,
-- Fix for percentages - cast to numeric with appropriate precision
((sa.profit_30d / NULLIF(sa.revenue_30d, 0)) * 100)::numeric(8,2) AS margin_30d,
((sa.profit_30d / NULLIF(sa.cogs_30d, 0)) * 100)::numeric(8,2) AS markup_30d,
sa.profit_30d / NULLIF(sa.avg_stock_cost_30d, 0) AS gmroi_30d,
sa.sales_30d / NULLIF(sa.avg_stock_units_30d, 0) AS stockturn_30d,
((sa.returns_units_30d / NULLIF(COALESCE(sa.sales_30d, 0) + COALESCE(sa.returns_units_30d, 0), 0)) * 100)::numeric(8,2) AS return_rate_30d,
((sa.discounts_30d / NULLIF(sa.gross_revenue_30d, 0)) * 100)::numeric(8,2) AS discount_rate_30d,
((COALESCE(sa.stockout_days_30d, 0) / 30.0) * 100)::numeric(8,2) AS stockout_rate_30d,
GREATEST(0, sa.gross_regular_revenue_30d - sa.gross_revenue_30d) AS markdown_30d, -- Ensure markdown isn't negative
((GREATEST(0, sa.gross_regular_revenue_30d - sa.gross_revenue_30d) / NULLIF(sa.gross_regular_revenue_30d, 0)) * 100)::numeric(8,2) AS markdown_rate_30d,
-- Sell Through Rate: Sales / (Stock at end of period + Sales). This is one definition proxying for Sales / Beginning Stock.
((sa.sales_30d / NULLIF(
(SELECT eod_stock_quantity FROM daily_product_snapshots WHERE snapshot_date = _calculation_date AND pid = ci.pid LIMIT 1) + COALESCE(sa.sales_30d, 0)
, 0)) * 100)::numeric(8,2) AS sell_through_30d,
-- Use calculated periodic metrics
alt.avg_lead_time_days_calc,
CASE
WHEN ci.replenishable = FALSE THEN NULL -- Non-replenishable don't get a class
ELSE COALESCE(fa.abc_class_calc, 'C') -- Default ranked replenishable but non-contributing to C
END,
-- Forecasting intermediate values (based on historical aggregates ending _calculation_date)
(COALESCE(sa.sales_30d, 0) / NULLIF(GREATEST(1.0, 30.0 - COALESCE(sa.stockout_days_30d, 0)), 0)) AS sales_velocity_daily, -- Ensure divisor > 0
s.effective_lead_time AS config_lead_time, s.effective_days_of_stock AS config_days_of_stock, s.effective_safety_stock AS config_safety_stock,
(s.effective_lead_time + s.effective_days_of_stock) AS planning_period_days,
-- Calculate raw forecast need components (using safe velocity)
(COALESCE(sa.sales_30d, 0) / NULLIF(GREATEST(1.0, 30.0 - COALESCE(sa.stockout_days_30d, 0)), 0)) * s.effective_lead_time AS lead_time_forecast_units,
(COALESCE(sa.sales_30d, 0) / NULLIF(GREATEST(1.0, 30.0 - COALESCE(sa.stockout_days_30d, 0)), 0)) * s.effective_days_of_stock AS days_of_stock_forecast_units,
-- Planning period forecast units (sum of lead time and DOS units)
CEILING((COALESCE(sa.sales_30d, 0) / NULLIF(GREATEST(1.0, 30.0 - COALESCE(sa.stockout_days_30d, 0)), 0)) * s.effective_lead_time)
+ CEILING((COALESCE(sa.sales_30d, 0) / NULLIF(GREATEST(1.0, 30.0 - COALESCE(sa.stockout_days_30d, 0)), 0)) * s.effective_days_of_stock) AS planning_period_forecast_units,
-- Closing stock calculations (using raw forecast components for accuracy before rounding)
(ci.current_stock + COALESCE(ooi.on_order_qty, 0) - ((COALESCE(sa.sales_30d, 0) / NULLIF(GREATEST(1.0, 30.0 - COALESCE(sa.stockout_days_30d, 0)), 0)) * s.effective_lead_time)) AS lead_time_closing_stock,
((ci.current_stock + COALESCE(ooi.on_order_qty, 0) - ((COALESCE(sa.sales_30d, 0) / NULLIF(GREATEST(1.0, 30.0 - COALESCE(sa.stockout_days_30d, 0)), 0)) * s.effective_lead_time)))
- ((COALESCE(sa.sales_30d, 0) / NULLIF(GREATEST(1.0, 30.0 - COALESCE(sa.stockout_days_30d, 0)), 0)) * s.effective_days_of_stock) AS days_of_stock_closing_stock,
-- Raw replenishment needed
(CEILING((COALESCE(sa.sales_30d, 0) / NULLIF(GREATEST(1.0, 30.0 - COALESCE(sa.stockout_days_30d, 0)), 0)) * s.effective_lead_time) -- Use rounded forecast units
+ CEILING((COALESCE(sa.sales_30d, 0) / NULLIF(GREATEST(1.0, 30.0 - COALESCE(sa.stockout_days_30d, 0)), 0)) * s.effective_days_of_stock))
+ s.effective_safety_stock - ci.current_stock - COALESCE(ooi.on_order_qty, 0) AS replenishment_needed_raw,
-- Final Forecasting Metrics
-- Replenishment Units (calculated need, before MOQ)
CEILING(GREATEST(0,
(CEILING((COALESCE(sa.sales_30d, 0) / NULLIF(GREATEST(1.0, 30.0 - COALESCE(sa.stockout_days_30d, 0)), 0)) * s.effective_lead_time)
+ CEILING((COALESCE(sa.sales_30d, 0) / NULLIF(GREATEST(1.0, 30.0 - COALESCE(sa.stockout_days_30d, 0)), 0)) * s.effective_days_of_stock))
+ s.effective_safety_stock - ci.current_stock - COALESCE(ooi.on_order_qty, 0)
))::int AS replenishment_units,
-- Replenishment Cost/Retail/Profit (based on replenishment_units)
(CEILING(GREATEST(0,
(CEILING((COALESCE(sa.sales_30d, 0) / NULLIF(GREATEST(1.0, 30.0 - COALESCE(sa.stockout_days_30d, 0)), 0)) * s.effective_lead_time)
+ CEILING((COALESCE(sa.sales_30d, 0) / NULLIF(GREATEST(1.0, 30.0 - COALESCE(sa.stockout_days_30d, 0)), 0)) * s.effective_days_of_stock))
+ s.effective_safety_stock - ci.current_stock - COALESCE(ooi.on_order_qty, 0)
))::int) * COALESCE(ci.current_effective_cost, 0.00)::numeric(12,2) AS replenishment_cost,
(CEILING(GREATEST(0,
(CEILING((COALESCE(sa.sales_30d, 0) / NULLIF(GREATEST(1.0, 30.0 - COALESCE(sa.stockout_days_30d, 0)), 0)) * s.effective_lead_time)
+ CEILING((COALESCE(sa.sales_30d, 0) / NULLIF(GREATEST(1.0, 30.0 - COALESCE(sa.stockout_days_30d, 0)), 0)) * s.effective_days_of_stock))
+ s.effective_safety_stock - ci.current_stock - COALESCE(ooi.on_order_qty, 0)
))::int) * COALESCE(ci.current_price, 0.00)::numeric(12,2) AS replenishment_retail,
(CEILING(GREATEST(0,
(CEILING((COALESCE(sa.sales_30d, 0) / NULLIF(GREATEST(1.0, 30.0 - COALESCE(sa.stockout_days_30d, 0)), 0)) * s.effective_lead_time)
+ CEILING((COALESCE(sa.sales_30d, 0) / NULLIF(GREATEST(1.0, 30.0 - COALESCE(sa.stockout_days_30d, 0)), 0)) * s.effective_days_of_stock))
+ s.effective_safety_stock - ci.current_stock - COALESCE(ooi.on_order_qty, 0)
))::int) * (COALESCE(ci.current_price, 0.00) - COALESCE(ci.current_effective_cost, 0.00))::numeric(12,2) AS replenishment_profit,
-- *** FIX: To Order Units (Apply MOQ rounding) ***
CASE
WHEN COALESCE(ci.moq, 0) <= 1 THEN -- Treat no/invalid MOQ or MOQ=1 as no rounding needed
CEILING(GREATEST(0,
(CEILING((COALESCE(sa.sales_30d, 0) / NULLIF(GREATEST(1.0, 30.0 - COALESCE(sa.stockout_days_30d, 0)), 0)) * s.effective_lead_time)
+ CEILING((COALESCE(sa.sales_30d, 0) / NULLIF(GREATEST(1.0, 30.0 - COALESCE(sa.stockout_days_30d, 0)), 0)) * s.effective_days_of_stock))
+ s.effective_safety_stock - ci.current_stock - COALESCE(ooi.on_order_qty, 0)
))::int
ELSE -- Apply MOQ rounding: Round UP to nearest multiple of MOQ
(CEILING(GREATEST(0,
(CEILING((COALESCE(sa.sales_30d, 0) / NULLIF(GREATEST(1.0, 30.0 - COALESCE(sa.stockout_days_30d, 0)), 0)) * s.effective_lead_time)
+ CEILING((COALESCE(sa.sales_30d, 0) / NULLIF(GREATEST(1.0, 30.0 - COALESCE(sa.stockout_days_30d, 0)), 0)) * s.effective_days_of_stock))
+ s.effective_safety_stock - ci.current_stock - COALESCE(ooi.on_order_qty, 0)
) / NULLIF(ci.moq::numeric, 0)) * COALESCE(ci.moq, 1))::int
END AS to_order_units,
-- Forecast Lost Sales (Units occurring during lead time if current+on_order is insufficient)
CEILING(GREATEST(0,
((COALESCE(sa.sales_30d, 0) / NULLIF(GREATEST(1.0, 30.0 - COALESCE(sa.stockout_days_30d, 0)), 0)) * s.effective_lead_time) -- Demand during lead time
- (ci.current_stock + COALESCE(ooi.on_order_qty, 0)) -- Supply available before order arrives
))::int AS forecast_lost_sales_units,
-- Forecast Lost Revenue
(CEILING(GREATEST(0,
((COALESCE(sa.sales_30d, 0) / NULLIF(GREATEST(1.0, 30.0 - COALESCE(sa.stockout_days_30d, 0)), 0)) * s.effective_lead_time)
- (ci.current_stock + COALESCE(ooi.on_order_qty, 0))
))::int) * COALESCE(ci.current_price, 0.00)::numeric(12,2) AS forecast_lost_revenue,
-- Stock Cover etc (using safe velocity)
ci.current_stock / NULLIF((COALESCE(sa.sales_30d, 0) / NULLIF(GREATEST(1.0, 30.0 - COALESCE(sa.stockout_days_30d, 0)), 0)), 0) AS stock_cover_in_days,
COALESCE(ooi.on_order_qty, 0) / NULLIF((COALESCE(sa.sales_30d, 0) / NULLIF(GREATEST(1.0, 30.0 - COALESCE(sa.stockout_days_30d, 0)), 0)), 0) AS po_cover_in_days,
(ci.current_stock + COALESCE(ooi.on_order_qty, 0)) / NULLIF((COALESCE(sa.sales_30d, 0) / NULLIF(GREATEST(1.0, 30.0 - COALESCE(sa.stockout_days_30d, 0)), 0)), 0) AS sells_out_in_days,
-- Replenish Date (Project forward from 'today', which is _calculation_date + 1 day)
CASE
WHEN (COALESCE(sa.sales_30d, 0) / NULLIF(GREATEST(1.0, 30.0 - COALESCE(sa.stockout_days_30d, 0)), 0)) > 0 -- Check for positive velocity
THEN
_calculation_date + INTERVAL '1 day' -- Today
+ FLOOR(GREATEST(0, ci.current_stock - s.effective_safety_stock) -- Stock above safety
/ (COALESCE(sa.sales_30d, 0) / NULLIF(GREATEST(1.0, 30.0 - COALESCE(sa.stockout_days_30d, 0)), 0)) -- divided by velocity
)::integer * INTERVAL '1 day' -- Gives date safety stock is hit
- s.effective_lead_time * INTERVAL '1 day' -- Subtract lead time
ELSE NULL -- Cannot calculate if no sales velocity
END AS replenish_date,
-- Overstocked Units (Stock above safety + planning period demand)
GREATEST(0, ci.current_stock - s.effective_safety_stock -
(CEILING((COALESCE(sa.sales_30d, 0) / NULLIF(GREATEST(1.0, 30.0 - COALESCE(sa.stockout_days_30d, 0)), 0)) * s.effective_lead_time) -- Demand during lead time
+ CEILING((COALESCE(sa.sales_30d, 0) / NULLIF(GREATEST(1.0, 30.0 - COALESCE(sa.stockout_days_30d, 0)), 0)) * s.effective_days_of_stock)) -- Demand during DOS
)::int AS overstocked_units,
(GREATEST(0, ci.current_stock - s.effective_safety_stock -
(CEILING((COALESCE(sa.sales_30d, 0) / NULLIF(GREATEST(1.0, 30.0 - COALESCE(sa.stockout_days_30d, 0)), 0)) * s.effective_lead_time)
+ CEILING((COALESCE(sa.sales_30d, 0) / NULLIF(GREATEST(1.0, 30.0 - COALESCE(sa.stockout_days_30d, 0)), 0)) * s.effective_days_of_stock))
)::int) * COALESCE(ci.current_effective_cost, 0.00)::numeric(12,2) AS overstocked_cost,
(GREATEST(0, ci.current_stock - s.effective_safety_stock -
(CEILING((COALESCE(sa.sales_30d, 0) / NULLIF(GREATEST(1.0, 30.0 - COALESCE(sa.stockout_days_30d, 0)), 0)) * s.effective_lead_time)
+ CEILING((COALESCE(sa.sales_30d, 0) / NULLIF(GREATEST(1.0, 30.0 - COALESCE(sa.stockout_days_30d, 0)), 0)) * s.effective_days_of_stock))
)::int) * COALESCE(ci.current_price, 0.00)::numeric(12,2) AS overstocked_retail,
-- Old Stock Flag
(ci.created_at::date < (_calculation_date - INTERVAL '60 day')::date) AND
(COALESCE(ci.date_last_sold, hd.max_order_date) IS NULL OR COALESCE(ci.date_last_sold, hd.max_order_date) < (_calculation_date - INTERVAL '60 day')::date) AND
(hd.date_last_received_calc IS NULL OR hd.date_last_received_calc < (_calculation_date - INTERVAL '60 day')::date) AND
COALESCE(ooi.on_order_qty, 0) = 0 AS is_old_stock,
COALESCE(sa.yesterday_sales, 0) -- Sales for _calculation_date
FROM CurrentInfo ci
LEFT JOIN OnOrderInfo ooi ON ci.pid = ooi.pid
LEFT JOIN HistoricalDates hd ON ci.pid = hd.pid
LEFT JOIN SnapshotAggregates sa ON ci.pid = sa.pid
LEFT JOIN FirstPeriodMetrics fpm ON ci.pid = fpm.pid
LEFT JOIN Settings s ON ci.pid = s.pid
LEFT JOIN AvgLeadTime alt ON ci.pid = alt.pid -- Join calculated avg lead time
LEFT JOIN FinalABC fa ON ci.pid = fa.pid -- Join calculated ABC class
WHERE s.exclude_forecast IS FALSE OR s.exclude_forecast IS NULL
ON CONFLICT (pid) DO UPDATE SET
-- *** IMPORTANT: List ALL columns here, ensuring order matches INSERT list ***
-- Update ALL columns to ensure entire row is refreshed
last_calculated = EXCLUDED.last_calculated, sku = EXCLUDED.sku, title = EXCLUDED.title, brand = EXCLUDED.brand, vendor = EXCLUDED.vendor, image_url = EXCLUDED.image_url, is_visible = EXCLUDED.is_visible, is_replenishable = EXCLUDED.is_replenishable,
current_price = EXCLUDED.current_price, current_regular_price = EXCLUDED.current_regular_price, current_cost_price = EXCLUDED.current_cost_price, current_landing_cost_price = EXCLUDED.current_landing_cost_price,
current_stock = EXCLUDED.current_stock, current_stock_cost = EXCLUDED.current_stock_cost, current_stock_retail = EXCLUDED.current_stock_retail, current_stock_gross = EXCLUDED.current_stock_gross,
on_order_qty = EXCLUDED.on_order_qty, on_order_cost = EXCLUDED.on_order_cost, on_order_retail = EXCLUDED.on_order_retail, earliest_expected_date = EXCLUDED.earliest_expected_date,
date_created = EXCLUDED.date_created, date_first_received = EXCLUDED.date_first_received, date_last_received = EXCLUDED.date_last_received, date_first_sold = EXCLUDED.date_first_sold, date_last_sold = EXCLUDED.date_last_sold, age_days = EXCLUDED.age_days,
sales_7d = EXCLUDED.sales_7d, revenue_7d = EXCLUDED.revenue_7d, sales_14d = EXCLUDED.sales_14d, revenue_14d = EXCLUDED.revenue_14d, sales_30d = EXCLUDED.sales_30d, revenue_30d = EXCLUDED.revenue_30d, cogs_30d = EXCLUDED.cogs_30d, profit_30d = EXCLUDED.profit_30d,
returns_units_30d = EXCLUDED.returns_units_30d, returns_revenue_30d = EXCLUDED.returns_revenue_30d, discounts_30d = EXCLUDED.discounts_30d, gross_revenue_30d = EXCLUDED.gross_revenue_30d, gross_regular_revenue_30d = EXCLUDED.gross_regular_revenue_30d,
stockout_days_30d = EXCLUDED.stockout_days_30d, sales_365d = EXCLUDED.sales_365d, revenue_365d = EXCLUDED.revenue_365d,
avg_stock_units_30d = EXCLUDED.avg_stock_units_30d, avg_stock_cost_30d = EXCLUDED.avg_stock_cost_30d, avg_stock_retail_30d = EXCLUDED.avg_stock_retail_30d, avg_stock_gross_30d = EXCLUDED.avg_stock_gross_30d,
received_qty_30d = EXCLUDED.received_qty_30d, received_cost_30d = EXCLUDED.received_cost_30d,
lifetime_sales = EXCLUDED.lifetime_sales, lifetime_revenue = EXCLUDED.lifetime_revenue,
first_7_days_sales = EXCLUDED.first_7_days_sales, first_7_days_revenue = EXCLUDED.first_7_days_revenue, first_30_days_sales = EXCLUDED.first_30_days_sales, first_30_days_revenue = EXCLUDED.first_30_days_revenue,
first_60_days_sales = EXCLUDED.first_60_days_sales, first_60_days_revenue = EXCLUDED.first_60_days_revenue, first_90_days_sales = EXCLUDED.first_90_days_sales, first_90_days_revenue = EXCLUDED.first_90_days_revenue,
asp_30d = EXCLUDED.asp_30d, acp_30d = EXCLUDED.acp_30d, avg_ros_30d = EXCLUDED.avg_ros_30d, avg_sales_per_day_30d = EXCLUDED.avg_sales_per_day_30d,
margin_30d = EXCLUDED.margin_30d, markup_30d = EXCLUDED.markup_30d, gmroi_30d = EXCLUDED.gmroi_30d, stockturn_30d = EXCLUDED.stockturn_30d, return_rate_30d = EXCLUDED.return_rate_30d, discount_rate_30d = EXCLUDED.discount_rate_30d,
stockout_rate_30d = EXCLUDED.stockout_rate_30d, markdown_30d = EXCLUDED.markdown_30d, markdown_rate_30d = EXCLUDED.markdown_rate_30d, sell_through_30d = EXCLUDED.sell_through_30d,
avg_lead_time_days = EXCLUDED.avg_lead_time_days, abc_class = EXCLUDED.abc_class,
sales_velocity_daily = EXCLUDED.sales_velocity_daily, config_lead_time = EXCLUDED.config_lead_time, config_days_of_stock = EXCLUDED.config_days_of_stock, config_safety_stock = EXCLUDED.config_safety_stock,
planning_period_days = EXCLUDED.planning_period_days, lead_time_forecast_units = EXCLUDED.lead_time_forecast_units, days_of_stock_forecast_units = EXCLUDED.days_of_stock_forecast_units,
planning_period_forecast_units = EXCLUDED.planning_period_forecast_units, lead_time_closing_stock = EXCLUDED.lead_time_closing_stock, days_of_stock_closing_stock = EXCLUDED.days_of_stock_closing_stock,
replenishment_needed_raw = EXCLUDED.replenishment_needed_raw, replenishment_units = EXCLUDED.replenishment_units, replenishment_cost = EXCLUDED.replenishment_cost, replenishment_retail = EXCLUDED.replenishment_retail, replenishment_profit = EXCLUDED.replenishment_profit,
to_order_units = EXCLUDED.to_order_units, -- *** Update to use EXCLUDED ***
forecast_lost_sales_units = EXCLUDED.forecast_lost_sales_units, forecast_lost_revenue = EXCLUDED.forecast_lost_revenue,
stock_cover_in_days = EXCLUDED.stock_cover_in_days, po_cover_in_days = EXCLUDED.po_cover_in_days, sells_out_in_days = EXCLUDED.sells_out_in_days, replenish_date = EXCLUDED.replenish_date,
overstocked_units = EXCLUDED.overstocked_units, overstocked_cost = EXCLUDED.overstocked_cost, overstocked_retail = EXCLUDED.overstocked_retail, is_old_stock = EXCLUDED.is_old_stock,
yesterday_sales = EXCLUDED.yesterday_sales;
RAISE NOTICE 'Finished % module. Duration: %', _module_name, clock_timestamp() - _start_time;
END $$;

View File

@@ -0,0 +1,152 @@
-- Description: Rebuilds daily product snapshots from scratch using real orders data.
-- Fixes issues with duplicated/inflated metrics.
-- Dependencies: Core import tables (products, orders, receivings).
-- Frequency: One-time run to clear out problematic data.
DO $$
DECLARE
_module_name TEXT := 'rebuild_daily_snapshots';
_start_time TIMESTAMPTZ := clock_timestamp();
_date DATE;
_count INT;
_total_records INT := 0;
_begin_date DATE := (SELECT MIN(date)::date FROM orders WHERE date >= '2024-01-01'); -- Starting point for data rebuild
_end_date DATE := CURRENT_DATE;
BEGIN
RAISE NOTICE 'Beginning daily snapshots rebuild from % to %. Starting at %', _begin_date, _end_date, _start_time;
-- First truncate the existing snapshots to ensure a clean slate
TRUNCATE TABLE public.daily_product_snapshots;
RAISE NOTICE 'Cleared existing snapshot data';
-- Now rebuild the snapshots day by day
_date := _begin_date;
WHILE _date <= _end_date LOOP
RAISE NOTICE 'Processing date %...', _date;
-- Create snapshots for this date
WITH SalesData AS (
SELECT
p.pid,
p.sku,
-- Count orders to ensure we only include products with real activity
COUNT(o.id) as order_count,
-- Aggregate Sales (Quantity > 0, Status not Canceled/Returned)
COALESCE(SUM(CASE WHEN o.quantity > 0 AND COALESCE(o.status, 'pending') NOT IN ('canceled', 'returned') THEN o.quantity ELSE 0 END), 0) AS units_sold,
COALESCE(SUM(CASE WHEN o.quantity > 0 AND COALESCE(o.status, 'pending') NOT IN ('canceled', 'returned') THEN o.price * o.quantity ELSE 0 END), 0.00) AS gross_revenue_unadjusted,
COALESCE(SUM(CASE WHEN o.quantity > 0 AND COALESCE(o.status, 'pending') NOT IN ('canceled', 'returned') THEN o.discount ELSE 0 END), 0.00) AS discounts,
COALESCE(SUM(CASE WHEN o.quantity > 0 AND COALESCE(o.status, 'pending') NOT IN ('canceled', 'returned') THEN COALESCE(o.costeach, p.landing_cost_price, p.cost_price) * o.quantity ELSE 0 END), 0.00) AS cogs,
COALESCE(SUM(CASE WHEN o.quantity > 0 AND COALESCE(o.status, 'pending') NOT IN ('canceled', 'returned') THEN p.regular_price * o.quantity ELSE 0 END), 0.00) AS gross_regular_revenue,
-- Aggregate Returns (Quantity < 0 or Status = Returned)
COALESCE(SUM(CASE WHEN o.quantity < 0 OR COALESCE(o.status, 'pending') = 'returned' THEN ABS(o.quantity) ELSE 0 END), 0) AS units_returned,
COALESCE(SUM(CASE WHEN o.quantity < 0 OR COALESCE(o.status, 'pending') = 'returned' THEN o.price * ABS(o.quantity) ELSE 0 END), 0.00) AS returns_revenue
FROM public.products p
LEFT JOIN public.orders o
ON p.pid = o.pid
AND o.date::date = _date
GROUP BY p.pid, p.sku
HAVING COUNT(o.id) > 0 -- Only include products with actual orders for this date
),
ReceivingData AS (
SELECT
r.pid,
-- Count receiving documents to ensure we only include products with real activity
COUNT(DISTINCT r.receiving_id) as receiving_count,
-- Calculate received quantity for this day
SUM(r.qty_each) AS units_received,
-- Calculate received cost for this day
SUM(r.qty_each * r.cost_each) AS cost_received
FROM public.receivings r
WHERE r.received_date::date = _date
GROUP BY r.pid
HAVING COUNT(DISTINCT r.receiving_id) > 0 OR SUM(r.qty_each) > 0
),
-- Get stock quantities for the day - note this is approximate since we're using current products data
StockData AS (
SELECT
p.pid,
p.stock_quantity,
COALESCE(p.landing_cost_price, p.cost_price, 0.00) as effective_cost_price,
COALESCE(p.price, 0.00) as current_price,
COALESCE(p.regular_price, 0.00) as current_regular_price
FROM public.products p
)
INSERT INTO public.daily_product_snapshots (
snapshot_date,
pid,
sku,
eod_stock_quantity,
eod_stock_cost,
eod_stock_retail,
eod_stock_gross,
stockout_flag,
units_sold,
units_returned,
gross_revenue,
discounts,
returns_revenue,
net_revenue,
cogs,
gross_regular_revenue,
profit,
units_received,
cost_received,
calculation_timestamp
)
SELECT
_date AS snapshot_date,
COALESCE(sd.pid, rd.pid) AS pid,
sd.sku,
-- Use current stock as approximation, since historical stock data may not be available
s.stock_quantity AS eod_stock_quantity,
s.stock_quantity * s.effective_cost_price AS eod_stock_cost,
s.stock_quantity * s.current_price AS eod_stock_retail,
s.stock_quantity * s.current_regular_price AS eod_stock_gross,
(s.stock_quantity <= 0) AS stockout_flag,
-- Sales metrics
COALESCE(sd.units_sold, 0),
COALESCE(sd.units_returned, 0),
COALESCE(sd.gross_revenue_unadjusted, 0.00),
COALESCE(sd.discounts, 0.00),
COALESCE(sd.returns_revenue, 0.00),
COALESCE(sd.gross_revenue_unadjusted, 0.00) - COALESCE(sd.discounts, 0.00) AS net_revenue,
COALESCE(sd.cogs, 0.00),
COALESCE(sd.gross_regular_revenue, 0.00),
(COALESCE(sd.gross_revenue_unadjusted, 0.00) - COALESCE(sd.discounts, 0.00)) - COALESCE(sd.cogs, 0.00) AS profit,
-- Receiving metrics
COALESCE(rd.units_received, 0),
COALESCE(rd.cost_received, 0.00),
_start_time
FROM SalesData sd
FULL OUTER JOIN ReceivingData rd ON sd.pid = rd.pid
LEFT JOIN StockData s ON COALESCE(sd.pid, rd.pid) = s.pid
WHERE (COALESCE(sd.order_count, 0) > 0 OR COALESCE(rd.receiving_count, 0) > 0);
-- Get record count for this day
GET DIAGNOSTICS _count = ROW_COUNT;
_total_records := _total_records + _count;
RAISE NOTICE 'Added % snapshot records for date %', _count, _date;
-- Move to next day
_date := _date + INTERVAL '1 day';
END LOOP;
RAISE NOTICE 'Rebuilding daily snapshots complete. Added % total records across % days.', _total_records, (_end_date - _begin_date)::integer + 1;
-- Update the status table for daily_snapshots
INSERT INTO public.calculate_status (module_name, last_calculation_timestamp)
VALUES ('daily_snapshots', _start_time)
ON CONFLICT (module_name) DO UPDATE SET last_calculation_timestamp = _start_time;
-- Now update product_metrics based on the rebuilt snapshots
RAISE NOTICE 'Triggering update of product_metrics table...';
-- Call the update_product_metrics procedure directly
-- Your system might use a different method to trigger this update
PERFORM pg_notify('recalculate_metrics', 'product_metrics');
RAISE NOTICE 'Rebuild complete. Duration: %', clock_timestamp() - _start_time;
END $$;

View File

@@ -0,0 +1,106 @@
-- Description: Calculates and updates aggregated metrics per brand.
-- Dependencies: product_metrics, products, calculate_status table.
-- Frequency: Daily (after product_metrics update).
DO $$
DECLARE
_module_name VARCHAR := 'brand_metrics';
_start_time TIMESTAMPTZ := clock_timestamp();
_min_revenue NUMERIC := 50.00; -- Minimum revenue threshold for margin calculation
BEGIN
RAISE NOTICE 'Running % calculation...', _module_name;
WITH BrandAggregates AS (
-- Aggregate metrics from product_metrics table per brand
SELECT
COALESCE(p.brand, 'Unbranded') AS brand_group, -- Group NULL/empty brands together
COUNT(DISTINCT pm.pid) AS product_count,
COUNT(DISTINCT CASE WHEN pm.is_visible THEN pm.pid END) AS active_product_count,
COUNT(DISTINCT CASE WHEN pm.is_replenishable THEN pm.pid END) AS replenishable_product_count,
SUM(pm.current_stock) AS current_stock_units,
SUM(pm.current_stock_cost) AS current_stock_cost,
SUM(pm.current_stock_retail) AS current_stock_retail,
-- Only include products with valid sales data in each time period
COUNT(DISTINCT CASE WHEN pm.sales_7d > 0 THEN pm.pid END) AS products_with_sales_7d,
SUM(CASE WHEN pm.sales_7d > 0 THEN pm.sales_7d ELSE 0 END) AS sales_7d,
SUM(CASE WHEN pm.revenue_7d > 0 THEN pm.revenue_7d ELSE 0 END) AS revenue_7d,
COUNT(DISTINCT CASE WHEN pm.sales_30d > 0 THEN pm.pid END) AS products_with_sales_30d,
SUM(CASE WHEN pm.sales_30d > 0 THEN pm.sales_30d ELSE 0 END) AS sales_30d,
SUM(CASE WHEN pm.revenue_30d > 0 THEN pm.revenue_30d ELSE 0 END) AS revenue_30d,
SUM(CASE WHEN pm.cogs_30d > 0 THEN pm.cogs_30d ELSE 0 END) AS cogs_30d,
SUM(CASE WHEN pm.profit_30d != 0 THEN pm.profit_30d ELSE 0 END) AS profit_30d,
COUNT(DISTINCT CASE WHEN pm.sales_365d > 0 THEN pm.pid END) AS products_with_sales_365d,
SUM(CASE WHEN pm.sales_365d > 0 THEN pm.sales_365d ELSE 0 END) AS sales_365d,
SUM(CASE WHEN pm.revenue_365d > 0 THEN pm.revenue_365d ELSE 0 END) AS revenue_365d,
COUNT(DISTINCT CASE WHEN pm.lifetime_sales > 0 THEN pm.pid END) AS products_with_lifetime_sales,
SUM(CASE WHEN pm.lifetime_sales > 0 THEN pm.lifetime_sales ELSE 0 END) AS lifetime_sales,
SUM(CASE WHEN pm.lifetime_revenue > 0 THEN pm.lifetime_revenue ELSE 0 END) AS lifetime_revenue
FROM public.product_metrics pm
JOIN public.products p ON pm.pid = p.pid
GROUP BY brand_group
),
AllBrands AS (
-- Ensure all brands from products table are included, mapping NULL/empty to 'Unbranded'
SELECT DISTINCT COALESCE(brand, 'Unbranded') as brand_group
FROM public.products
)
INSERT INTO public.brand_metrics (
brand_name, last_calculated,
product_count, active_product_count, replenishable_product_count,
current_stock_units, current_stock_cost, current_stock_retail,
sales_7d, revenue_7d, sales_30d, revenue_30d, profit_30d, cogs_30d,
sales_365d, revenue_365d, lifetime_sales, lifetime_revenue,
avg_margin_30d
)
SELECT
b.brand_group,
_start_time,
-- Base Aggregates
COALESCE(ba.product_count, 0),
COALESCE(ba.active_product_count, 0),
COALESCE(ba.replenishable_product_count, 0),
COALESCE(ba.current_stock_units, 0),
COALESCE(ba.current_stock_cost, 0.00),
COALESCE(ba.current_stock_retail, 0.00),
-- Sales Aggregates
COALESCE(ba.sales_7d, 0), COALESCE(ba.revenue_7d, 0.00),
COALESCE(ba.sales_30d, 0), COALESCE(ba.revenue_30d, 0.00),
COALESCE(ba.profit_30d, 0.00), COALESCE(ba.cogs_30d, 0.00),
COALESCE(ba.sales_365d, 0), COALESCE(ba.revenue_365d, 0.00),
COALESCE(ba.lifetime_sales, 0), COALESCE(ba.lifetime_revenue, 0.00),
-- KPIs - Calculate margin only for brands with significant revenue
CASE
WHEN COALESCE(ba.revenue_30d, 0) >= _min_revenue THEN
-- Directly calculate margin from revenue and cogs for consistency
-- This is mathematically equivalent to profit/revenue but more explicit
((COALESCE(ba.revenue_30d, 0) - COALESCE(ba.cogs_30d, 0)) / COALESCE(ba.revenue_30d, 1)) * 100.0
ELSE NULL -- No margin for low/no revenue brands
END
FROM AllBrands b
LEFT JOIN BrandAggregates ba ON b.brand_group = ba.brand_group
ON CONFLICT (brand_name) DO UPDATE SET
last_calculated = EXCLUDED.last_calculated,
product_count = EXCLUDED.product_count,
active_product_count = EXCLUDED.active_product_count,
replenishable_product_count = EXCLUDED.replenishable_product_count,
current_stock_units = EXCLUDED.current_stock_units,
current_stock_cost = EXCLUDED.current_stock_cost,
current_stock_retail = EXCLUDED.current_stock_retail,
sales_7d = EXCLUDED.sales_7d, revenue_7d = EXCLUDED.revenue_7d,
sales_30d = EXCLUDED.sales_30d, revenue_30d = EXCLUDED.revenue_30d,
profit_30d = EXCLUDED.profit_30d, cogs_30d = EXCLUDED.cogs_30d,
sales_365d = EXCLUDED.sales_365d, revenue_365d = EXCLUDED.revenue_365d,
lifetime_sales = EXCLUDED.lifetime_sales, lifetime_revenue = EXCLUDED.lifetime_revenue,
avg_margin_30d = EXCLUDED.avg_margin_30d;
-- Update calculate_status
INSERT INTO public.calculate_status (module_name, last_calculation_timestamp)
VALUES (_module_name, _start_time)
ON CONFLICT (module_name) DO UPDATE SET last_calculation_timestamp = _start_time;
RAISE NOTICE 'Finished % calculation. Duration: %', _module_name, clock_timestamp() - _start_time;
END $$;

View File

@@ -0,0 +1,275 @@
-- Description: Calculates and updates aggregated metrics per category.
-- Dependencies: product_metrics, products, categories, product_categories, calculate_status table.
-- Frequency: Daily (after product_metrics update).
DO $$
DECLARE
_module_name VARCHAR := 'category_metrics';
_start_time TIMESTAMPTZ := clock_timestamp();
_min_revenue NUMERIC := 50.00; -- Minimum revenue threshold for margin calculation
BEGIN
RAISE NOTICE 'Running % calculation...', _module_name;
WITH
-- Identify the hierarchy depth for each category
CategoryDepth AS (
WITH RECURSIVE CategoryTree AS (
-- Base case: Start with categories without parents (root categories)
SELECT cat_id, name, parent_id, 0 AS depth
FROM public.categories
WHERE parent_id IS NULL
UNION ALL
-- Recursive step: Add child categories with incremented depth
SELECT c.cat_id, c.name, c.parent_id, ct.depth + 1
FROM public.categories c
JOIN CategoryTree ct ON c.parent_id = ct.cat_id
)
SELECT cat_id, depth
FROM CategoryTree
),
-- For each product, find the most specific (deepest) category it belongs to
ProductDeepestCategory AS (
SELECT
pc.pid,
pc.cat_id
FROM public.product_categories pc
JOIN CategoryDepth cd ON pc.cat_id = cd.cat_id
-- This is the key part: for each product, select only the category with maximum depth
WHERE (pc.pid, cd.depth) IN (
SELECT pc2.pid, MAX(cd2.depth)
FROM public.product_categories pc2
JOIN CategoryDepth cd2 ON pc2.cat_id = cd2.cat_id
GROUP BY pc2.pid
)
),
-- Calculate metrics only at the most specific category level for each product
-- These are the direct metrics (only products directly in this category)
DirectCategoryMetrics AS (
SELECT
pdc.cat_id,
-- Counts
COUNT(DISTINCT pm.pid) AS product_count,
COUNT(DISTINCT CASE WHEN pm.is_visible THEN pm.pid END) AS active_product_count,
COUNT(DISTINCT CASE WHEN pm.is_replenishable THEN pm.pid END) AS replenishable_product_count,
-- Current Stock
SUM(pm.current_stock) AS current_stock_units,
SUM(pm.current_stock_cost) AS current_stock_cost,
SUM(pm.current_stock_retail) AS current_stock_retail,
-- Rolling Periods - Only include products with actual sales in each period
SUM(CASE WHEN pm.sales_7d > 0 THEN pm.sales_7d ELSE 0 END) AS sales_7d,
SUM(CASE WHEN pm.revenue_7d > 0 THEN pm.revenue_7d ELSE 0 END) AS revenue_7d,
SUM(CASE WHEN pm.sales_30d > 0 THEN pm.sales_30d ELSE 0 END) AS sales_30d,
SUM(CASE WHEN pm.revenue_30d > 0 THEN pm.revenue_30d ELSE 0 END) AS revenue_30d,
SUM(CASE WHEN pm.cogs_30d > 0 THEN pm.cogs_30d ELSE 0 END) AS cogs_30d,
SUM(CASE WHEN pm.profit_30d != 0 THEN pm.profit_30d ELSE 0 END) AS profit_30d,
SUM(CASE WHEN pm.sales_365d > 0 THEN pm.sales_365d ELSE 0 END) AS sales_365d,
SUM(CASE WHEN pm.revenue_365d > 0 THEN pm.revenue_365d ELSE 0 END) AS revenue_365d,
SUM(CASE WHEN pm.lifetime_sales > 0 THEN pm.lifetime_sales ELSE 0 END) AS lifetime_sales,
SUM(CASE WHEN pm.lifetime_revenue > 0 THEN pm.lifetime_revenue ELSE 0 END) AS lifetime_revenue,
-- Data for KPIs - Only average stock for products with stock
SUM(CASE WHEN pm.avg_stock_units_30d > 0 THEN pm.avg_stock_units_30d ELSE 0 END) AS total_avg_stock_units_30d
FROM public.product_metrics pm
JOIN ProductDeepestCategory pdc ON pm.pid = pdc.pid
GROUP BY pdc.cat_id
),
-- Build a category lookup table for parent relationships
CategoryHierarchyPaths AS (
WITH RECURSIVE ParentPaths AS (
-- Base case: All categories with their immediate parents
SELECT
cat_id,
cat_id as leaf_id, -- Every category is its own leaf initially
ARRAY[cat_id] as path
FROM public.categories
UNION ALL
-- Recursive step: Walk up the parent chain
SELECT
c.parent_id as cat_id,
pp.leaf_id, -- Keep the original leaf_id
c.parent_id || pp.path as path
FROM ParentPaths pp
JOIN public.categories c ON pp.cat_id = c.cat_id
WHERE c.parent_id IS NOT NULL -- Stop at root categories
)
-- Select distinct paths to avoid duplication
SELECT DISTINCT cat_id, leaf_id
FROM ParentPaths
),
-- Aggregate metrics from leaf categories to their ancestors without duplication
-- These are the rolled-up metrics (including all child categories)
RollupMetrics AS (
SELECT
chp.cat_id,
-- For each parent category, count distinct products to avoid duplication
COUNT(DISTINCT dcm.cat_id) AS child_categories_count,
SUM(dcm.product_count) AS rollup_product_count,
SUM(dcm.active_product_count) AS rollup_active_product_count,
SUM(dcm.replenishable_product_count) AS rollup_replenishable_product_count,
SUM(dcm.current_stock_units) AS rollup_current_stock_units,
SUM(dcm.current_stock_cost) AS rollup_current_stock_cost,
SUM(dcm.current_stock_retail) AS rollup_current_stock_retail,
SUM(dcm.sales_7d) AS rollup_sales_7d,
SUM(dcm.revenue_7d) AS rollup_revenue_7d,
SUM(dcm.sales_30d) AS rollup_sales_30d,
SUM(dcm.revenue_30d) AS rollup_revenue_30d,
SUM(dcm.cogs_30d) AS rollup_cogs_30d,
SUM(dcm.profit_30d) AS rollup_profit_30d,
SUM(dcm.sales_365d) AS rollup_sales_365d,
SUM(dcm.revenue_365d) AS rollup_revenue_365d,
SUM(dcm.lifetime_sales) AS rollup_lifetime_sales,
SUM(dcm.lifetime_revenue) AS rollup_lifetime_revenue,
SUM(dcm.total_avg_stock_units_30d) AS rollup_total_avg_stock_units_30d
FROM CategoryHierarchyPaths chp
JOIN DirectCategoryMetrics dcm ON chp.leaf_id = dcm.cat_id
GROUP BY chp.cat_id
),
-- Combine direct and rollup metrics
CombinedMetrics AS (
SELECT
c.cat_id,
c.name,
c.type,
c.parent_id,
-- Direct metrics (just this category)
COALESCE(dcm.product_count, 0) AS direct_product_count,
COALESCE(dcm.active_product_count, 0) AS direct_active_product_count,
COALESCE(dcm.replenishable_product_count, 0) AS direct_replenishable_product_count,
COALESCE(dcm.current_stock_units, 0) AS direct_current_stock_units,
COALESCE(dcm.current_stock_cost, 0) AS direct_current_stock_cost,
COALESCE(dcm.current_stock_retail, 0) AS direct_current_stock_retail,
COALESCE(dcm.sales_7d, 0) AS direct_sales_7d,
COALESCE(dcm.revenue_7d, 0) AS direct_revenue_7d,
COALESCE(dcm.sales_30d, 0) AS direct_sales_30d,
COALESCE(dcm.revenue_30d, 0) AS direct_revenue_30d,
COALESCE(dcm.cogs_30d, 0) AS direct_cogs_30d,
COALESCE(dcm.profit_30d, 0) AS direct_profit_30d,
COALESCE(dcm.sales_365d, 0) AS direct_sales_365d,
COALESCE(dcm.revenue_365d, 0) AS direct_revenue_365d,
COALESCE(dcm.lifetime_sales, 0) AS direct_lifetime_sales,
COALESCE(dcm.lifetime_revenue, 0) AS direct_lifetime_revenue,
COALESCE(dcm.total_avg_stock_units_30d, 0) AS direct_avg_stock_units_30d,
-- Rolled up metrics (this category + all children)
COALESCE(rm.rollup_product_count, 0) AS product_count,
COALESCE(rm.rollup_active_product_count, 0) AS active_product_count,
COALESCE(rm.rollup_replenishable_product_count, 0) AS replenishable_product_count,
COALESCE(rm.rollup_current_stock_units, 0) AS current_stock_units,
COALESCE(rm.rollup_current_stock_cost, 0) AS current_stock_cost,
COALESCE(rm.rollup_current_stock_retail, 0) AS current_stock_retail,
COALESCE(rm.rollup_sales_7d, 0) AS sales_7d,
COALESCE(rm.rollup_revenue_7d, 0) AS revenue_7d,
COALESCE(rm.rollup_sales_30d, 0) AS sales_30d,
COALESCE(rm.rollup_revenue_30d, 0) AS revenue_30d,
COALESCE(rm.rollup_cogs_30d, 0) AS cogs_30d,
COALESCE(rm.rollup_profit_30d, 0) AS profit_30d,
COALESCE(rm.rollup_sales_365d, 0) AS sales_365d,
COALESCE(rm.rollup_revenue_365d, 0) AS revenue_365d,
COALESCE(rm.rollup_lifetime_sales, 0) AS lifetime_sales,
COALESCE(rm.rollup_lifetime_revenue, 0) AS lifetime_revenue,
COALESCE(rm.rollup_total_avg_stock_units_30d, 0) AS total_avg_stock_units_30d
FROM public.categories c
LEFT JOIN DirectCategoryMetrics dcm ON c.cat_id = dcm.cat_id
LEFT JOIN RollupMetrics rm ON c.cat_id = rm.cat_id
)
INSERT INTO public.category_metrics (
category_id, category_name, category_type, parent_id, last_calculated,
-- Store all direct and rolled up metrics
product_count, active_product_count, replenishable_product_count,
current_stock_units, current_stock_cost, current_stock_retail,
sales_7d, revenue_7d, sales_30d, revenue_30d, profit_30d, cogs_30d,
sales_365d, revenue_365d, lifetime_sales, lifetime_revenue,
-- Also store direct metrics with direct_ prefix
direct_product_count, direct_active_product_count, direct_replenishable_product_count,
direct_current_stock_units, direct_stock_cost, direct_stock_retail,
direct_sales_7d, direct_revenue_7d, direct_sales_30d, direct_revenue_30d,
direct_profit_30d, direct_cogs_30d, direct_sales_365d, direct_revenue_365d,
direct_lifetime_sales, direct_lifetime_revenue,
-- KPIs
avg_margin_30d, stock_turn_30d
)
SELECT
cm.cat_id,
cm.name,
cm.type,
cm.parent_id,
_start_time,
-- Rolled-up metrics (total including children)
cm.product_count,
cm.active_product_count,
cm.replenishable_product_count,
cm.current_stock_units,
cm.current_stock_cost,
cm.current_stock_retail,
cm.sales_7d, cm.revenue_7d,
cm.sales_30d, cm.revenue_30d, cm.profit_30d, cm.cogs_30d,
cm.sales_365d, cm.revenue_365d,
cm.lifetime_sales, cm.lifetime_revenue,
-- Direct metrics (just this category)
cm.direct_product_count,
cm.direct_active_product_count,
cm.direct_replenishable_product_count,
cm.direct_current_stock_units,
cm.direct_current_stock_cost,
cm.direct_current_stock_retail,
cm.direct_sales_7d, cm.direct_revenue_7d,
cm.direct_sales_30d, cm.direct_revenue_30d, cm.direct_profit_30d, cm.direct_cogs_30d,
cm.direct_sales_365d, cm.direct_revenue_365d,
cm.direct_lifetime_sales, cm.direct_lifetime_revenue,
-- KPIs - Calculate margin only for categories with significant revenue
CASE
WHEN cm.revenue_30d >= _min_revenue THEN
((cm.revenue_30d - cm.cogs_30d) / cm.revenue_30d) * 100.0
ELSE NULL -- No margin for low/no revenue categories
END,
-- Stock Turn calculation
CASE
WHEN cm.total_avg_stock_units_30d > 0 THEN
cm.sales_30d / cm.total_avg_stock_units_30d
ELSE NULL -- No stock turn if no average stock
END
FROM CombinedMetrics cm
ON CONFLICT (category_id) DO UPDATE SET
category_name = EXCLUDED.category_name,
category_type = EXCLUDED.category_type,
parent_id = EXCLUDED.parent_id,
last_calculated = EXCLUDED.last_calculated,
-- Update rolled-up metrics
product_count = EXCLUDED.product_count,
active_product_count = EXCLUDED.active_product_count,
replenishable_product_count = EXCLUDED.replenishable_product_count,
current_stock_units = EXCLUDED.current_stock_units,
current_stock_cost = EXCLUDED.current_stock_cost,
current_stock_retail = EXCLUDED.current_stock_retail,
sales_7d = EXCLUDED.sales_7d, revenue_7d = EXCLUDED.revenue_7d,
sales_30d = EXCLUDED.sales_30d, revenue_30d = EXCLUDED.revenue_30d,
profit_30d = EXCLUDED.profit_30d, cogs_30d = EXCLUDED.cogs_30d,
sales_365d = EXCLUDED.sales_365d, revenue_365d = EXCLUDED.revenue_365d,
lifetime_sales = EXCLUDED.lifetime_sales, lifetime_revenue = EXCLUDED.lifetime_revenue,
-- Update direct metrics
direct_product_count = EXCLUDED.direct_product_count,
direct_active_product_count = EXCLUDED.direct_active_product_count,
direct_replenishable_product_count = EXCLUDED.direct_replenishable_product_count,
direct_current_stock_units = EXCLUDED.direct_current_stock_units,
direct_stock_cost = EXCLUDED.direct_stock_cost,
direct_stock_retail = EXCLUDED.direct_stock_retail,
direct_sales_7d = EXCLUDED.direct_sales_7d, direct_revenue_7d = EXCLUDED.direct_revenue_7d,
direct_sales_30d = EXCLUDED.direct_sales_30d, direct_revenue_30d = EXCLUDED.direct_revenue_30d,
direct_profit_30d = EXCLUDED.direct_profit_30d, direct_cogs_30d = EXCLUDED.direct_cogs_30d,
direct_sales_365d = EXCLUDED.direct_sales_365d, direct_revenue_365d = EXCLUDED.direct_revenue_365d,
direct_lifetime_sales = EXCLUDED.direct_lifetime_sales, direct_lifetime_revenue = EXCLUDED.direct_lifetime_revenue,
-- Update KPIs
avg_margin_30d = EXCLUDED.avg_margin_30d,
stock_turn_30d = EXCLUDED.stock_turn_30d;
-- Update calculate_status
INSERT INTO public.calculate_status (module_name, last_calculation_timestamp)
VALUES (_module_name, _start_time)
ON CONFLICT (module_name) DO UPDATE SET last_calculation_timestamp = _start_time;
RAISE NOTICE 'Finished % calculation. Duration: %', _module_name, clock_timestamp() - _start_time;
END $$;

View File

@@ -0,0 +1,135 @@
-- Description: Calculates and updates aggregated metrics per vendor.
-- Dependencies: product_metrics, products, purchase_orders, calculate_status table.
-- Frequency: Daily (after product_metrics update).
DO $$
DECLARE
_module_name VARCHAR := 'vendor_metrics';
_start_time TIMESTAMPTZ := clock_timestamp();
BEGIN
RAISE NOTICE 'Running % calculation...', _module_name;
WITH VendorProductAggregates AS (
-- Aggregate metrics from product_metrics table per vendor
SELECT
p.vendor,
COUNT(DISTINCT pm.pid) AS product_count,
COUNT(DISTINCT CASE WHEN pm.is_visible THEN pm.pid END) AS active_product_count,
COUNT(DISTINCT CASE WHEN pm.is_replenishable THEN pm.pid END) AS replenishable_product_count,
SUM(pm.current_stock) AS current_stock_units,
SUM(pm.current_stock_cost) AS current_stock_cost,
SUM(pm.current_stock_retail) AS current_stock_retail,
SUM(pm.on_order_qty) AS on_order_units,
SUM(pm.on_order_cost) AS on_order_cost,
-- Only include products with valid sales data in each time period
COUNT(DISTINCT CASE WHEN pm.sales_7d > 0 THEN pm.pid END) AS products_with_sales_7d,
SUM(CASE WHEN pm.sales_7d > 0 THEN pm.sales_7d ELSE 0 END) AS sales_7d,
SUM(CASE WHEN pm.revenue_7d > 0 THEN pm.revenue_7d ELSE 0 END) AS revenue_7d,
COUNT(DISTINCT CASE WHEN pm.sales_30d > 0 THEN pm.pid END) AS products_with_sales_30d,
SUM(CASE WHEN pm.sales_30d > 0 THEN pm.sales_30d ELSE 0 END) AS sales_30d,
SUM(CASE WHEN pm.revenue_30d > 0 THEN pm.revenue_30d ELSE 0 END) AS revenue_30d,
SUM(CASE WHEN pm.cogs_30d > 0 THEN pm.cogs_30d ELSE 0 END) AS cogs_30d,
SUM(CASE WHEN pm.profit_30d != 0 THEN pm.profit_30d ELSE 0 END) AS profit_30d,
COUNT(DISTINCT CASE WHEN pm.sales_365d > 0 THEN pm.pid END) AS products_with_sales_365d,
SUM(CASE WHEN pm.sales_365d > 0 THEN pm.sales_365d ELSE 0 END) AS sales_365d,
SUM(CASE WHEN pm.revenue_365d > 0 THEN pm.revenue_365d ELSE 0 END) AS revenue_365d,
COUNT(DISTINCT CASE WHEN pm.lifetime_sales > 0 THEN pm.pid END) AS products_with_lifetime_sales,
SUM(CASE WHEN pm.lifetime_sales > 0 THEN pm.lifetime_sales ELSE 0 END) AS lifetime_sales,
SUM(CASE WHEN pm.lifetime_revenue > 0 THEN pm.lifetime_revenue ELSE 0 END) AS lifetime_revenue
FROM public.product_metrics pm
JOIN public.products p ON pm.pid = p.pid
WHERE p.vendor IS NOT NULL AND p.vendor <> ''
GROUP BY p.vendor
),
VendorPOAggregates AS (
-- Aggregate PO related stats including lead time calculated from POs to receivings
SELECT
po.vendor,
COUNT(DISTINCT po.po_id) AS po_count_365d,
-- Calculate lead time by averaging the days between PO date and receiving date
AVG(GREATEST(1, CASE
WHEN r.received_date IS NOT NULL AND po.date IS NOT NULL
THEN (r.received_date::date - po.date::date)
ELSE NULL
END))::int AS avg_lead_time_days_hist -- Avg lead time from HISTORICAL received POs
FROM public.purchase_orders po
-- Join to receivings table to find when items were received
LEFT JOIN public.receivings r ON r.pid = po.pid
WHERE po.vendor IS NOT NULL AND po.vendor <> ''
AND po.date >= CURRENT_DATE - INTERVAL '1 year' -- Look at POs created in the last year
AND po.status = 'done' -- Only calculate lead time on completed POs
AND r.received_date IS NOT NULL
AND po.date IS NOT NULL
AND r.received_date >= po.date
GROUP BY po.vendor
),
AllVendors AS (
-- Ensure all vendors from products table are included
SELECT DISTINCT vendor FROM public.products WHERE vendor IS NOT NULL AND vendor <> ''
)
INSERT INTO public.vendor_metrics (
vendor_name, last_calculated,
product_count, active_product_count, replenishable_product_count,
current_stock_units, current_stock_cost, current_stock_retail,
on_order_units, on_order_cost,
po_count_365d, avg_lead_time_days,
sales_7d, revenue_7d, sales_30d, revenue_30d, profit_30d, cogs_30d,
sales_365d, revenue_365d, lifetime_sales, lifetime_revenue,
avg_margin_30d
)
SELECT
v.vendor,
_start_time,
-- Base Aggregates
COALESCE(vpa.product_count, 0),
COALESCE(vpa.active_product_count, 0),
COALESCE(vpa.replenishable_product_count, 0),
COALESCE(vpa.current_stock_units, 0),
COALESCE(vpa.current_stock_cost, 0.00),
COALESCE(vpa.current_stock_retail, 0.00),
COALESCE(vpa.on_order_units, 0),
COALESCE(vpa.on_order_cost, 0.00),
-- PO Aggregates
COALESCE(vpoa.po_count_365d, 0),
vpoa.avg_lead_time_days_hist, -- Can be NULL if no received POs
-- Sales Aggregates
COALESCE(vpa.sales_7d, 0), COALESCE(vpa.revenue_7d, 0.00),
COALESCE(vpa.sales_30d, 0), COALESCE(vpa.revenue_30d, 0.00),
COALESCE(vpa.profit_30d, 0.00), COALESCE(vpa.cogs_30d, 0.00),
COALESCE(vpa.sales_365d, 0), COALESCE(vpa.revenue_365d, 0.00),
COALESCE(vpa.lifetime_sales, 0), COALESCE(vpa.lifetime_revenue, 0.00),
-- KPIs
(vpa.profit_30d / NULLIF(vpa.revenue_30d, 0)) * 100.0
FROM AllVendors v
LEFT JOIN VendorProductAggregates vpa ON v.vendor = vpa.vendor
LEFT JOIN VendorPOAggregates vpoa ON v.vendor = vpoa.vendor
ON CONFLICT (vendor_name) DO UPDATE SET
last_calculated = EXCLUDED.last_calculated,
product_count = EXCLUDED.product_count,
active_product_count = EXCLUDED.active_product_count,
replenishable_product_count = EXCLUDED.replenishable_product_count,
current_stock_units = EXCLUDED.current_stock_units,
current_stock_cost = EXCLUDED.current_stock_cost,
current_stock_retail = EXCLUDED.current_stock_retail,
on_order_units = EXCLUDED.on_order_units,
on_order_cost = EXCLUDED.on_order_cost,
po_count_365d = EXCLUDED.po_count_365d,
avg_lead_time_days = EXCLUDED.avg_lead_time_days,
sales_7d = EXCLUDED.sales_7d, revenue_7d = EXCLUDED.revenue_7d,
sales_30d = EXCLUDED.sales_30d, revenue_30d = EXCLUDED.revenue_30d,
profit_30d = EXCLUDED.profit_30d, cogs_30d = EXCLUDED.cogs_30d,
sales_365d = EXCLUDED.sales_365d, revenue_365d = EXCLUDED.revenue_365d,
lifetime_sales = EXCLUDED.lifetime_sales, lifetime_revenue = EXCLUDED.lifetime_revenue,
avg_margin_30d = EXCLUDED.avg_margin_30d;
-- Update calculate_status
INSERT INTO public.calculate_status (module_name, last_calculation_timestamp)
VALUES (_module_name, _start_time)
ON CONFLICT (module_name) DO UPDATE SET last_calculation_timestamp = _start_time;
RAISE NOTICE 'Finished % calculation. Duration: %', _module_name, clock_timestamp() - _start_time;
END $$;

View File

@@ -0,0 +1,204 @@
-- Description: Calculates and updates daily aggregated product data for recent days.
-- Uses UPSERT (INSERT ON CONFLICT UPDATE) for idempotency.
-- Dependencies: Core import tables (products, orders, purchase_orders), calculate_status table.
-- Frequency: Hourly (Run ~5-10 minutes after hourly data import completes).
DO $$
DECLARE
_module_name TEXT := 'daily_snapshots';
_start_time TIMESTAMPTZ := clock_timestamp(); -- Time execution started
_last_calc_time TIMESTAMPTZ;
_target_date DATE; -- Will be set in the loop
_total_records INT := 0;
_has_orders BOOLEAN := FALSE;
_process_days INT := 5; -- Number of days to check/process (today plus previous 4 days)
_day_counter INT;
_missing_days INT[] := ARRAY[]::INT[]; -- Array to store days with missing or incomplete data
BEGIN
-- Get the timestamp before the last successful run of this module
SELECT last_calculation_timestamp INTO _last_calc_time
FROM public.calculate_status
WHERE module_name = _module_name;
RAISE NOTICE 'Running % script. Start Time: %', _module_name, _start_time;
-- First, check which days need processing by comparing orders data with snapshot data
FOR _day_counter IN 0..(_process_days-1) LOOP
_target_date := CURRENT_DATE - (_day_counter * INTERVAL '1 day');
-- Check if this date needs updating by comparing orders to snapshot data
-- If the date has orders but not enough snapshots, or if snapshots show zero sales but orders exist, it's incomplete
SELECT
CASE WHEN (
-- We have orders for this date but not enough snapshots, or snapshots with wrong total
(EXISTS (SELECT 1 FROM public.orders WHERE date::date = _target_date) AND
(
-- No snapshots exist for this date
NOT EXISTS (SELECT 1 FROM public.daily_product_snapshots WHERE snapshot_date = _target_date) OR
-- Or snapshots show zero sales but orders exist
(SELECT COALESCE(SUM(units_sold), 0) FROM public.daily_product_snapshots WHERE snapshot_date = _target_date) = 0 OR
-- Or the count of snapshot records is significantly less than distinct products in orders
(SELECT COUNT(*) FROM public.daily_product_snapshots WHERE snapshot_date = _target_date) <
(SELECT COUNT(DISTINCT pid) FROM public.orders WHERE date::date = _target_date) * 0.8
)
)
) THEN TRUE ELSE FALSE END
INTO _has_orders;
IF _has_orders THEN
-- This day needs processing - add to our array
_missing_days := _missing_days || _day_counter;
RAISE NOTICE 'Day % needs updating (incomplete or missing data)', _target_date;
END IF;
END LOOP;
-- If no days need updating, exit early
IF array_length(_missing_days, 1) IS NULL THEN
RAISE NOTICE 'No days need updating - all snapshot data appears complete';
-- Still update the calculate_status to record this run
UPDATE public.calculate_status
SET last_calculation_timestamp = _start_time
WHERE module_name = _module_name;
RETURN;
END IF;
RAISE NOTICE 'Need to update % days with missing or incomplete data', array_length(_missing_days, 1);
-- Process only the days that need updating
FOREACH _day_counter IN ARRAY _missing_days LOOP
_target_date := CURRENT_DATE - (_day_counter * INTERVAL '1 day');
RAISE NOTICE 'Processing date: %', _target_date;
-- IMPORTANT: First delete any existing data for this date to prevent duplication
DELETE FROM public.daily_product_snapshots
WHERE snapshot_date = _target_date;
-- Proceed with calculating daily metrics only for products with actual activity
WITH SalesData AS (
SELECT
p.pid,
p.sku,
-- Track number of orders to ensure we have real data
COUNT(o.id) as order_count,
-- Aggregate Sales (Quantity > 0, Status not Canceled/Returned)
COALESCE(SUM(CASE WHEN o.quantity > 0 AND COALESCE(o.status, 'pending') NOT IN ('canceled', 'returned') THEN o.quantity ELSE 0 END), 0) AS units_sold,
COALESCE(SUM(CASE WHEN o.quantity > 0 AND COALESCE(o.status, 'pending') NOT IN ('canceled', 'returned') THEN o.price * o.quantity ELSE 0 END), 0.00) AS gross_revenue_unadjusted, -- Before discount
COALESCE(SUM(CASE WHEN o.quantity > 0 AND COALESCE(o.status, 'pending') NOT IN ('canceled', 'returned') THEN o.discount ELSE 0 END), 0.00) AS discounts,
COALESCE(SUM(CASE WHEN o.quantity > 0 AND COALESCE(o.status, 'pending') NOT IN ('canceled', 'returned') THEN COALESCE(o.costeach, p.landing_cost_price, p.cost_price) * o.quantity ELSE 0 END), 0.00) AS cogs,
COALESCE(SUM(CASE WHEN o.quantity > 0 AND COALESCE(o.status, 'pending') NOT IN ('canceled', 'returned') THEN p.regular_price * o.quantity ELSE 0 END), 0.00) AS gross_regular_revenue, -- Use current regular price for simplicity here
-- Aggregate Returns (Quantity < 0 or Status = Returned)
COALESCE(SUM(CASE WHEN o.quantity < 0 OR COALESCE(o.status, 'pending') = 'returned' THEN ABS(o.quantity) ELSE 0 END), 0) AS units_returned,
COALESCE(SUM(CASE WHEN o.quantity < 0 OR COALESCE(o.status, 'pending') = 'returned' THEN o.price * ABS(o.quantity) ELSE 0 END), 0.00) AS returns_revenue
FROM public.products p -- Start from products to include those with no orders today
JOIN public.orders o -- Changed to INNER JOIN to only process products with orders
ON p.pid = o.pid
AND o.date::date = _target_date -- Cast to date to ensure compatibility regardless of original type
GROUP BY p.pid, p.sku
-- No HAVING clause here - we always want to include all orders
),
ReceivingData AS (
SELECT
r.pid,
-- Track number of receiving docs to ensure we have real data
COUNT(DISTINCT r.receiving_id) as receiving_doc_count,
-- Sum the quantities received on this date
SUM(r.qty_each) AS units_received,
-- Calculate the cost received (qty * cost)
SUM(r.qty_each * r.cost_each) AS cost_received
FROM public.receivings r
WHERE r.received_date::date = _target_date
-- Optional: Filter out canceled receivings if needed
-- AND r.status <> 'canceled'
GROUP BY r.pid
-- Only include products with actual receiving activity
HAVING COUNT(DISTINCT r.receiving_id) > 0 OR SUM(r.qty_each) > 0
),
CurrentStock AS (
-- Select current stock values directly from products table
SELECT
pid,
stock_quantity,
COALESCE(landing_cost_price, cost_price, 0.00) as effective_cost_price,
COALESCE(price, 0.00) as current_price,
COALESCE(regular_price, 0.00) as current_regular_price
FROM public.products
),
ProductsWithActivity AS (
-- Quick pre-filter to only process products with activity
SELECT DISTINCT pid
FROM (
SELECT pid FROM SalesData
UNION
SELECT pid FROM ReceivingData
) a
)
-- Now insert records, but ONLY for products with actual activity
INSERT INTO public.daily_product_snapshots (
snapshot_date,
pid,
sku,
eod_stock_quantity,
eod_stock_cost,
eod_stock_retail,
eod_stock_gross,
stockout_flag,
units_sold,
units_returned,
gross_revenue,
discounts,
returns_revenue,
net_revenue,
cogs,
gross_regular_revenue,
profit,
units_received,
cost_received,
calculation_timestamp
)
SELECT
_target_date AS snapshot_date,
COALESCE(sd.pid, rd.pid) AS pid, -- Use sales or receiving PID
COALESCE(sd.sku, p.sku) AS sku, -- Get SKU from sales data or products table
-- Inventory Metrics (Using CurrentStock)
cs.stock_quantity AS eod_stock_quantity,
cs.stock_quantity * cs.effective_cost_price AS eod_stock_cost,
cs.stock_quantity * cs.current_price AS eod_stock_retail,
cs.stock_quantity * cs.current_regular_price AS eod_stock_gross,
(cs.stock_quantity <= 0) AS stockout_flag,
-- Sales Metrics (From SalesData)
COALESCE(sd.units_sold, 0),
COALESCE(sd.units_returned, 0),
COALESCE(sd.gross_revenue_unadjusted, 0.00),
COALESCE(sd.discounts, 0.00),
COALESCE(sd.returns_revenue, 0.00),
COALESCE(sd.gross_revenue_unadjusted, 0.00) - COALESCE(sd.discounts, 0.00) AS net_revenue,
COALESCE(sd.cogs, 0.00),
COALESCE(sd.gross_regular_revenue, 0.00),
(COALESCE(sd.gross_revenue_unadjusted, 0.00) - COALESCE(sd.discounts, 0.00)) - COALESCE(sd.cogs, 0.00) AS profit, -- Basic profit: Net Revenue - COGS
-- Receiving Metrics (From ReceivingData)
COALESCE(rd.units_received, 0),
COALESCE(rd.cost_received, 0.00),
_start_time -- Timestamp of this calculation run
FROM SalesData sd
FULL OUTER JOIN ReceivingData rd ON sd.pid = rd.pid
JOIN ProductsWithActivity pwa ON COALESCE(sd.pid, rd.pid) = pwa.pid
LEFT JOIN public.products p ON COALESCE(sd.pid, rd.pid) = p.pid
LEFT JOIN CurrentStock cs ON COALESCE(sd.pid, rd.pid) = cs.pid
WHERE p.pid IS NOT NULL; -- Ensure we only insert for existing products
-- Get the total number of records inserted for this date
GET DIAGNOSTICS _total_records = ROW_COUNT;
RAISE NOTICE 'Created % daily snapshot records for % with sales/receiving activity', _total_records, _target_date;
END LOOP;
-- Update the status table with the timestamp from the START of this run
UPDATE public.calculate_status
SET last_calculation_timestamp = _start_time
WHERE module_name = _module_name;
RAISE NOTICE 'Finished % processing for multiple dates. Duration: %', _module_name, clock_timestamp() - _start_time;
END $$;

View File

@@ -0,0 +1,117 @@
-- Description: Calculates metrics that don't need hourly updates, like ABC class
-- and average lead time.
-- Dependencies: product_metrics, purchase_orders, settings_global, calculate_status.
-- Frequency: Daily or Weekly (e.g., run via cron job overnight).
DO $$
DECLARE
_module_name TEXT := 'periodic_metrics';
_start_time TIMESTAMPTZ := clock_timestamp();
_last_calc_time TIMESTAMPTZ;
_abc_basis VARCHAR;
_abc_period INT;
_threshold_a NUMERIC;
_threshold_b NUMERIC;
BEGIN
-- Get the timestamp before the last successful run of this module
SELECT last_calculation_timestamp INTO _last_calc_time
FROM public.calculate_status
WHERE module_name = _module_name;
RAISE NOTICE 'Running % module. Start Time: %', _module_name, _start_time;
-- 1. Calculate Average Lead Time
RAISE NOTICE 'Calculating Average Lead Time...';
WITH LeadTimes AS (
SELECT
po.pid,
-- Calculate lead time by looking at when items ordered on POs were received
AVG(GREATEST(1, (r.received_date::date - po.date::date))) AS avg_days -- Use GREATEST(1,...) to avoid 0 or negative days
FROM public.purchase_orders po
-- Join to receivings table to find actual receipts
JOIN public.receivings r ON r.pid = po.pid
WHERE po.status = 'done' -- Only include completed POs
AND r.received_date >= po.date -- Ensure received date is not before order date
-- Optional: add check to make sure receiving is related to PO if you have source_po_id
-- AND (r.source_po_id = po.po_id OR r.source_po_id IS NULL)
GROUP BY po.pid
)
UPDATE public.product_metrics pm
SET avg_lead_time_days = lt.avg_days::int
FROM LeadTimes lt
WHERE pm.pid = lt.pid
AND pm.avg_lead_time_days IS DISTINCT FROM lt.avg_days::int; -- Only update if changed
RAISE NOTICE 'Finished Average Lead Time calculation.';
-- 2. Calculate ABC Classification
RAISE NOTICE 'Calculating ABC Classification...';
-- Get ABC settings
SELECT setting_value INTO _abc_basis FROM public.settings_global WHERE setting_key = 'abc_calculation_basis' LIMIT 1;
SELECT setting_value::numeric INTO _threshold_a FROM public.settings_global WHERE setting_key = 'abc_revenue_threshold_a' LIMIT 1;
SELECT setting_value::numeric INTO _threshold_b FROM public.settings_global WHERE setting_key = 'abc_revenue_threshold_b' LIMIT 1;
_abc_basis := COALESCE(_abc_basis, 'revenue_30d'); -- Default basis
_threshold_a := COALESCE(_threshold_a, 0.80);
_threshold_b := COALESCE(_threshold_b, 0.95);
RAISE NOTICE 'Using ABC Basis: %, Threshold A: %, Threshold B: %', _abc_basis, _threshold_a, _threshold_b;
WITH RankedProducts AS (
SELECT
pid,
-- Dynamically select the metric based on setting
CASE _abc_basis
WHEN 'sales_30d' THEN COALESCE(sales_30d, 0)
WHEN 'lifetime_revenue' THEN COALESCE(lifetime_revenue, 0)::numeric -- Cast needed if different type
ELSE COALESCE(revenue_30d, 0) -- Default to revenue_30d
END AS metric_value
FROM public.product_metrics
WHERE is_replenishable = TRUE -- Typically only classify replenishable items
),
Cumulative AS (
SELECT
pid,
metric_value,
SUM(metric_value) OVER (ORDER BY metric_value DESC NULLS LAST ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) as cumulative_metric,
SUM(metric_value) OVER () as total_metric
FROM RankedProducts
WHERE metric_value > 0 -- Exclude items with no contribution
)
UPDATE public.product_metrics pm
SET abc_class =
CASE
WHEN c.cumulative_metric / NULLIF(c.total_metric, 0) <= _threshold_a THEN 'A'
WHEN c.cumulative_metric / NULLIF(c.total_metric, 0) <= _threshold_b THEN 'B'
ELSE 'C'
END
FROM Cumulative c
WHERE pm.pid = c.pid
AND pm.abc_class IS DISTINCT FROM ( -- Only update if changed
CASE
WHEN c.cumulative_metric / NULLIF(c.total_metric, 0) <= _threshold_a THEN 'A'
WHEN c.cumulative_metric / NULLIF(c.total_metric, 0) <= _threshold_b THEN 'B'
ELSE 'C'
END);
-- Set non-contributing or non-replenishable to 'C' or NULL if preferred
UPDATE public.product_metrics
SET abc_class = 'C' -- Or NULL
WHERE abc_class IS NULL AND is_replenishable = TRUE; -- Catch those with 0 metric value
UPDATE public.product_metrics
SET abc_class = NULL -- Or 'N/A'?
WHERE is_replenishable = FALSE AND abc_class IS NOT NULL; -- Unclassify non-replenishable items
RAISE NOTICE 'Finished ABC Classification calculation.';
-- Add other periodic calculations here if needed (e.g., recalculating first/last dates)
-- Update the status table with the timestamp from the START of this run
UPDATE public.calculate_status
SET last_calculation_timestamp = _start_time
WHERE module_name = _module_name;
RAISE NOTICE 'Finished % module. Duration: %', _module_name, clock_timestamp() - _start_time;
END $$;

View File

@@ -0,0 +1,747 @@
-- Description: Calculates and updates the main product_metrics table based on current data
-- and aggregated daily snapshots. Uses UPSERT for idempotency.
-- Dependencies: Core import tables, daily_product_snapshots, configuration tables, calculate_status.
-- Frequency: Hourly (Run AFTER update_daily_snapshots.sql completes).
DO $$
DECLARE
_module_name TEXT := 'product_metrics';
_start_time TIMESTAMPTZ := clock_timestamp();
_last_calc_time TIMESTAMPTZ;
_current_date DATE := CURRENT_DATE;
BEGIN
-- Get the timestamp before the last successful run of this module
SELECT last_calculation_timestamp INTO _last_calc_time
FROM public.calculate_status
WHERE module_name = _module_name;
RAISE NOTICE 'Running % module. Start Time: %', _module_name, _start_time;
-- Use CTEs to gather all necessary information
WITH CurrentInfo AS (
SELECT
p.pid,
p.sku,
p.title,
p.brand,
p.vendor,
COALESCE(p.image_175, p.image) as image_url,
p.visible as is_visible,
p.replenishable as is_replenishable,
-- Add new product fields
p.barcode,
p.harmonized_tariff_code,
p.vendor_reference,
p.notions_reference,
p.line,
p.subline,
p.artist,
p.moq,
p.rating,
p.reviews,
p.weight,
p.length,
p.width,
p.height,
p.country_of_origin,
p.location,
p.baskets,
p.notifies,
p.preorder_count,
p.notions_inv_count,
COALESCE(p.price, 0.00) as current_price,
COALESCE(p.regular_price, 0.00) as current_regular_price,
COALESCE(p.cost_price, 0.00) as current_cost_price,
COALESCE(p.landing_cost_price, p.cost_price, 0.00) as current_effective_cost, -- Use landing if available, else cost
p.stock_quantity as current_stock,
p.created_at,
p.first_received,
p.date_last_sold,
p.total_sold as historical_total_sold, -- Add historical total_sold from products table
p.uom -- Assuming UOM logic is handled elsewhere or simple (e.g., 1=each)
FROM public.products p
),
OnOrderInfo AS (
SELECT
pid,
SUM(ordered) AS on_order_qty,
SUM(ordered * po_cost_price) AS on_order_cost,
MIN(expected_date) AS earliest_expected_date
FROM public.purchase_orders
WHERE status IN ('created', 'ordered', 'preordered', 'electronically_sent', 'electronically_ready_send', 'receiving_started')
AND status NOT IN ('canceled', 'done')
GROUP BY pid
),
HistoricalDates AS (
-- Note: Calculating these MIN/MAX values hourly can be slow on large tables.
-- Consider calculating periodically or storing on products if import can populate them.
SELECT
p.pid,
MIN(o.date)::date AS date_first_sold,
MAX(o.date)::date AS max_order_date, -- Use MAX for potential recalc of date_last_sold
-- For first received, use the new receivings table
MIN(r.received_date)::date AS date_first_received_calc,
-- For last received, use the new receivings table
MAX(r.received_date)::date AS date_last_received_calc
FROM public.products p
LEFT JOIN public.orders o ON p.pid = o.pid AND o.quantity > 0 AND o.status NOT IN ('canceled', 'returned')
LEFT JOIN public.receivings r ON p.pid = r.pid
GROUP BY p.pid
),
SnapshotAggregates AS (
SELECT
pid,
-- Get the counts of all available data
COUNT(DISTINCT snapshot_date) AS available_days,
-- Rolling periods with no time constraint - just sum everything we have
SUM(units_sold) AS total_units_sold,
SUM(net_revenue) AS total_net_revenue,
-- Specific time windows using date range boundaries precisely
-- Use _current_date - INTERVAL '6 days' to include 7 days (today + 6 previous days)
-- This ensures we count exactly the right number of days in each period
SUM(CASE WHEN snapshot_date >= _current_date - INTERVAL '6 days' AND snapshot_date <= _current_date THEN units_sold ELSE 0 END) AS sales_7d,
SUM(CASE WHEN snapshot_date >= _current_date - INTERVAL '6 days' AND snapshot_date <= _current_date THEN net_revenue ELSE 0 END) AS revenue_7d,
SUM(CASE WHEN snapshot_date >= _current_date - INTERVAL '13 days' AND snapshot_date <= _current_date THEN units_sold ELSE 0 END) AS sales_14d,
SUM(CASE WHEN snapshot_date >= _current_date - INTERVAL '13 days' AND snapshot_date <= _current_date THEN net_revenue ELSE 0 END) AS revenue_14d,
SUM(CASE WHEN snapshot_date >= _current_date - INTERVAL '29 days' AND snapshot_date <= _current_date THEN units_sold ELSE 0 END) AS sales_30d,
SUM(CASE WHEN snapshot_date >= _current_date - INTERVAL '29 days' AND snapshot_date <= _current_date THEN net_revenue ELSE 0 END) AS revenue_30d,
SUM(CASE WHEN snapshot_date >= _current_date - INTERVAL '29 days' AND snapshot_date <= _current_date THEN cogs ELSE 0 END) AS cogs_30d,
SUM(CASE WHEN snapshot_date >= _current_date - INTERVAL '29 days' AND snapshot_date <= _current_date THEN profit ELSE 0 END) AS profit_30d,
SUM(CASE WHEN snapshot_date >= _current_date - INTERVAL '29 days' AND snapshot_date <= _current_date THEN units_returned ELSE 0 END) AS returns_units_30d,
SUM(CASE WHEN snapshot_date >= _current_date - INTERVAL '29 days' AND snapshot_date <= _current_date THEN returns_revenue ELSE 0 END) AS returns_revenue_30d,
SUM(CASE WHEN snapshot_date >= _current_date - INTERVAL '29 days' AND snapshot_date <= _current_date THEN discounts ELSE 0 END) AS discounts_30d,
SUM(CASE WHEN snapshot_date >= _current_date - INTERVAL '29 days' AND snapshot_date <= _current_date THEN gross_revenue ELSE 0 END) AS gross_revenue_30d,
SUM(CASE WHEN snapshot_date >= _current_date - INTERVAL '29 days' AND snapshot_date <= _current_date THEN gross_regular_revenue ELSE 0 END) AS gross_regular_revenue_30d,
SUM(CASE WHEN snapshot_date >= _current_date - INTERVAL '29 days' AND snapshot_date <= _current_date AND stockout_flag THEN 1 ELSE 0 END) AS stockout_days_30d,
SUM(CASE WHEN snapshot_date >= _current_date - INTERVAL '364 days' AND snapshot_date <= _current_date THEN units_sold ELSE 0 END) AS sales_365d,
SUM(CASE WHEN snapshot_date >= _current_date - INTERVAL '364 days' AND snapshot_date <= _current_date THEN net_revenue ELSE 0 END) AS revenue_365d,
SUM(CASE WHEN snapshot_date >= _current_date - INTERVAL '29 days' AND snapshot_date <= _current_date THEN units_received ELSE 0 END) AS received_qty_30d,
SUM(CASE WHEN snapshot_date >= _current_date - INTERVAL '29 days' AND snapshot_date <= _current_date THEN cost_received ELSE 0 END) AS received_cost_30d,
-- Averages for stock levels - only include dates within the specified period
AVG(CASE WHEN snapshot_date >= _current_date - INTERVAL '29 days' AND snapshot_date <= _current_date THEN eod_stock_quantity END) AS avg_stock_units_30d,
AVG(CASE WHEN snapshot_date >= _current_date - INTERVAL '29 days' AND snapshot_date <= _current_date THEN eod_stock_cost END) AS avg_stock_cost_30d,
AVG(CASE WHEN snapshot_date >= _current_date - INTERVAL '29 days' AND snapshot_date <= _current_date THEN eod_stock_retail END) AS avg_stock_retail_30d,
AVG(CASE WHEN snapshot_date >= _current_date - INTERVAL '29 days' AND snapshot_date <= _current_date THEN eod_stock_gross END) AS avg_stock_gross_30d,
-- Lifetime - should match total values above
SUM(units_sold) AS lifetime_sales,
SUM(net_revenue) AS lifetime_revenue,
-- Yesterday
SUM(CASE WHEN snapshot_date = _current_date - INTERVAL '1 day' THEN units_sold ELSE 0 END) as yesterday_sales
FROM public.daily_product_snapshots
GROUP BY pid
),
FirstPeriodMetrics AS (
SELECT
pid,
date_first_sold,
SUM(CASE WHEN snapshot_date >= date_first_sold AND snapshot_date <= date_first_sold + INTERVAL '6 days' THEN units_sold ELSE 0 END) AS first_7_days_sales,
SUM(CASE WHEN snapshot_date >= date_first_sold AND snapshot_date <= date_first_sold + INTERVAL '6 days' THEN net_revenue ELSE 0 END) AS first_7_days_revenue,
SUM(CASE WHEN snapshot_date >= date_first_sold AND snapshot_date <= date_first_sold + INTERVAL '29 days' THEN units_sold ELSE 0 END) AS first_30_days_sales,
SUM(CASE WHEN snapshot_date >= date_first_sold AND snapshot_date <= date_first_sold + INTERVAL '29 days' THEN net_revenue ELSE 0 END) AS first_30_days_revenue,
SUM(CASE WHEN snapshot_date >= date_first_sold AND snapshot_date <= date_first_sold + INTERVAL '59 days' THEN units_sold ELSE 0 END) AS first_60_days_sales,
SUM(CASE WHEN snapshot_date >= date_first_sold AND snapshot_date <= date_first_sold + INTERVAL '59 days' THEN net_revenue ELSE 0 END) AS first_60_days_revenue,
SUM(CASE WHEN snapshot_date >= date_first_sold AND snapshot_date <= date_first_sold + INTERVAL '89 days' THEN units_sold ELSE 0 END) AS first_90_days_sales,
SUM(CASE WHEN snapshot_date >= date_first_sold AND snapshot_date <= date_first_sold + INTERVAL '89 days' THEN net_revenue ELSE 0 END) AS first_90_days_revenue
FROM public.daily_product_snapshots ds
JOIN HistoricalDates hd USING(pid)
WHERE date_first_sold IS NOT NULL
AND snapshot_date >= date_first_sold
AND snapshot_date <= date_first_sold + INTERVAL '90 days' -- Limit scan range
GROUP BY pid, date_first_sold
),
Settings AS (
SELECT
p.pid,
COALESCE(sp.lead_time_days, sv.default_lead_time_days, (SELECT setting_value FROM settings_global WHERE setting_key = 'default_lead_time_days')::int, 14) AS effective_lead_time,
COALESCE(sp.days_of_stock, sv.default_days_of_stock, (SELECT setting_value FROM settings_global WHERE setting_key = 'default_days_of_stock')::int, 30) AS effective_days_of_stock,
COALESCE(sp.safety_stock, 0) AS effective_safety_stock, -- Assuming safety stock is units, not days from global for now
COALESCE(sp.exclude_from_forecast, FALSE) AS exclude_forecast
FROM public.products p
LEFT JOIN public.settings_product sp ON p.pid = sp.pid
LEFT JOIN public.settings_vendor sv ON p.vendor = sv.vendor
)
-- Final UPSERT into product_metrics
INSERT INTO public.product_metrics (
pid, last_calculated, sku, title, brand, vendor, image_url, is_visible, is_replenishable,
barcode, harmonized_tariff_code, vendor_reference, notions_reference, line, subline, artist,
moq, rating, reviews, weight, length, width, height, country_of_origin, location,
baskets, notifies, preorder_count, notions_inv_count,
current_price, current_regular_price, current_cost_price, current_landing_cost_price,
current_stock, current_stock_cost, current_stock_retail, current_stock_gross,
on_order_qty, on_order_cost, on_order_retail, earliest_expected_date,
date_created, date_first_received, date_last_received, date_first_sold, date_last_sold, age_days,
sales_7d, revenue_7d, sales_14d, revenue_14d, sales_30d, revenue_30d, cogs_30d, profit_30d,
returns_units_30d, returns_revenue_30d, discounts_30d, gross_revenue_30d, gross_regular_revenue_30d,
stockout_days_30d, sales_365d, revenue_365d,
avg_stock_units_30d, avg_stock_cost_30d, avg_stock_retail_30d, avg_stock_gross_30d,
received_qty_30d, received_cost_30d,
lifetime_sales, lifetime_revenue,
first_7_days_sales, first_7_days_revenue, first_30_days_sales, first_30_days_revenue,
first_60_days_sales, first_60_days_revenue, first_90_days_sales, first_90_days_revenue,
asp_30d, acp_30d, avg_ros_30d, avg_sales_per_day_30d, avg_sales_per_month_30d,
margin_30d, markup_30d, gmroi_30d, stockturn_30d, return_rate_30d, discount_rate_30d,
stockout_rate_30d, markdown_30d, markdown_rate_30d, sell_through_30d,
-- avg_lead_time_days, -- Calculated periodically
-- abc_class, -- Calculated periodically
sales_velocity_daily, config_lead_time, config_days_of_stock, config_safety_stock,
planning_period_days, lead_time_forecast_units, days_of_stock_forecast_units,
planning_period_forecast_units, lead_time_closing_stock, days_of_stock_closing_stock,
replenishment_needed_raw, replenishment_units, replenishment_cost, replenishment_retail, replenishment_profit,
to_order_units, forecast_lost_sales_units, forecast_lost_revenue,
stock_cover_in_days, po_cover_in_days, sells_out_in_days, replenish_date,
overstocked_units, overstocked_cost, overstocked_retail, is_old_stock,
yesterday_sales,
status -- Add status field for calculated status
)
SELECT
ci.pid, _start_time, ci.sku, ci.title, ci.brand, ci.vendor, ci.image_url, ci.is_visible, ci.is_replenishable,
ci.barcode, ci.harmonized_tariff_code, ci.vendor_reference, ci.notions_reference, ci.line, ci.subline, ci.artist,
ci.moq, ci.rating, ci.reviews, ci.weight, ci.length, ci.width, ci.height, ci.country_of_origin, ci.location,
ci.baskets, ci.notifies, ci.preorder_count, ci.notions_inv_count,
ci.current_price, ci.current_regular_price, ci.current_cost_price, ci.current_effective_cost,
ci.current_stock, ci.current_stock * ci.current_effective_cost, ci.current_stock * ci.current_price, ci.current_stock * ci.current_regular_price,
COALESCE(ooi.on_order_qty, 0), COALESCE(ooi.on_order_cost, 0.00), COALESCE(ooi.on_order_qty, 0) * ci.current_price, ooi.earliest_expected_date,
ci.created_at::date, COALESCE(ci.first_received::date, hd.date_first_received_calc), hd.date_last_received_calc, hd.date_first_sold, COALESCE(ci.date_last_sold, hd.max_order_date),
CASE
WHEN ci.created_at IS NULL AND hd.date_first_sold IS NULL THEN 0
WHEN ci.created_at IS NULL THEN (_current_date - hd.date_first_sold)::integer
WHEN hd.date_first_sold IS NULL THEN (_current_date - ci.created_at::date)::integer
ELSE (_current_date - LEAST(ci.created_at::date, hd.date_first_sold))::integer
END AS age_days,
sa.sales_7d, sa.revenue_7d, sa.sales_14d, sa.revenue_14d, sa.sales_30d, sa.revenue_30d, sa.cogs_30d, sa.profit_30d,
sa.returns_units_30d, sa.returns_revenue_30d, sa.discounts_30d, sa.gross_revenue_30d, sa.gross_regular_revenue_30d,
sa.stockout_days_30d, sa.sales_365d, sa.revenue_365d,
sa.avg_stock_units_30d, sa.avg_stock_cost_30d, sa.avg_stock_retail_30d, sa.avg_stock_gross_30d,
sa.received_qty_30d, sa.received_cost_30d,
-- Use total_sold from products table as the source of truth for lifetime sales
-- This includes all historical data from the production database
ci.historical_total_sold AS lifetime_sales,
COALESCE(
-- Option 1: Use 30-day average price if available
CASE WHEN sa.sales_30d > 0 THEN
ci.historical_total_sold * (sa.revenue_30d / NULLIF(sa.sales_30d, 0))
ELSE NULL END,
-- Option 2: Try 365-day average price if available
CASE WHEN sa.sales_365d > 0 THEN
ci.historical_total_sold * (sa.revenue_365d / NULLIF(sa.sales_365d, 0))
ELSE NULL END,
-- Option 3: Use current price as a reasonable estimate
ci.historical_total_sold * ci.current_price,
-- Option 4: Use regular price if current price might be zero
ci.historical_total_sold * ci.current_regular_price,
-- Final fallback: Use accumulated revenue (this is less accurate for old products)
sa.total_net_revenue
) AS lifetime_revenue,
fpm.first_7_days_sales, fpm.first_7_days_revenue, fpm.first_30_days_sales, fpm.first_30_days_revenue,
fpm.first_60_days_sales, fpm.first_60_days_revenue, fpm.first_90_days_sales, fpm.first_90_days_revenue,
-- Calculated KPIs
sa.revenue_30d / NULLIF(sa.sales_30d, 0) AS asp_30d,
sa.cogs_30d / NULLIF(sa.sales_30d, 0) AS acp_30d,
sa.profit_30d / NULLIF(sa.sales_30d, 0) AS avg_ros_30d,
sa.sales_30d / 30.0 AS avg_sales_per_day_30d,
sa.sales_30d AS avg_sales_per_month_30d, -- Using 30d sales as proxy for month
(sa.profit_30d / NULLIF(sa.revenue_30d, 0)) * 100 AS margin_30d,
(sa.profit_30d / NULLIF(sa.cogs_30d, 0)) * 100 AS markup_30d,
sa.profit_30d / NULLIF(sa.avg_stock_cost_30d, 0) AS gmroi_30d,
sa.sales_30d / NULLIF(sa.avg_stock_units_30d, 0) AS stockturn_30d,
(sa.returns_units_30d / NULLIF(sa.sales_30d + sa.returns_units_30d, 0)) * 100 AS return_rate_30d,
(sa.discounts_30d / NULLIF(sa.gross_revenue_30d, 0)) * 100 AS discount_rate_30d,
(sa.stockout_days_30d / 30.0) * 100 AS stockout_rate_30d,
sa.gross_regular_revenue_30d - sa.gross_revenue_30d AS markdown_30d,
((sa.gross_regular_revenue_30d - sa.gross_revenue_30d) / NULLIF(sa.gross_regular_revenue_30d, 0)) * 100 AS markdown_rate_30d,
(sa.sales_30d / NULLIF(ci.current_stock + sa.sales_30d, 0)) * 100 AS sell_through_30d,
-- Forecasting intermediate values
-- CRITICAL FIX: Use safer velocity calculation to prevent extreme values
-- Original problematic calculation: (sa.sales_30d / NULLIF(30.0 - sa.stockout_days_30d, 0))
-- Use available days (not stockout days) as denominator with a minimum safety value
(sa.sales_30d /
NULLIF(
GREATEST(
30.0 - sa.stockout_days_30d, -- Standard calculation
CASE
WHEN sa.sales_30d > 0 THEN 14.0 -- If we have sales, ensure at least 14 days denominator
ELSE 30.0 -- If no sales, use full period
END
),
0
)
) AS sales_velocity_daily,
s.effective_lead_time AS config_lead_time,
s.effective_days_of_stock AS config_days_of_stock,
s.effective_safety_stock AS config_safety_stock,
(s.effective_lead_time + s.effective_days_of_stock) AS planning_period_days,
-- Apply the same fix to all derived calculations
(sa.sales_30d /
NULLIF(
GREATEST(
30.0 - sa.stockout_days_30d,
CASE WHEN sa.sales_30d > 0 THEN 14.0 ELSE 30.0 END
),
0
)
) * s.effective_lead_time AS lead_time_forecast_units,
(sa.sales_30d /
NULLIF(
GREATEST(
30.0 - sa.stockout_days_30d,
CASE WHEN sa.sales_30d > 0 THEN 14.0 ELSE 30.0 END
),
0
)
) * s.effective_days_of_stock AS days_of_stock_forecast_units,
(sa.sales_30d /
NULLIF(
GREATEST(
30.0 - sa.stockout_days_30d,
CASE WHEN sa.sales_30d > 0 THEN 14.0 ELSE 30.0 END
),
0
)
) * (s.effective_lead_time + s.effective_days_of_stock) AS planning_period_forecast_units,
(ci.current_stock + COALESCE(ooi.on_order_qty, 0) - ((sa.sales_30d /
NULLIF(
GREATEST(
30.0 - sa.stockout_days_30d,
CASE WHEN sa.sales_30d > 0 THEN 14.0 ELSE 30.0 END
),
0
)
) * s.effective_lead_time)) AS lead_time_closing_stock,
((ci.current_stock + COALESCE(ooi.on_order_qty, 0) - ((sa.sales_30d /
NULLIF(
GREATEST(
30.0 - sa.stockout_days_30d,
CASE WHEN sa.sales_30d > 0 THEN 14.0 ELSE 30.0 END
),
0
)
) * s.effective_lead_time))) - ((sa.sales_30d /
NULLIF(
GREATEST(
30.0 - sa.stockout_days_30d,
CASE WHEN sa.sales_30d > 0 THEN 14.0 ELSE 30.0 END
),
0
)
) * s.effective_days_of_stock) AS days_of_stock_closing_stock,
(((sa.sales_30d /
NULLIF(
GREATEST(
30.0 - sa.stockout_days_30d,
CASE WHEN sa.sales_30d > 0 THEN 14.0 ELSE 30.0 END
),
0
)
) * s.effective_lead_time) + ((sa.sales_30d /
NULLIF(
GREATEST(
30.0 - sa.stockout_days_30d,
CASE WHEN sa.sales_30d > 0 THEN 14.0 ELSE 30.0 END
),
0
)
) * s.effective_days_of_stock)) + s.effective_safety_stock - ci.current_stock - COALESCE(ooi.on_order_qty, 0) AS replenishment_needed_raw,
-- Final Forecasting / Replenishment Metrics (apply CEILING/GREATEST/etc.)
-- Note: These calculations are nested for clarity, can be simplified in prod
CEILING(GREATEST(0, ((((sa.sales_30d /
NULLIF(
GREATEST(
30.0 - sa.stockout_days_30d,
CASE WHEN sa.sales_30d > 0 THEN 14.0 ELSE 30.0 END
),
0
)
) * s.effective_lead_time) + ((sa.sales_30d /
NULLIF(
GREATEST(
30.0 - sa.stockout_days_30d,
CASE WHEN sa.sales_30d > 0 THEN 14.0 ELSE 30.0 END
),
0
)
) * s.effective_days_of_stock)) + s.effective_safety_stock - ci.current_stock - COALESCE(ooi.on_order_qty, 0))))::int AS replenishment_units,
(CEILING(GREATEST(0, ((((sa.sales_30d /
NULLIF(
GREATEST(
30.0 - sa.stockout_days_30d,
CASE WHEN sa.sales_30d > 0 THEN 14.0 ELSE 30.0 END
),
0
)
) * s.effective_lead_time) + ((sa.sales_30d /
NULLIF(
GREATEST(
30.0 - sa.stockout_days_30d,
CASE WHEN sa.sales_30d > 0 THEN 14.0 ELSE 30.0 END
),
0
)
) * s.effective_days_of_stock)) + s.effective_safety_stock - ci.current_stock - COALESCE(ooi.on_order_qty, 0))))::int) * ci.current_effective_cost AS replenishment_cost,
(CEILING(GREATEST(0, ((((sa.sales_30d /
NULLIF(
GREATEST(
30.0 - sa.stockout_days_30d,
CASE WHEN sa.sales_30d > 0 THEN 14.0 ELSE 30.0 END
),
0
)
) * s.effective_lead_time) + ((sa.sales_30d /
NULLIF(
GREATEST(
30.0 - sa.stockout_days_30d,
CASE WHEN sa.sales_30d > 0 THEN 14.0 ELSE 30.0 END
),
0
)
) * s.effective_days_of_stock)) + s.effective_safety_stock - ci.current_stock - COALESCE(ooi.on_order_qty, 0))))::int) * ci.current_price AS replenishment_retail,
(CEILING(GREATEST(0, ((((sa.sales_30d /
NULLIF(
GREATEST(
30.0 - sa.stockout_days_30d,
CASE WHEN sa.sales_30d > 0 THEN 14.0 ELSE 30.0 END
),
0
)
) * s.effective_lead_time) + ((sa.sales_30d /
NULLIF(
GREATEST(
30.0 - sa.stockout_days_30d,
CASE WHEN sa.sales_30d > 0 THEN 14.0 ELSE 30.0 END
),
0
)
) * s.effective_days_of_stock)) + s.effective_safety_stock - ci.current_stock - COALESCE(ooi.on_order_qty, 0))))::int) * (ci.current_price - ci.current_effective_cost) AS replenishment_profit,
-- Placeholder for To Order (Apply MOQ/UOM logic here if needed, otherwise equals replenishment)
CEILING(GREATEST(0, ((((sa.sales_30d /
NULLIF(
GREATEST(
30.0 - sa.stockout_days_30d,
CASE WHEN sa.sales_30d > 0 THEN 14.0 ELSE 30.0 END
),
0
)
) * s.effective_lead_time) + ((sa.sales_30d /
NULLIF(
GREATEST(
30.0 - sa.stockout_days_30d,
CASE WHEN sa.sales_30d > 0 THEN 14.0 ELSE 30.0 END
),
0
)
) * s.effective_days_of_stock)) + s.effective_safety_stock - ci.current_stock - COALESCE(ooi.on_order_qty, 0))))::int AS to_order_units,
GREATEST(0, - (ci.current_stock + COALESCE(ooi.on_order_qty, 0) - ((sa.sales_30d /
NULLIF(
GREATEST(
30.0 - sa.stockout_days_30d,
CASE WHEN sa.sales_30d > 0 THEN 14.0 ELSE 30.0 END
),
0
)
) * s.effective_lead_time))) AS forecast_lost_sales_units,
GREATEST(0, - (ci.current_stock + COALESCE(ooi.on_order_qty, 0) - ((sa.sales_30d /
NULLIF(
GREATEST(
30.0 - sa.stockout_days_30d,
CASE WHEN sa.sales_30d > 0 THEN 14.0 ELSE 30.0 END
),
0
)
) * s.effective_lead_time))) * ci.current_price AS forecast_lost_revenue,
ci.current_stock / NULLIF((sa.sales_30d /
NULLIF(
GREATEST(
30.0 - sa.stockout_days_30d,
CASE WHEN sa.sales_30d > 0 THEN 14.0 ELSE 30.0 END
),
0
)
), 0) AS stock_cover_in_days,
COALESCE(ooi.on_order_qty, 0) / NULLIF((sa.sales_30d /
NULLIF(
GREATEST(
30.0 - sa.stockout_days_30d,
CASE WHEN sa.sales_30d > 0 THEN 14.0 ELSE 30.0 END
),
0
)
), 0) AS po_cover_in_days,
(ci.current_stock + COALESCE(ooi.on_order_qty, 0)) / NULLIF((sa.sales_30d /
NULLIF(
GREATEST(
30.0 - sa.stockout_days_30d,
CASE WHEN sa.sales_30d > 0 THEN 14.0 ELSE 30.0 END
),
0
)
), 0) AS sells_out_in_days,
-- Replenish Date: Date when stock is projected to hit safety stock, minus lead time
CASE
WHEN (sa.sales_30d /
NULLIF(
GREATEST(
30.0 - sa.stockout_days_30d,
CASE WHEN sa.sales_30d > 0 THEN 14.0 ELSE 30.0 END
),
0
)
) > 0
THEN _current_date + FLOOR(GREATEST(0, ci.current_stock - s.effective_safety_stock) / (sa.sales_30d /
NULLIF(
GREATEST(
30.0 - sa.stockout_days_30d,
CASE WHEN sa.sales_30d > 0 THEN 14.0 ELSE 30.0 END
),
0
)
))::int - s.effective_lead_time
ELSE NULL
END AS replenish_date,
GREATEST(0, ci.current_stock - s.effective_safety_stock - (((sa.sales_30d /
NULLIF(
GREATEST(
30.0 - sa.stockout_days_30d,
CASE WHEN sa.sales_30d > 0 THEN 14.0 ELSE 30.0 END
),
0
)
) * s.effective_lead_time) + ((sa.sales_30d /
NULLIF(
GREATEST(
30.0 - sa.stockout_days_30d,
CASE WHEN sa.sales_30d > 0 THEN 14.0 ELSE 30.0 END
),
0
)
) * s.effective_days_of_stock)))::int AS overstocked_units,
(GREATEST(0, ci.current_stock - s.effective_safety_stock - (((sa.sales_30d /
NULLIF(
GREATEST(
30.0 - sa.stockout_days_30d,
CASE WHEN sa.sales_30d > 0 THEN 14.0 ELSE 30.0 END
),
0
)
) * s.effective_lead_time) + ((sa.sales_30d /
NULLIF(
GREATEST(
30.0 - sa.stockout_days_30d,
CASE WHEN sa.sales_30d > 0 THEN 14.0 ELSE 30.0 END
),
0
)
) * s.effective_days_of_stock)))) * ci.current_effective_cost AS overstocked_cost,
(GREATEST(0, ci.current_stock - s.effective_safety_stock - (((sa.sales_30d /
NULLIF(
GREATEST(
30.0 - sa.stockout_days_30d,
CASE WHEN sa.sales_30d > 0 THEN 14.0 ELSE 30.0 END
),
0
)
) * s.effective_lead_time) + ((sa.sales_30d /
NULLIF(
GREATEST(
30.0 - sa.stockout_days_30d,
CASE WHEN sa.sales_30d > 0 THEN 14.0 ELSE 30.0 END
),
0
)
) * s.effective_days_of_stock)))) * ci.current_price AS overstocked_retail,
-- Old Stock Flag
(ci.created_at::date < _current_date - INTERVAL '60 day') AND
(COALESCE(ci.date_last_sold, hd.max_order_date) IS NULL OR COALESCE(ci.date_last_sold, hd.max_order_date) < _current_date - INTERVAL '60 day') AND
(hd.date_last_received_calc IS NULL OR hd.date_last_received_calc < _current_date - INTERVAL '60 day') AND
COALESCE(ooi.on_order_qty, 0) = 0
AS is_old_stock,
sa.yesterday_sales,
-- Calculate status using direct CASE statements (inline logic)
CASE
-- Non-replenishable items default to Healthy
WHEN NOT ci.is_replenishable THEN 'Healthy'
-- Calculate lead time and thresholds
ELSE
CASE
-- Check for overstock first
WHEN GREATEST(0, ci.current_stock - s.effective_safety_stock - (((sa.sales_30d /
NULLIF(
GREATEST(
30.0 - sa.stockout_days_30d,
CASE WHEN sa.sales_30d > 0 THEN 14.0 ELSE 30.0 END
),
0
)
) * s.effective_lead_time) + ((sa.sales_30d /
NULLIF(
GREATEST(
30.0 - sa.stockout_days_30d,
CASE WHEN sa.sales_30d > 0 THEN 14.0 ELSE 30.0 END
),
0
)
) * s.effective_days_of_stock))) > 0 THEN 'Overstock'
-- Check for Critical stock
WHEN ci.current_stock <= 0 OR
(ci.current_stock / NULLIF((sa.sales_30d /
NULLIF(
GREATEST(
30.0 - sa.stockout_days_30d,
CASE WHEN sa.sales_30d > 0 THEN 14.0 ELSE 30.0 END
),
0
)
), 0)) <= 0 THEN 'Critical'
WHEN (ci.current_stock / NULLIF((sa.sales_30d /
NULLIF(
GREATEST(
30.0 - sa.stockout_days_30d,
CASE WHEN sa.sales_30d > 0 THEN 14.0 ELSE 30.0 END
),
0
)
), 0)) < (COALESCE(s.effective_lead_time, 30) * 0.5) THEN 'Critical'
-- Check for reorder soon
WHEN ((ci.current_stock + COALESCE(ooi.on_order_qty, 0)) / NULLIF((sa.sales_30d /
NULLIF(
GREATEST(
30.0 - sa.stockout_days_30d,
CASE WHEN sa.sales_30d > 0 THEN 14.0 ELSE 30.0 END
),
0
)
), 0)) < (COALESCE(s.effective_lead_time, 30) + 7) THEN
CASE
WHEN (ci.current_stock / NULLIF((sa.sales_30d /
NULLIF(
GREATEST(
30.0 - sa.stockout_days_30d,
CASE WHEN sa.sales_30d > 0 THEN 14.0 ELSE 30.0 END
),
0
)
), 0)) < (COALESCE(s.effective_lead_time, 30) * 0.5) THEN 'Critical'
ELSE 'Reorder Soon'
END
-- Check for 'At Risk' - old stock
WHEN (ci.created_at::date < _current_date - INTERVAL '60 day') AND
(COALESCE(ci.date_last_sold, hd.max_order_date) IS NULL OR COALESCE(ci.date_last_sold, hd.max_order_date) < _current_date - INTERVAL '60 day') AND
(hd.date_last_received_calc IS NULL OR hd.date_last_received_calc < _current_date - INTERVAL '60 day') AND
COALESCE(ooi.on_order_qty, 0) = 0 THEN 'At Risk'
-- Check for 'At Risk' - hasn't sold in a long time
WHEN COALESCE(ci.date_last_sold, hd.max_order_date) IS NOT NULL
AND COALESCE(ci.date_last_sold, hd.max_order_date) < (_current_date - INTERVAL '90 days')
AND (CASE
WHEN ci.created_at IS NULL AND hd.date_first_sold IS NULL THEN 0
WHEN ci.created_at IS NULL THEN (_current_date - hd.date_first_sold)::integer
WHEN hd.date_first_sold IS NULL THEN (_current_date - ci.created_at::date)::integer
ELSE (_current_date - LEAST(ci.created_at::date, hd.date_first_sold))::integer
END) > 180 THEN 'At Risk'
-- Very high stock cover is at risk too
WHEN (ci.current_stock / NULLIF((sa.sales_30d /
NULLIF(
GREATEST(
30.0 - sa.stockout_days_30d,
CASE WHEN sa.sales_30d > 0 THEN 14.0 ELSE 30.0 END
),
0
)
), 0)) > 365 THEN 'At Risk'
-- New products (less than 30 days old)
WHEN (CASE
WHEN ci.created_at IS NULL AND hd.date_first_sold IS NULL THEN 0
WHEN ci.created_at IS NULL THEN (_current_date - hd.date_first_sold)::integer
WHEN hd.date_first_sold IS NULL THEN (_current_date - ci.created_at::date)::integer
ELSE (_current_date - LEAST(ci.created_at::date, hd.date_first_sold))::integer
END) <= 30 THEN 'New'
-- If none of the above, assume Healthy
ELSE 'Healthy'
END
END AS status
FROM CurrentInfo ci
LEFT JOIN OnOrderInfo ooi ON ci.pid = ooi.pid
LEFT JOIN HistoricalDates hd ON ci.pid = hd.pid
LEFT JOIN SnapshotAggregates sa ON ci.pid = sa.pid
LEFT JOIN FirstPeriodMetrics fpm ON ci.pid = fpm.pid
LEFT JOIN Settings s ON ci.pid = s.pid
WHERE s.exclude_forecast IS FALSE OR s.exclude_forecast IS NULL -- Exclude products explicitly marked
ON CONFLICT (pid) DO UPDATE SET
last_calculated = EXCLUDED.last_calculated,
sku = EXCLUDED.sku, title = EXCLUDED.title, brand = EXCLUDED.brand, vendor = EXCLUDED.vendor, image_url = EXCLUDED.image_url, is_visible = EXCLUDED.is_visible, is_replenishable = EXCLUDED.is_replenishable,
barcode = EXCLUDED.barcode, harmonized_tariff_code = EXCLUDED.harmonized_tariff_code, vendor_reference = EXCLUDED.vendor_reference, notions_reference = EXCLUDED.notions_reference, line = EXCLUDED.line, subline = EXCLUDED.subline, artist = EXCLUDED.artist,
moq = EXCLUDED.moq, rating = EXCLUDED.rating, reviews = EXCLUDED.reviews, weight = EXCLUDED.weight, length = EXCLUDED.length, width = EXCLUDED.width, height = EXCLUDED.height, country_of_origin = EXCLUDED.country_of_origin, location = EXCLUDED.location,
baskets = EXCLUDED.baskets, notifies = EXCLUDED.notifies, preorder_count = EXCLUDED.preorder_count, notions_inv_count = EXCLUDED.notions_inv_count,
current_price = EXCLUDED.current_price, current_regular_price = EXCLUDED.current_regular_price, current_cost_price = EXCLUDED.current_cost_price, current_landing_cost_price = EXCLUDED.current_landing_cost_price,
current_stock = EXCLUDED.current_stock, current_stock_cost = EXCLUDED.current_stock_cost, current_stock_retail = EXCLUDED.current_stock_retail, current_stock_gross = EXCLUDED.current_stock_gross,
on_order_qty = EXCLUDED.on_order_qty, on_order_cost = EXCLUDED.on_order_cost, on_order_retail = EXCLUDED.on_order_retail, earliest_expected_date = EXCLUDED.earliest_expected_date,
date_created = EXCLUDED.date_created, date_first_received = EXCLUDED.date_first_received, date_last_received = EXCLUDED.date_last_received, date_first_sold = EXCLUDED.date_first_sold, date_last_sold = EXCLUDED.date_last_sold, age_days = EXCLUDED.age_days,
sales_7d = EXCLUDED.sales_7d, revenue_7d = EXCLUDED.revenue_7d, sales_14d = EXCLUDED.sales_14d, revenue_14d = EXCLUDED.revenue_14d, sales_30d = EXCLUDED.sales_30d, revenue_30d = EXCLUDED.revenue_30d, cogs_30d = EXCLUDED.cogs_30d, profit_30d = EXCLUDED.profit_30d,
returns_units_30d = EXCLUDED.returns_units_30d, returns_revenue_30d = EXCLUDED.returns_revenue_30d, discounts_30d = EXCLUDED.discounts_30d, gross_revenue_30d = EXCLUDED.gross_revenue_30d, gross_regular_revenue_30d = EXCLUDED.gross_regular_revenue_30d,
stockout_days_30d = EXCLUDED.stockout_days_30d, sales_365d = EXCLUDED.sales_365d, revenue_365d = EXCLUDED.revenue_365d,
avg_stock_units_30d = EXCLUDED.avg_stock_units_30d, avg_stock_cost_30d = EXCLUDED.avg_stock_cost_30d, avg_stock_retail_30d = EXCLUDED.avg_stock_retail_30d, avg_stock_gross_30d = EXCLUDED.avg_stock_gross_30d,
received_qty_30d = EXCLUDED.received_qty_30d, received_cost_30d = EXCLUDED.received_cost_30d,
lifetime_sales = EXCLUDED.lifetime_sales, lifetime_revenue = EXCLUDED.lifetime_revenue,
first_7_days_sales = EXCLUDED.first_7_days_sales, first_7_days_revenue = EXCLUDED.first_7_days_revenue, first_30_days_sales = EXCLUDED.first_30_days_sales, first_30_days_revenue = EXCLUDED.first_30_days_revenue,
first_60_days_sales = EXCLUDED.first_60_days_sales, first_60_days_revenue = EXCLUDED.first_60_days_revenue, first_90_days_sales = EXCLUDED.first_90_days_sales, first_90_days_revenue = EXCLUDED.first_90_days_revenue,
asp_30d = EXCLUDED.asp_30d, acp_30d = EXCLUDED.acp_30d, avg_ros_30d = EXCLUDED.avg_ros_30d, avg_sales_per_day_30d = EXCLUDED.avg_sales_per_day_30d, avg_sales_per_month_30d = EXCLUDED.avg_sales_per_month_30d,
margin_30d = EXCLUDED.margin_30d, markup_30d = EXCLUDED.markup_30d, gmroi_30d = EXCLUDED.gmroi_30d, stockturn_30d = EXCLUDED.stockturn_30d, return_rate_30d = EXCLUDED.return_rate_30d, discount_rate_30d = EXCLUDED.discount_rate_30d,
stockout_rate_30d = EXCLUDED.stockout_rate_30d, markdown_30d = EXCLUDED.markdown_30d, markdown_rate_30d = EXCLUDED.markdown_rate_30d, sell_through_30d = EXCLUDED.sell_through_30d,
-- avg_lead_time_days = EXCLUDED.avg_lead_time_days, -- Updated Periodically
-- abc_class = EXCLUDED.abc_class, -- Updated Periodically
sales_velocity_daily = EXCLUDED.sales_velocity_daily, config_lead_time = EXCLUDED.config_lead_time, config_days_of_stock = EXCLUDED.config_days_of_stock, config_safety_stock = EXCLUDED.config_safety_stock,
planning_period_days = EXCLUDED.planning_period_days, lead_time_forecast_units = EXCLUDED.lead_time_forecast_units, days_of_stock_forecast_units = EXCLUDED.days_of_stock_forecast_units,
planning_period_forecast_units = EXCLUDED.planning_period_forecast_units, lead_time_closing_stock = EXCLUDED.lead_time_closing_stock, days_of_stock_closing_stock = EXCLUDED.days_of_stock_closing_stock,
replenishment_needed_raw = EXCLUDED.replenishment_needed_raw, replenishment_units = EXCLUDED.replenishment_units, replenishment_cost = EXCLUDED.replenishment_cost, replenishment_retail = EXCLUDED.replenishment_retail, replenishment_profit = EXCLUDED.replenishment_profit,
to_order_units = EXCLUDED.to_order_units, forecast_lost_sales_units = EXCLUDED.forecast_lost_sales_units, forecast_lost_revenue = EXCLUDED.forecast_lost_revenue,
stock_cover_in_days = EXCLUDED.stock_cover_in_days, po_cover_in_days = EXCLUDED.po_cover_in_days, sells_out_in_days = EXCLUDED.sells_out_in_days, replenish_date = EXCLUDED.replenish_date,
overstocked_units = EXCLUDED.overstocked_units, overstocked_cost = EXCLUDED.overstocked_cost, overstocked_retail = EXCLUDED.overstocked_retail, is_old_stock = EXCLUDED.is_old_stock,
yesterday_sales = EXCLUDED.yesterday_sales,
status = EXCLUDED.status
;
-- Update the status table with the timestamp from the START of this run
UPDATE public.calculate_status
SET last_calculation_timestamp = _start_time
WHERE module_name = _module_name;
RAISE NOTICE 'Finished % module. Duration: %', _module_name, clock_timestamp() - _start_time;
END $$;

View File

@@ -0,0 +1,39 @@
const { Pool } = require('pg');
const path = require('path');
require('dotenv').config({ path: path.resolve(__dirname, '../../..', '.env') });
// Database configuration
const dbConfig = {
host: process.env.DB_HOST,
user: process.env.DB_USER,
password: process.env.DB_PASSWORD,
database: process.env.DB_NAME,
port: process.env.DB_PORT || 5432,
ssl: process.env.DB_SSL === 'true',
// Add performance optimizations
max: 10, // connection pool max size
idleTimeoutMillis: 30000,
connectionTimeoutMillis: 60000
};
// Create a single pool instance to be reused
const pool = new Pool(dbConfig);
// Add event handlers for pool
pool.on('error', (err, client) => {
console.error('Unexpected error on idle client', err);
});
async function getConnection() {
return await pool.connect();
}
async function closePool() {
await pool.end();
}
module.exports = {
dbConfig,
getConnection,
closePool
};

View File

@@ -0,0 +1,158 @@
const fs = require('fs');
const path = require('path');
// Helper function to format elapsed time
function formatElapsedTime(elapsed) {
// If elapsed is a timestamp, convert to elapsed milliseconds
if (elapsed instanceof Date || elapsed > 1000000000000) {
elapsed = Date.now() - elapsed;
} else {
// If elapsed is in seconds, convert to milliseconds
elapsed = elapsed * 1000;
}
const seconds = Math.floor(elapsed / 1000);
const minutes = Math.floor(seconds / 60);
const hours = Math.floor(minutes / 60);
if (hours > 0) {
return `${hours}h ${minutes % 60}m`;
} else if (minutes > 0) {
return `${minutes}m ${seconds % 60}s`;
} else {
return `${seconds}s`;
}
}
// Helper function to estimate remaining time
function estimateRemaining(startTime, current, total) {
if (current === 0) return null;
const elapsed = Date.now() - startTime;
const rate = current / elapsed;
const remaining = (total - current) / rate;
const minutes = Math.floor(remaining / 60000);
const seconds = Math.floor((remaining % 60000) / 1000);
if (minutes > 0) {
return `${minutes}m ${seconds}s`;
} else {
return `${seconds}s`;
}
}
// Helper function to calculate rate
function calculateRate(startTime, current) {
const elapsed = (Date.now() - startTime) / 1000; // Convert to seconds
return elapsed > 0 ? Math.round(current / elapsed) : 0;
}
// Set up logging
const LOG_DIR = path.join(__dirname, '../../../logs');
const ERROR_LOG = path.join(LOG_DIR, 'import-errors.log');
const IMPORT_LOG = path.join(LOG_DIR, 'import.log');
const STATUS_FILE = path.join(LOG_DIR, 'metrics-status.json');
// Ensure log directory exists
if (!fs.existsSync(LOG_DIR)) {
fs.mkdirSync(LOG_DIR, { recursive: true });
}
// Helper function to log errors
function logError(error, context = '') {
const timestamp = new Date().toISOString();
const errorMessage = `[${timestamp}] ${context}\nError: ${error.message}\nStack: ${error.stack}\n\n`;
// Log to error file
fs.appendFileSync(ERROR_LOG, errorMessage);
// Also log to console
console.error(`\n${context}\nError: ${error.message}`);
}
// Helper function to log import progress
function logImport(message) {
const timestamp = new Date().toISOString();
const logMessage = `[${timestamp}] ${message}\n`;
fs.appendFileSync(IMPORT_LOG, logMessage);
}
// Helper function to output progress
function outputProgress(data) {
// Save progress to file for resumption
saveProgress(data);
// Format as SSE event
const event = {
progress: data
};
// Always send to stdout for frontend
process.stdout.write(JSON.stringify(event) + '\n');
// Log significant events to disk
const isSignificant =
// Operation starts
(data.operation && !data.current) ||
// Operation completions and errors
data.status === 'complete' ||
data.status === 'error' ||
// Major phase changes
data.operation?.includes('Starting ABC classification') ||
data.operation?.includes('Starting time-based aggregates') ||
data.operation?.includes('Starting vendor metrics');
if (isSignificant) {
logImport(`${data.operation || 'Operation'}${data.message ? ': ' + data.message : ''}${data.error ? ' Error: ' + data.error : ''}${data.status ? ' Status: ' + data.status : ''}`);
}
}
function saveProgress(progress) {
try {
fs.writeFileSync(STATUS_FILE, JSON.stringify({
...progress,
timestamp: Date.now()
}));
} catch (err) {
console.error('Failed to save progress:', err);
}
}
function clearProgress() {
try {
if (fs.existsSync(STATUS_FILE)) {
fs.unlinkSync(STATUS_FILE);
}
} catch (err) {
console.error('Failed to clear progress:', err);
}
}
function getProgress() {
try {
if (fs.existsSync(STATUS_FILE)) {
const progress = JSON.parse(fs.readFileSync(STATUS_FILE, 'utf8'));
// Check if the progress is still valid (less than 1 hour old)
if (progress.timestamp && Date.now() - progress.timestamp < 3600000) {
return progress;
} else {
// Clear old progress
clearProgress();
}
}
} catch (err) {
console.error('Failed to read progress:', err);
clearProgress();
}
return null;
}
module.exports = {
formatElapsedTime,
estimateRemaining,
calculateRate,
logError,
logImport,
outputProgress,
saveProgress,
clearProgress,
getProgress
};

View File

@@ -1,153 +0,0 @@
const { outputProgress, formatElapsedTime, estimateRemaining, calculateRate, logError } = require('./utils/progress');
const { getConnection } = require('./utils/db');
async function calculateFinancialMetrics(startTime, totalProducts, processedCount, isCancelled = false) {
const connection = await getConnection();
try {
if (isCancelled) {
outputProgress({
status: 'cancelled',
operation: 'Financial metrics calculation cancelled',
current: processedCount,
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: null,
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
return processedCount;
}
outputProgress({
status: 'running',
operation: 'Starting financial metrics calculation',
current: processedCount,
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
// Calculate financial metrics with optimized query
await connection.query(`
WITH product_financials AS (
SELECT
p.pid,
p.cost_price * p.stock_quantity as inventory_value,
SUM(o.quantity * o.price) as total_revenue,
SUM(o.quantity * p.cost_price) as cost_of_goods_sold,
SUM(o.quantity * (o.price - p.cost_price)) as gross_profit,
MIN(o.date) as first_sale_date,
MAX(o.date) as last_sale_date,
DATEDIFF(MAX(o.date), MIN(o.date)) + 1 as calculation_period_days,
COUNT(DISTINCT DATE(o.date)) as active_days
FROM products p
LEFT JOIN orders o ON p.pid = o.pid
WHERE o.canceled = false
AND DATE(o.date) >= DATE_SUB(CURDATE(), INTERVAL 12 MONTH)
GROUP BY p.pid
)
UPDATE product_metrics pm
JOIN product_financials pf ON pm.pid = pf.pid
SET
pm.inventory_value = COALESCE(pf.inventory_value, 0),
pm.total_revenue = COALESCE(pf.total_revenue, 0),
pm.cost_of_goods_sold = COALESCE(pf.cost_of_goods_sold, 0),
pm.gross_profit = COALESCE(pf.gross_profit, 0),
pm.gmroi = CASE
WHEN COALESCE(pf.inventory_value, 0) > 0 AND pf.active_days > 0 THEN
(COALESCE(pf.gross_profit, 0) * (365.0 / pf.active_days)) / COALESCE(pf.inventory_value, 0)
ELSE 0
END,
pm.last_calculated_at = CURRENT_TIMESTAMP
`);
processedCount = Math.floor(totalProducts * 0.65);
outputProgress({
status: 'running',
operation: 'Base financial metrics calculated, updating time aggregates',
current: processedCount,
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
if (isCancelled) return processedCount;
// Update time-based aggregates with optimized query
await connection.query(`
WITH monthly_financials AS (
SELECT
p.pid,
YEAR(o.date) as year,
MONTH(o.date) as month,
p.cost_price * p.stock_quantity as inventory_value,
SUM(o.quantity * (o.price - p.cost_price)) as gross_profit,
COUNT(DISTINCT DATE(o.date)) as active_days,
MIN(o.date) as period_start,
MAX(o.date) as period_end
FROM products p
LEFT JOIN orders o ON p.pid = o.pid
WHERE o.canceled = false
GROUP BY p.pid, YEAR(o.date), MONTH(o.date)
)
UPDATE product_time_aggregates pta
JOIN monthly_financials mf ON pta.pid = mf.pid
AND pta.year = mf.year
AND pta.month = mf.month
SET
pta.inventory_value = COALESCE(mf.inventory_value, 0),
pta.gmroi = CASE
WHEN COALESCE(mf.inventory_value, 0) > 0 AND mf.active_days > 0 THEN
(COALESCE(mf.gross_profit, 0) * (365.0 / mf.active_days)) / COALESCE(mf.inventory_value, 0)
ELSE 0
END
`);
processedCount = Math.floor(totalProducts * 0.70);
outputProgress({
status: 'running',
operation: 'Time-based aggregates updated',
current: processedCount,
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
timing: {
start_time: new Date(startTime).toISOString(),
end_time: new Date().toISOString(),
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
}
});
return processedCount;
} catch (error) {
logError(error, 'Error calculating financial metrics');
throw error;
} finally {
if (connection) {
connection.release();
}
}
}
module.exports = calculateFinancialMetrics;

Some files were not shown because too many files have changed in this diff Show More