Compare commits
15 Commits
Improve-da
...
98e2e4073a
| Author | SHA1 | Date | |
|---|---|---|---|
| 98e2e4073a | |||
| 23c2085f1c | |||
| 2a6a0d0a87 | |||
| ebffb8f912 | |||
| 5676e9094d | |||
| b926aba9ff | |||
| e62c6ac8ee | |||
| 18f4970059 | |||
| 12cab7473a | |||
| 06b0f1251e | |||
| 8a43da502a | |||
| bd5bcdd548 | |||
| 0a51328da2 | |||
| b2d7744cc5 | |||
| 8124fc9add |
1
.gitignore
vendored
1
.gitignore
vendored
@@ -26,6 +26,7 @@ dist-ssr
|
||||
dashboard/build/**
|
||||
dashboard-server/frontend/build/**
|
||||
**/build/**
|
||||
.fuse_hidden**
|
||||
._*
|
||||
|
||||
# Build directories
|
||||
|
||||
@@ -171,6 +171,39 @@ ORDER BY
|
||||
c.name,
|
||||
st.vendor;
|
||||
|
||||
CREATE TABLE IF NOT EXISTS calculate_history (
|
||||
id BIGINT AUTO_INCREMENT PRIMARY KEY,
|
||||
start_time TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
|
||||
end_time TIMESTAMP NULL,
|
||||
duration_seconds INT,
|
||||
duration_minutes DECIMAL(10,2) GENERATED ALWAYS AS (duration_seconds / 60.0) STORED,
|
||||
total_products INT DEFAULT 0,
|
||||
total_orders INT DEFAULT 0,
|
||||
total_purchase_orders INT DEFAULT 0,
|
||||
processed_products INT DEFAULT 0,
|
||||
processed_orders INT DEFAULT 0,
|
||||
processed_purchase_orders INT DEFAULT 0,
|
||||
status ENUM('running', 'completed', 'failed', 'cancelled') DEFAULT 'running',
|
||||
error_message TEXT,
|
||||
additional_info JSON,
|
||||
INDEX idx_status_time (status, start_time)
|
||||
);
|
||||
|
||||
CREATE TABLE IF NOT EXISTS calculate_status (
|
||||
module_name ENUM(
|
||||
'product_metrics',
|
||||
'time_aggregates',
|
||||
'financial_metrics',
|
||||
'vendor_metrics',
|
||||
'category_metrics',
|
||||
'brand_metrics',
|
||||
'sales_forecasts',
|
||||
'abc_classification'
|
||||
) PRIMARY KEY,
|
||||
last_calculation_timestamp TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
|
||||
INDEX idx_last_calc (last_calculation_timestamp)
|
||||
);
|
||||
|
||||
CREATE TABLE IF NOT EXISTS sync_status (
|
||||
table_name VARCHAR(50) PRIMARY KEY,
|
||||
last_sync_timestamp TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
|
||||
|
||||
@@ -102,19 +102,17 @@ CREATE TABLE IF NOT EXISTS product_time_aggregates (
|
||||
INDEX idx_date (year, month)
|
||||
);
|
||||
|
||||
-- Create vendor details table
|
||||
CREATE TABLE IF NOT EXISTS vendor_details (
|
||||
vendor VARCHAR(100) NOT NULL,
|
||||
-- Create vendor_details table
|
||||
CREATE TABLE vendor_details (
|
||||
vendor VARCHAR(100) PRIMARY KEY,
|
||||
contact_name VARCHAR(100),
|
||||
email VARCHAR(100),
|
||||
phone VARCHAR(20),
|
||||
email VARCHAR(255),
|
||||
phone VARCHAR(50),
|
||||
status VARCHAR(20) DEFAULT 'active',
|
||||
notes TEXT,
|
||||
created_at TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
|
||||
updated_at TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
|
||||
PRIMARY KEY (vendor),
|
||||
INDEX idx_vendor_status (status)
|
||||
);
|
||||
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
|
||||
updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
|
||||
INDEX idx_status (status)
|
||||
) ENGINE=InnoDB;
|
||||
|
||||
-- New table for vendor metrics
|
||||
CREATE TABLE IF NOT EXISTS vendor_metrics (
|
||||
@@ -410,21 +408,4 @@ LEFT JOIN
|
||||
category_metrics cm ON c.cat_id = cm.category_id;
|
||||
|
||||
-- Re-enable foreign key checks
|
||||
SET FOREIGN_KEY_CHECKS = 1;
|
||||
|
||||
-- Create table for sales seasonality factors
|
||||
CREATE TABLE IF NOT EXISTS sales_seasonality (
|
||||
month INT NOT NULL,
|
||||
seasonality_factor DECIMAL(5,3) DEFAULT 0,
|
||||
last_updated TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
|
||||
PRIMARY KEY (month),
|
||||
CHECK (month BETWEEN 1 AND 12),
|
||||
CHECK (seasonality_factor BETWEEN -1.0 AND 1.0)
|
||||
);
|
||||
|
||||
-- Insert default seasonality factors (neutral)
|
||||
INSERT INTO sales_seasonality (month, seasonality_factor)
|
||||
VALUES
|
||||
(1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 0),
|
||||
(7, 0), (8, 0), (9, 0), (10, 0), (11, 0), (12, 0)
|
||||
ON DUPLICATE KEY UPDATE last_updated = CURRENT_TIMESTAMP;
|
||||
SET FOREIGN_KEY_CHECKS = 1;
|
||||
@@ -51,13 +51,15 @@ CREATE TABLE products (
|
||||
baskets INT UNSIGNED DEFAULT 0,
|
||||
notifies INT UNSIGNED DEFAULT 0,
|
||||
date_last_sold DATE,
|
||||
updated TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
|
||||
PRIMARY KEY (pid),
|
||||
INDEX idx_sku (SKU),
|
||||
INDEX idx_vendor (vendor),
|
||||
INDEX idx_brand (brand),
|
||||
INDEX idx_location (location),
|
||||
INDEX idx_total_sold (total_sold),
|
||||
INDEX idx_date_last_sold (date_last_sold)
|
||||
INDEX idx_date_last_sold (date_last_sold),
|
||||
INDEX idx_updated (updated)
|
||||
) ENGINE=InnoDB;
|
||||
|
||||
-- Create categories table with hierarchy support
|
||||
@@ -77,18 +79,6 @@ CREATE TABLE categories (
|
||||
INDEX idx_name_type (name, type)
|
||||
) ENGINE=InnoDB;
|
||||
|
||||
-- Create vendor_details table
|
||||
CREATE TABLE vendor_details (
|
||||
vendor VARCHAR(100) PRIMARY KEY,
|
||||
contact_name VARCHAR(100),
|
||||
email VARCHAR(255),
|
||||
phone VARCHAR(50),
|
||||
status VARCHAR(20) DEFAULT 'active',
|
||||
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
|
||||
updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
|
||||
INDEX idx_status (status)
|
||||
) ENGINE=InnoDB;
|
||||
|
||||
-- Create product_categories junction table
|
||||
CREATE TABLE product_categories (
|
||||
cat_id BIGINT NOT NULL,
|
||||
@@ -118,6 +108,7 @@ CREATE TABLE IF NOT EXISTS orders (
|
||||
customer_name VARCHAR(100),
|
||||
status VARCHAR(20) DEFAULT 'pending',
|
||||
canceled TINYINT(1) DEFAULT 0,
|
||||
updated TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
|
||||
PRIMARY KEY (id),
|
||||
UNIQUE KEY unique_order_line (order_number, pid),
|
||||
KEY order_number (order_number),
|
||||
@@ -125,7 +116,8 @@ CREATE TABLE IF NOT EXISTS orders (
|
||||
KEY customer (customer),
|
||||
KEY date (date),
|
||||
KEY status (status),
|
||||
INDEX idx_orders_metrics (pid, date, canceled)
|
||||
INDEX idx_orders_metrics (pid, date, canceled),
|
||||
INDEX idx_updated (updated)
|
||||
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;
|
||||
|
||||
-- Create purchase_orders table with its indexes
|
||||
@@ -148,8 +140,9 @@ CREATE TABLE purchase_orders (
|
||||
received INT DEFAULT 0,
|
||||
received_date DATE COMMENT 'Date of first receiving',
|
||||
last_received_date DATE COMMENT 'Date of most recent receiving',
|
||||
received_by INT,
|
||||
received_by VARCHAR(100) COMMENT 'Name of person who first received this PO line',
|
||||
receiving_history JSON COMMENT 'Array of receiving records with qty, date, cost, receiving_id, and alt_po flag',
|
||||
updated TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
|
||||
FOREIGN KEY (pid) REFERENCES products(pid),
|
||||
INDEX idx_po_id (po_id),
|
||||
INDEX idx_vendor (vendor),
|
||||
@@ -159,6 +152,7 @@ CREATE TABLE purchase_orders (
|
||||
INDEX idx_po_metrics (pid, date, receiving_status, received_date),
|
||||
INDEX idx_po_product_date (pid, date),
|
||||
INDEX idx_po_product_status (pid, status),
|
||||
INDEX idx_updated (updated),
|
||||
UNIQUE KEY unique_po_product (po_id, pid)
|
||||
) ENGINE=InnoDB;
|
||||
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -7,13 +7,13 @@ require('dotenv').config({ path: path.resolve(__dirname, '..', '.env') });
|
||||
|
||||
// Configuration flags for controlling which metrics to calculate
|
||||
// Set to 1 to skip the corresponding calculation, 0 to run it
|
||||
const SKIP_PRODUCT_METRICS = 1; // Skip all product metrics
|
||||
const SKIP_TIME_AGGREGATES = 1; // Skip time aggregates
|
||||
const SKIP_FINANCIAL_METRICS = 1; // Skip financial metrics
|
||||
const SKIP_VENDOR_METRICS = 1; // Skip vendor metrics
|
||||
const SKIP_CATEGORY_METRICS = 1; // Skip category metrics
|
||||
const SKIP_BRAND_METRICS = 1; // Skip brand metrics
|
||||
const SKIP_SALES_FORECASTS = 1; // Skip sales forecasts
|
||||
const SKIP_PRODUCT_METRICS = 0;
|
||||
const SKIP_TIME_AGGREGATES = 0;
|
||||
const SKIP_FINANCIAL_METRICS = 0;
|
||||
const SKIP_VENDOR_METRICS = 0;
|
||||
const SKIP_CATEGORY_METRICS = 0;
|
||||
const SKIP_BRAND_METRICS = 0;
|
||||
const SKIP_SALES_FORECASTS = 0;
|
||||
|
||||
// Add error handler for uncaught exceptions
|
||||
process.on('uncaughtException', (error) => {
|
||||
@@ -83,10 +83,78 @@ process.on('SIGTERM', cancelCalculation);
|
||||
async function calculateMetrics() {
|
||||
let connection;
|
||||
const startTime = Date.now();
|
||||
let processedCount = 0;
|
||||
let processedProducts = 0;
|
||||
let processedOrders = 0;
|
||||
let processedPurchaseOrders = 0;
|
||||
let totalProducts = 0;
|
||||
let totalOrders = 0;
|
||||
let totalPurchaseOrders = 0;
|
||||
let calculateHistoryId;
|
||||
|
||||
try {
|
||||
// Clean up any previously running calculations
|
||||
connection = await getConnection();
|
||||
await connection.query(`
|
||||
UPDATE calculate_history
|
||||
SET
|
||||
status = 'cancelled',
|
||||
end_time = NOW(),
|
||||
duration_seconds = TIMESTAMPDIFF(SECOND, start_time, NOW()),
|
||||
error_message = 'Previous calculation was not completed properly'
|
||||
WHERE status = 'running'
|
||||
`);
|
||||
|
||||
// Get counts from all relevant tables
|
||||
const [[productCount], [orderCount], [poCount]] = await Promise.all([
|
||||
connection.query('SELECT COUNT(*) as total FROM products'),
|
||||
connection.query('SELECT COUNT(*) as total FROM orders'),
|
||||
connection.query('SELECT COUNT(*) as total FROM purchase_orders')
|
||||
]);
|
||||
|
||||
totalProducts = productCount.total;
|
||||
totalOrders = orderCount.total;
|
||||
totalPurchaseOrders = poCount.total;
|
||||
|
||||
// Create history record for this calculation
|
||||
const [historyResult] = await connection.query(`
|
||||
INSERT INTO calculate_history (
|
||||
start_time,
|
||||
status,
|
||||
total_products,
|
||||
total_orders,
|
||||
total_purchase_orders,
|
||||
additional_info
|
||||
) VALUES (
|
||||
NOW(),
|
||||
'running',
|
||||
?,
|
||||
?,
|
||||
?,
|
||||
JSON_OBJECT(
|
||||
'skip_product_metrics', ?,
|
||||
'skip_time_aggregates', ?,
|
||||
'skip_financial_metrics', ?,
|
||||
'skip_vendor_metrics', ?,
|
||||
'skip_category_metrics', ?,
|
||||
'skip_brand_metrics', ?,
|
||||
'skip_sales_forecasts', ?
|
||||
)
|
||||
)
|
||||
`, [
|
||||
totalProducts,
|
||||
totalOrders,
|
||||
totalPurchaseOrders,
|
||||
SKIP_PRODUCT_METRICS,
|
||||
SKIP_TIME_AGGREGATES,
|
||||
SKIP_FINANCIAL_METRICS,
|
||||
SKIP_VENDOR_METRICS,
|
||||
SKIP_CATEGORY_METRICS,
|
||||
SKIP_BRAND_METRICS,
|
||||
SKIP_SALES_FORECASTS
|
||||
]);
|
||||
calculateHistoryId = historyResult.insertId;
|
||||
connection.release();
|
||||
|
||||
// Add debug logging for the progress functions
|
||||
console.log('Debug - Progress functions:', {
|
||||
formatElapsedTime: typeof global.formatElapsedTime,
|
||||
@@ -115,72 +183,150 @@ async function calculateMetrics() {
|
||||
elapsed: '0s',
|
||||
remaining: 'Calculating...',
|
||||
rate: 0,
|
||||
percentage: '0'
|
||||
percentage: '0',
|
||||
timing: {
|
||||
start_time: new Date(startTime).toISOString(),
|
||||
end_time: new Date().toISOString(),
|
||||
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
|
||||
}
|
||||
});
|
||||
|
||||
// Update progress periodically
|
||||
const updateProgress = async (products = null, orders = null, purchaseOrders = null) => {
|
||||
// Ensure all values are valid numbers or default to previous value
|
||||
if (products !== null) processedProducts = Number(products) || processedProducts || 0;
|
||||
if (orders !== null) processedOrders = Number(orders) || processedOrders || 0;
|
||||
if (purchaseOrders !== null) processedPurchaseOrders = Number(purchaseOrders) || processedPurchaseOrders || 0;
|
||||
|
||||
// Ensure we never send NaN to the database
|
||||
const safeProducts = Number(processedProducts) || 0;
|
||||
const safeOrders = Number(processedOrders) || 0;
|
||||
const safePurchaseOrders = Number(processedPurchaseOrders) || 0;
|
||||
|
||||
await connection.query(`
|
||||
UPDATE calculate_history
|
||||
SET
|
||||
processed_products = ?,
|
||||
processed_orders = ?,
|
||||
processed_purchase_orders = ?
|
||||
WHERE id = ?
|
||||
`, [safeProducts, safeOrders, safePurchaseOrders, calculateHistoryId]);
|
||||
};
|
||||
|
||||
// Helper function to ensure valid progress numbers
|
||||
const ensureValidProgress = (current, total) => ({
|
||||
current: Number(current) || 0,
|
||||
total: Number(total) || 1, // Default to 1 to avoid division by zero
|
||||
percentage: (((Number(current) || 0) / (Number(total) || 1)) * 100).toFixed(1)
|
||||
});
|
||||
|
||||
// Initial progress
|
||||
const initialProgress = ensureValidProgress(0, totalProducts);
|
||||
global.outputProgress({
|
||||
status: 'running',
|
||||
operation: 'Starting metrics calculation',
|
||||
current: initialProgress.current,
|
||||
total: initialProgress.total,
|
||||
elapsed: '0s',
|
||||
remaining: 'Calculating...',
|
||||
rate: 0,
|
||||
percentage: initialProgress.percentage,
|
||||
timing: {
|
||||
start_time: new Date(startTime).toISOString(),
|
||||
end_time: new Date().toISOString(),
|
||||
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
|
||||
}
|
||||
});
|
||||
|
||||
// Get total number of products
|
||||
const [countResult] = await connection.query('SELECT COUNT(*) as total FROM products')
|
||||
.catch(err => {
|
||||
global.logError(err, 'Failed to count products');
|
||||
throw err;
|
||||
});
|
||||
totalProducts = countResult[0].total;
|
||||
|
||||
if (!SKIP_PRODUCT_METRICS) {
|
||||
processedCount = await calculateProductMetrics(startTime, totalProducts);
|
||||
const result = await calculateProductMetrics(startTime, totalProducts);
|
||||
await updateProgress(result.processedProducts, result.processedOrders, result.processedPurchaseOrders);
|
||||
if (!result.success) {
|
||||
throw new Error('Product metrics calculation failed');
|
||||
}
|
||||
} else {
|
||||
console.log('Skipping product metrics calculation...');
|
||||
processedCount = Math.floor(totalProducts * 0.6);
|
||||
processedProducts = Math.floor(totalProducts * 0.6);
|
||||
await updateProgress(processedProducts);
|
||||
global.outputProgress({
|
||||
status: 'running',
|
||||
operation: 'Skipping product metrics calculation',
|
||||
current: processedCount,
|
||||
current: processedProducts,
|
||||
total: totalProducts,
|
||||
elapsed: global.formatElapsedTime(startTime),
|
||||
remaining: global.estimateRemaining(startTime, processedCount, totalProducts),
|
||||
rate: global.calculateRate(startTime, processedCount),
|
||||
percentage: '60'
|
||||
remaining: global.estimateRemaining(startTime, processedProducts, totalProducts),
|
||||
rate: global.calculateRate(startTime, processedProducts),
|
||||
percentage: '60',
|
||||
timing: {
|
||||
start_time: new Date(startTime).toISOString(),
|
||||
end_time: new Date().toISOString(),
|
||||
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
// Calculate time-based aggregates
|
||||
if (!SKIP_TIME_AGGREGATES) {
|
||||
processedCount = await calculateTimeAggregates(startTime, totalProducts, processedCount);
|
||||
const result = await calculateTimeAggregates(startTime, totalProducts, processedProducts);
|
||||
await updateProgress(result.processedProducts, result.processedOrders, result.processedPurchaseOrders);
|
||||
if (!result.success) {
|
||||
throw new Error('Time aggregates calculation failed');
|
||||
}
|
||||
} else {
|
||||
console.log('Skipping time aggregates calculation');
|
||||
}
|
||||
|
||||
// Calculate financial metrics
|
||||
if (!SKIP_FINANCIAL_METRICS) {
|
||||
processedCount = await calculateFinancialMetrics(startTime, totalProducts, processedCount);
|
||||
const result = await calculateFinancialMetrics(startTime, totalProducts, processedProducts);
|
||||
await updateProgress(result.processedProducts, result.processedOrders, result.processedPurchaseOrders);
|
||||
if (!result.success) {
|
||||
throw new Error('Financial metrics calculation failed');
|
||||
}
|
||||
} else {
|
||||
console.log('Skipping financial metrics calculation');
|
||||
}
|
||||
|
||||
// Calculate vendor metrics
|
||||
if (!SKIP_VENDOR_METRICS) {
|
||||
processedCount = await calculateVendorMetrics(startTime, totalProducts, processedCount);
|
||||
const result = await calculateVendorMetrics(startTime, totalProducts, processedProducts);
|
||||
await updateProgress(result.processedProducts, result.processedOrders, result.processedPurchaseOrders);
|
||||
if (!result.success) {
|
||||
throw new Error('Vendor metrics calculation failed');
|
||||
}
|
||||
} else {
|
||||
console.log('Skipping vendor metrics calculation');
|
||||
}
|
||||
|
||||
// Calculate category metrics
|
||||
if (!SKIP_CATEGORY_METRICS) {
|
||||
processedCount = await calculateCategoryMetrics(startTime, totalProducts, processedCount);
|
||||
const result = await calculateCategoryMetrics(startTime, totalProducts, processedProducts);
|
||||
await updateProgress(result.processedProducts, result.processedOrders, result.processedPurchaseOrders);
|
||||
if (!result.success) {
|
||||
throw new Error('Category metrics calculation failed');
|
||||
}
|
||||
} else {
|
||||
console.log('Skipping category metrics calculation');
|
||||
}
|
||||
|
||||
// Calculate brand metrics
|
||||
if (!SKIP_BRAND_METRICS) {
|
||||
processedCount = await calculateBrandMetrics(startTime, totalProducts, processedCount);
|
||||
const result = await calculateBrandMetrics(startTime, totalProducts, processedProducts);
|
||||
await updateProgress(result.processedProducts, result.processedOrders, result.processedPurchaseOrders);
|
||||
if (!result.success) {
|
||||
throw new Error('Brand metrics calculation failed');
|
||||
}
|
||||
} else {
|
||||
console.log('Skipping brand metrics calculation');
|
||||
}
|
||||
|
||||
// Calculate sales forecasts
|
||||
if (!SKIP_SALES_FORECASTS) {
|
||||
processedCount = await calculateSalesForecasts(startTime, totalProducts, processedCount);
|
||||
const result = await calculateSalesForecasts(startTime, totalProducts, processedProducts);
|
||||
await updateProgress(result.processedProducts, result.processedOrders, result.processedPurchaseOrders);
|
||||
if (!result.success) {
|
||||
throw new Error('Sales forecasts calculation failed');
|
||||
}
|
||||
} else {
|
||||
console.log('Skipping sales forecasts calculation');
|
||||
}
|
||||
@@ -189,15 +335,25 @@ async function calculateMetrics() {
|
||||
outputProgress({
|
||||
status: 'running',
|
||||
operation: 'Starting ABC classification',
|
||||
current: processedCount,
|
||||
total: totalProducts,
|
||||
current: processedProducts || 0,
|
||||
total: totalProducts || 0,
|
||||
elapsed: formatElapsedTime(startTime),
|
||||
remaining: estimateRemaining(startTime, processedCount, totalProducts),
|
||||
rate: calculateRate(startTime, processedCount),
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
|
||||
remaining: estimateRemaining(startTime, processedProducts || 0, totalProducts || 0),
|
||||
rate: calculateRate(startTime, processedProducts || 0),
|
||||
percentage: (((processedProducts || 0) / (totalProducts || 1)) * 100).toFixed(1),
|
||||
timing: {
|
||||
start_time: new Date(startTime).toISOString(),
|
||||
end_time: new Date().toISOString(),
|
||||
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
|
||||
}
|
||||
});
|
||||
|
||||
if (isCancelled) return processedCount;
|
||||
if (isCancelled) return {
|
||||
processedProducts: processedProducts || 0,
|
||||
processedOrders: processedOrders || 0,
|
||||
processedPurchaseOrders: 0,
|
||||
success: false
|
||||
};
|
||||
|
||||
const [abcConfig] = await connection.query('SELECT a_threshold, b_threshold FROM abc_classification_config WHERE id = 1');
|
||||
const abcThresholds = abcConfig[0] || { a_threshold: 20, b_threshold: 50 };
|
||||
@@ -218,15 +374,25 @@ async function calculateMetrics() {
|
||||
outputProgress({
|
||||
status: 'running',
|
||||
operation: 'Creating revenue rankings',
|
||||
current: processedCount,
|
||||
total: totalProducts,
|
||||
current: processedProducts || 0,
|
||||
total: totalProducts || 0,
|
||||
elapsed: formatElapsedTime(startTime),
|
||||
remaining: estimateRemaining(startTime, processedCount, totalProducts),
|
||||
rate: calculateRate(startTime, processedCount),
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
|
||||
remaining: estimateRemaining(startTime, processedProducts || 0, totalProducts || 0),
|
||||
rate: calculateRate(startTime, processedProducts || 0),
|
||||
percentage: (((processedProducts || 0) / (totalProducts || 1)) * 100).toFixed(1),
|
||||
timing: {
|
||||
start_time: new Date(startTime).toISOString(),
|
||||
end_time: new Date().toISOString(),
|
||||
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
|
||||
}
|
||||
});
|
||||
|
||||
if (isCancelled) return processedCount;
|
||||
if (isCancelled) return {
|
||||
processedProducts: processedProducts || 0,
|
||||
processedOrders: processedOrders || 0,
|
||||
processedPurchaseOrders: 0,
|
||||
success: false
|
||||
};
|
||||
|
||||
await connection.query(`
|
||||
INSERT INTO temp_revenue_ranks
|
||||
@@ -247,26 +413,44 @@ async function calculateMetrics() {
|
||||
// Get total count for percentage calculation
|
||||
const [rankingCount] = await connection.query('SELECT MAX(rank_num) as total_count FROM temp_revenue_ranks');
|
||||
const totalCount = rankingCount[0].total_count || 1;
|
||||
const max_rank = totalCount; // Store max_rank for use in classification
|
||||
|
||||
outputProgress({
|
||||
status: 'running',
|
||||
operation: 'Updating ABC classifications',
|
||||
current: processedCount,
|
||||
total: totalProducts,
|
||||
current: processedProducts || 0,
|
||||
total: totalProducts || 0,
|
||||
elapsed: formatElapsedTime(startTime),
|
||||
remaining: estimateRemaining(startTime, processedCount, totalProducts),
|
||||
rate: calculateRate(startTime, processedCount),
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
|
||||
remaining: estimateRemaining(startTime, processedProducts || 0, totalProducts || 0),
|
||||
rate: calculateRate(startTime, processedProducts || 0),
|
||||
percentage: (((processedProducts || 0) / (totalProducts || 1)) * 100).toFixed(1),
|
||||
timing: {
|
||||
start_time: new Date(startTime).toISOString(),
|
||||
end_time: new Date().toISOString(),
|
||||
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
|
||||
}
|
||||
});
|
||||
|
||||
if (isCancelled) return processedCount;
|
||||
if (isCancelled) return {
|
||||
processedProducts: processedProducts || 0,
|
||||
processedOrders: processedOrders || 0,
|
||||
processedPurchaseOrders: 0,
|
||||
success: false
|
||||
};
|
||||
|
||||
// Process updates in batches
|
||||
// ABC classification progress tracking
|
||||
let abcProcessedCount = 0;
|
||||
const batchSize = 5000;
|
||||
let lastProgressUpdate = Date.now();
|
||||
const progressUpdateInterval = 1000; // Update every second
|
||||
|
||||
while (true) {
|
||||
if (isCancelled) return processedCount;
|
||||
if (isCancelled) return {
|
||||
processedProducts: Number(processedProducts) || 0,
|
||||
processedOrders: Number(processedOrders) || 0,
|
||||
processedPurchaseOrders: 0,
|
||||
success: false
|
||||
};
|
||||
|
||||
// First get a batch of PIDs that need updating
|
||||
const [pids] = await connection.query(`
|
||||
@@ -282,8 +466,8 @@ async function calculateMetrics() {
|
||||
ELSE 'C'
|
||||
END
|
||||
LIMIT ?
|
||||
`, [totalCount, abcThresholds.a_threshold,
|
||||
totalCount, abcThresholds.b_threshold,
|
||||
`, [max_rank, abcThresholds.a_threshold,
|
||||
max_rank, abcThresholds.b_threshold,
|
||||
batchSize]);
|
||||
|
||||
if (pids.length === 0) {
|
||||
@@ -303,23 +487,42 @@ async function calculateMetrics() {
|
||||
END,
|
||||
pm.last_calculated_at = NOW()
|
||||
WHERE pm.pid IN (?)
|
||||
`, [totalCount, abcThresholds.a_threshold,
|
||||
totalCount, abcThresholds.b_threshold,
|
||||
`, [max_rank, abcThresholds.a_threshold,
|
||||
max_rank, abcThresholds.b_threshold,
|
||||
pids.map(row => row.pid)]);
|
||||
|
||||
abcProcessedCount += result.affectedRows;
|
||||
processedCount = Math.floor(totalProducts * (0.99 + (abcProcessedCount / totalCount) * 0.01));
|
||||
|
||||
// Calculate progress ensuring valid numbers
|
||||
const currentProgress = Math.floor(totalProducts * (0.99 + (abcProcessedCount / (totalCount || 1)) * 0.01));
|
||||
processedProducts = Number(currentProgress) || processedProducts || 0;
|
||||
|
||||
outputProgress({
|
||||
status: 'running',
|
||||
operation: 'ABC classification progress',
|
||||
current: processedCount,
|
||||
total: totalProducts,
|
||||
elapsed: formatElapsedTime(startTime),
|
||||
remaining: estimateRemaining(startTime, processedCount, totalProducts),
|
||||
rate: calculateRate(startTime, processedCount),
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
|
||||
});
|
||||
// Only update progress at most once per second
|
||||
const now = Date.now();
|
||||
if (now - lastProgressUpdate >= progressUpdateInterval) {
|
||||
const progress = ensureValidProgress(processedProducts, totalProducts);
|
||||
|
||||
outputProgress({
|
||||
status: 'running',
|
||||
operation: 'ABC classification progress',
|
||||
current: progress.current,
|
||||
total: progress.total,
|
||||
elapsed: formatElapsedTime(startTime),
|
||||
remaining: estimateRemaining(startTime, progress.current, progress.total),
|
||||
rate: calculateRate(startTime, progress.current),
|
||||
percentage: progress.percentage,
|
||||
timing: {
|
||||
start_time: new Date(startTime).toISOString(),
|
||||
end_time: new Date().toISOString(),
|
||||
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
|
||||
}
|
||||
});
|
||||
|
||||
lastProgressUpdate = now;
|
||||
}
|
||||
|
||||
// Update database progress
|
||||
await updateProgress(processedProducts, processedOrders, processedPurchaseOrders);
|
||||
|
||||
// Small delay between batches to allow other transactions
|
||||
await new Promise(resolve => setTimeout(resolve, 100));
|
||||
@@ -328,49 +531,126 @@ async function calculateMetrics() {
|
||||
// Clean up
|
||||
await connection.query('DROP TEMPORARY TABLE IF EXISTS temp_revenue_ranks');
|
||||
|
||||
const endTime = Date.now();
|
||||
const totalElapsedSeconds = Math.round((endTime - startTime) / 1000);
|
||||
|
||||
// Update calculate_status for ABC classification
|
||||
await connection.query(`
|
||||
INSERT INTO calculate_status (module_name, last_calculation_timestamp)
|
||||
VALUES ('abc_classification', NOW())
|
||||
ON DUPLICATE KEY UPDATE last_calculation_timestamp = NOW()
|
||||
`);
|
||||
|
||||
// Final progress update with guaranteed valid numbers
|
||||
const finalProgress = ensureValidProgress(totalProducts, totalProducts);
|
||||
|
||||
// Final success message
|
||||
outputProgress({
|
||||
status: 'complete',
|
||||
operation: 'Metrics calculation complete',
|
||||
current: totalProducts,
|
||||
total: totalProducts,
|
||||
current: finalProgress.current,
|
||||
total: finalProgress.total,
|
||||
elapsed: formatElapsedTime(startTime),
|
||||
remaining: '0s',
|
||||
rate: calculateRate(startTime, totalProducts),
|
||||
percentage: '100'
|
||||
rate: calculateRate(startTime, finalProgress.current),
|
||||
percentage: '100',
|
||||
timing: {
|
||||
start_time: new Date(startTime).toISOString(),
|
||||
end_time: new Date().toISOString(),
|
||||
elapsed_seconds: totalElapsedSeconds
|
||||
}
|
||||
});
|
||||
|
||||
// Ensure all values are valid numbers before final update
|
||||
const finalStats = {
|
||||
processedProducts: Number(processedProducts) || 0,
|
||||
processedOrders: Number(processedOrders) || 0,
|
||||
processedPurchaseOrders: Number(processedPurchaseOrders) || 0
|
||||
};
|
||||
|
||||
// Update history with completion
|
||||
await connection.query(`
|
||||
UPDATE calculate_history
|
||||
SET
|
||||
end_time = NOW(),
|
||||
duration_seconds = ?,
|
||||
processed_products = ?,
|
||||
processed_orders = ?,
|
||||
processed_purchase_orders = ?,
|
||||
status = 'completed'
|
||||
WHERE id = ?
|
||||
`, [totalElapsedSeconds,
|
||||
finalStats.processedProducts,
|
||||
finalStats.processedOrders,
|
||||
finalStats.processedPurchaseOrders,
|
||||
calculateHistoryId]);
|
||||
|
||||
// Clear progress file on successful completion
|
||||
global.clearProgress();
|
||||
|
||||
} catch (error) {
|
||||
const endTime = Date.now();
|
||||
const totalElapsedSeconds = Math.round((endTime - startTime) / 1000);
|
||||
|
||||
// Update history with error
|
||||
await connection.query(`
|
||||
UPDATE calculate_history
|
||||
SET
|
||||
end_time = NOW(),
|
||||
duration_seconds = ?,
|
||||
processed_products = ?,
|
||||
processed_orders = ?,
|
||||
processed_purchase_orders = ?,
|
||||
status = ?,
|
||||
error_message = ?
|
||||
WHERE id = ?
|
||||
`, [
|
||||
totalElapsedSeconds,
|
||||
processedProducts || 0, // Ensure we have a valid number
|
||||
processedOrders || 0, // Ensure we have a valid number
|
||||
processedPurchaseOrders || 0, // Ensure we have a valid number
|
||||
isCancelled ? 'cancelled' : 'failed',
|
||||
error.message,
|
||||
calculateHistoryId
|
||||
]);
|
||||
|
||||
if (isCancelled) {
|
||||
global.outputProgress({
|
||||
status: 'cancelled',
|
||||
operation: 'Calculation cancelled',
|
||||
current: processedCount,
|
||||
current: processedProducts,
|
||||
total: totalProducts || 0,
|
||||
elapsed: global.formatElapsedTime(startTime),
|
||||
remaining: null,
|
||||
rate: global.calculateRate(startTime, processedCount),
|
||||
percentage: ((processedCount / (totalProducts || 1)) * 100).toFixed(1)
|
||||
rate: global.calculateRate(startTime, processedProducts),
|
||||
percentage: ((processedProducts / (totalProducts || 1)) * 100).toFixed(1),
|
||||
timing: {
|
||||
start_time: new Date(startTime).toISOString(),
|
||||
end_time: new Date().toISOString(),
|
||||
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
|
||||
}
|
||||
});
|
||||
} else {
|
||||
global.outputProgress({
|
||||
status: 'error',
|
||||
operation: 'Error: ' + error.message,
|
||||
current: processedCount,
|
||||
current: processedProducts,
|
||||
total: totalProducts || 0,
|
||||
elapsed: global.formatElapsedTime(startTime),
|
||||
remaining: null,
|
||||
rate: global.calculateRate(startTime, processedCount),
|
||||
percentage: ((processedCount / (totalProducts || 1)) * 100).toFixed(1)
|
||||
rate: global.calculateRate(startTime, processedProducts),
|
||||
percentage: ((processedProducts / (totalProducts || 1)) * 100).toFixed(1),
|
||||
timing: {
|
||||
start_time: new Date(startTime).toISOString(),
|
||||
end_time: new Date().toISOString(),
|
||||
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
|
||||
}
|
||||
});
|
||||
}
|
||||
throw error;
|
||||
} finally {
|
||||
if (connection) {
|
||||
connection.release();
|
||||
connection.release();
|
||||
}
|
||||
}
|
||||
} finally {
|
||||
|
||||
@@ -28,9 +28,18 @@ async function importOrders(prodConnection, localConnection, incrementalUpdate =
|
||||
let cumulativeProcessedOrders = 0;
|
||||
|
||||
try {
|
||||
// Insert temporary table creation queries
|
||||
// Clean up any existing temp tables first
|
||||
await localConnection.query(`
|
||||
CREATE TABLE IF NOT EXISTS temp_order_items (
|
||||
DROP TEMPORARY TABLE IF EXISTS temp_order_items;
|
||||
DROP TEMPORARY TABLE IF EXISTS temp_order_meta;
|
||||
DROP TEMPORARY TABLE IF EXISTS temp_order_discounts;
|
||||
DROP TEMPORARY TABLE IF EXISTS temp_order_taxes;
|
||||
DROP TEMPORARY TABLE IF EXISTS temp_order_costs;
|
||||
`);
|
||||
|
||||
// Create all temp tables with correct schema
|
||||
await localConnection.query(`
|
||||
CREATE TEMPORARY TABLE temp_order_items (
|
||||
order_id INT UNSIGNED NOT NULL,
|
||||
pid INT UNSIGNED NOT NULL,
|
||||
SKU VARCHAR(50) NOT NULL,
|
||||
@@ -40,35 +49,41 @@ async function importOrders(prodConnection, localConnection, incrementalUpdate =
|
||||
PRIMARY KEY (order_id, pid)
|
||||
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
|
||||
`);
|
||||
|
||||
await localConnection.query(`
|
||||
CREATE TABLE IF NOT EXISTS temp_order_meta (
|
||||
CREATE TEMPORARY TABLE temp_order_meta (
|
||||
order_id INT UNSIGNED NOT NULL,
|
||||
date DATE NOT NULL,
|
||||
customer VARCHAR(100) NOT NULL,
|
||||
customer_name VARCHAR(150) NOT NULL,
|
||||
status INT,
|
||||
canceled TINYINT(1),
|
||||
summary_discount DECIMAL(10,2) DEFAULT 0.00,
|
||||
summary_subtotal DECIMAL(10,2) DEFAULT 0.00,
|
||||
PRIMARY KEY (order_id)
|
||||
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
|
||||
`);
|
||||
|
||||
await localConnection.query(`
|
||||
CREATE TABLE IF NOT EXISTS temp_order_discounts (
|
||||
CREATE TEMPORARY TABLE temp_order_discounts (
|
||||
order_id INT UNSIGNED NOT NULL,
|
||||
pid INT UNSIGNED NOT NULL,
|
||||
discount DECIMAL(10,2) NOT NULL,
|
||||
PRIMARY KEY (order_id, pid)
|
||||
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
|
||||
`);
|
||||
|
||||
await localConnection.query(`
|
||||
CREATE TABLE IF NOT EXISTS temp_order_taxes (
|
||||
CREATE TEMPORARY TABLE temp_order_taxes (
|
||||
order_id INT UNSIGNED NOT NULL,
|
||||
pid INT UNSIGNED NOT NULL,
|
||||
tax DECIMAL(10,2) NOT NULL,
|
||||
PRIMARY KEY (order_id, pid)
|
||||
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
|
||||
`);
|
||||
|
||||
await localConnection.query(`
|
||||
CREATE TABLE IF NOT EXISTS temp_order_costs (
|
||||
CREATE TEMPORARY TABLE temp_order_costs (
|
||||
order_id INT UNSIGNED NOT NULL,
|
||||
pid INT UNSIGNED NOT NULL,
|
||||
costeach DECIMAL(10,3) DEFAULT 0.000,
|
||||
@@ -81,6 +96,7 @@ async function importOrders(prodConnection, localConnection, incrementalUpdate =
|
||||
SELECT COLUMN_NAME
|
||||
FROM INFORMATION_SCHEMA.COLUMNS
|
||||
WHERE TABLE_NAME = 'orders'
|
||||
AND COLUMN_NAME != 'updated' -- Exclude the updated column
|
||||
ORDER BY ORDINAL_POSITION
|
||||
`);
|
||||
const columnNames = columns.map(col => col.COLUMN_NAME);
|
||||
@@ -212,7 +228,9 @@ async function importOrders(prodConnection, localConnection, incrementalUpdate =
|
||||
o.order_cid as customer,
|
||||
CONCAT(COALESCE(u.firstname, ''), ' ', COALESCE(u.lastname, '')) as customer_name,
|
||||
o.order_status as status,
|
||||
CASE WHEN o.date_cancelled != '0000-00-00 00:00:00' THEN 1 ELSE 0 END as canceled
|
||||
CASE WHEN o.date_cancelled != '0000-00-00 00:00:00' THEN 1 ELSE 0 END as canceled,
|
||||
o.summary_discount,
|
||||
o.summary_subtotal
|
||||
FROM _order o
|
||||
LEFT JOIN users u ON o.order_cid = u.cid
|
||||
WHERE o.order_id IN (?)
|
||||
@@ -226,19 +244,37 @@ async function importOrders(prodConnection, localConnection, incrementalUpdate =
|
||||
console.log('Found duplicates:', duplicates);
|
||||
}
|
||||
|
||||
const placeholders = orders.map(() => "(?, ?, ?, ?, ?, ?)").join(",");
|
||||
const placeholders = orders.map(() => "(?, ?, ?, ?, ?, ?, ?, ?)").join(",");
|
||||
const values = orders.flatMap(order => [
|
||||
order.order_id, order.date, order.customer, order.customer_name, order.status, order.canceled
|
||||
order.order_id,
|
||||
order.date,
|
||||
order.customer,
|
||||
order.customer_name,
|
||||
order.status,
|
||||
order.canceled,
|
||||
order.summary_discount,
|
||||
order.summary_subtotal
|
||||
]);
|
||||
|
||||
await localConnection.query(`
|
||||
INSERT INTO temp_order_meta VALUES ${placeholders}
|
||||
INSERT INTO temp_order_meta (
|
||||
order_id,
|
||||
date,
|
||||
customer,
|
||||
customer_name,
|
||||
status,
|
||||
canceled,
|
||||
summary_discount,
|
||||
summary_subtotal
|
||||
) VALUES ${placeholders}
|
||||
ON DUPLICATE KEY UPDATE
|
||||
date = VALUES(date),
|
||||
customer = VALUES(customer),
|
||||
customer_name = VALUES(customer_name),
|
||||
status = VALUES(status),
|
||||
canceled = VALUES(canceled)
|
||||
canceled = VALUES(canceled),
|
||||
summary_discount = VALUES(summary_discount),
|
||||
summary_subtotal = VALUES(summary_subtotal)
|
||||
`, values);
|
||||
|
||||
processedCount = i + orders.length;
|
||||
@@ -317,14 +353,25 @@ async function importOrders(prodConnection, localConnection, incrementalUpdate =
|
||||
for (let i = 0; i < orderIds.length; i += 5000) {
|
||||
const batchIds = orderIds.slice(i, i + 5000);
|
||||
const [costs] = await prodConnection.query(`
|
||||
SELECT orderid as order_id, pid, costeach
|
||||
FROM order_costs
|
||||
WHERE orderid IN (?)
|
||||
SELECT
|
||||
oc.orderid as order_id,
|
||||
oc.pid,
|
||||
COALESCE(
|
||||
oc.costeach,
|
||||
(SELECT pi.costeach
|
||||
FROM product_inventory pi
|
||||
WHERE pi.pid = oc.pid
|
||||
AND pi.daterec <= o.date_placed
|
||||
ORDER BY pi.daterec DESC LIMIT 1)
|
||||
) as costeach
|
||||
FROM order_costs oc
|
||||
JOIN _order o ON oc.orderid = o.order_id
|
||||
WHERE oc.orderid IN (?)
|
||||
`, [batchIds]);
|
||||
|
||||
if (costs.length > 0) {
|
||||
const placeholders = costs.map(() => '(?, ?, ?)').join(",");
|
||||
const values = costs.flatMap(c => [c.order_id, c.pid, c.costeach]);
|
||||
const values = costs.flatMap(c => [c.order_id, c.pid, c.costeach || 0]);
|
||||
await localConnection.query(`
|
||||
INSERT INTO temp_order_costs (order_id, pid, costeach)
|
||||
VALUES ${placeholders}
|
||||
@@ -355,7 +402,13 @@ async function importOrders(prodConnection, localConnection, incrementalUpdate =
|
||||
om.date,
|
||||
oi.price,
|
||||
oi.quantity,
|
||||
oi.base_discount + COALESCE(od.discount, 0) as discount,
|
||||
oi.base_discount + COALESCE(od.discount, 0) +
|
||||
CASE
|
||||
WHEN om.summary_discount > 0 THEN
|
||||
ROUND((om.summary_discount * (oi.price * oi.quantity)) /
|
||||
NULLIF(om.summary_subtotal, 0), 2)
|
||||
ELSE 0
|
||||
END as discount,
|
||||
COALESCE(ot.tax, 0) as tax,
|
||||
0 as tax_included,
|
||||
0 as shipping,
|
||||
@@ -455,7 +508,13 @@ async function importOrders(prodConnection, localConnection, incrementalUpdate =
|
||||
om.date,
|
||||
oi.price,
|
||||
oi.quantity,
|
||||
oi.base_discount + COALESCE(od.discount, 0) as discount,
|
||||
oi.base_discount + COALESCE(od.discount, 0) +
|
||||
CASE
|
||||
WHEN o.summary_discount > 0 THEN
|
||||
ROUND((o.summary_discount * (oi.price * oi.quantity)) /
|
||||
NULLIF(o.summary_subtotal, 0), 2)
|
||||
ELSE 0
|
||||
END as discount,
|
||||
COALESCE(ot.tax, 0) as tax,
|
||||
0 as tax_included,
|
||||
0 as shipping,
|
||||
@@ -466,6 +525,7 @@ async function importOrders(prodConnection, localConnection, incrementalUpdate =
|
||||
COALESCE(tc.costeach, 0) as costeach
|
||||
FROM temp_order_items oi
|
||||
JOIN temp_order_meta om ON oi.order_id = om.order_id
|
||||
LEFT JOIN _order o ON oi.order_id = o.order_id
|
||||
LEFT JOIN temp_order_discounts od ON oi.order_id = od.order_id AND oi.pid = od.pid
|
||||
LEFT JOIN temp_order_taxes ot ON oi.order_id = ot.order_id AND oi.pid = ot.pid
|
||||
LEFT JOIN temp_order_costs tc ON oi.order_id = tc.order_id AND oi.pid = tc.pid
|
||||
|
||||
@@ -339,6 +339,7 @@ async function importProducts(prodConnection, localConnection, incrementalUpdate
|
||||
SELECT COLUMN_NAME
|
||||
FROM INFORMATION_SCHEMA.COLUMNS
|
||||
WHERE TABLE_NAME = 'products'
|
||||
AND COLUMN_NAME != 'updated' -- Exclude the updated column
|
||||
ORDER BY ORDINAL_POSITION
|
||||
`);
|
||||
const columnNames = columns.map(col => col.COLUMN_NAME);
|
||||
@@ -470,43 +471,104 @@ async function importProducts(prodConnection, localConnection, incrementalUpdate
|
||||
|
||||
// Process category relationships
|
||||
if (batch.some(p => p.category_ids)) {
|
||||
const categoryRelationships = batch
|
||||
.filter(p => p.category_ids)
|
||||
.flatMap(product =>
|
||||
product.category_ids
|
||||
.split(',')
|
||||
.map(id => id.trim())
|
||||
.filter(id => id)
|
||||
.map(Number)
|
||||
.filter(id => !isNaN(id))
|
||||
.map(catId => [catId, product.pid])
|
||||
);
|
||||
// First get all valid categories
|
||||
const allCategoryIds = [...new Set(
|
||||
batch
|
||||
.filter(p => p.category_ids)
|
||||
.flatMap(product =>
|
||||
product.category_ids
|
||||
.split(',')
|
||||
.map(id => id.trim())
|
||||
.filter(id => id)
|
||||
.map(Number)
|
||||
.filter(id => !isNaN(id))
|
||||
)
|
||||
)];
|
||||
|
||||
if (categoryRelationships.length > 0) {
|
||||
// Verify categories exist before inserting relationships
|
||||
const uniqueCatIds = [...new Set(categoryRelationships.map(([catId]) => catId))];
|
||||
const [existingCats] = await localConnection.query(
|
||||
"SELECT cat_id FROM categories WHERE cat_id IN (?)",
|
||||
[uniqueCatIds]
|
||||
);
|
||||
const existingCatIds = new Set(existingCats.map(c => c.cat_id));
|
||||
// Verify categories exist and get their hierarchy
|
||||
const [categories] = await localConnection.query(`
|
||||
WITH RECURSIVE category_hierarchy AS (
|
||||
SELECT
|
||||
cat_id,
|
||||
parent_id,
|
||||
type,
|
||||
1 as level,
|
||||
CAST(cat_id AS CHAR(200)) as path
|
||||
FROM categories
|
||||
WHERE cat_id IN (?)
|
||||
UNION ALL
|
||||
SELECT
|
||||
c.cat_id,
|
||||
c.parent_id,
|
||||
c.type,
|
||||
ch.level + 1,
|
||||
CONCAT(ch.path, ',', c.cat_id)
|
||||
FROM categories c
|
||||
JOIN category_hierarchy ch ON c.parent_id = ch.cat_id
|
||||
WHERE ch.level < 10 -- Prevent infinite recursion
|
||||
)
|
||||
SELECT
|
||||
h.cat_id,
|
||||
h.parent_id,
|
||||
h.type,
|
||||
h.path,
|
||||
h.level
|
||||
FROM (
|
||||
SELECT DISTINCT cat_id, parent_id, type, path, level
|
||||
FROM category_hierarchy
|
||||
WHERE cat_id IN (?)
|
||||
) h
|
||||
ORDER BY h.level DESC
|
||||
`, [allCategoryIds, allCategoryIds]);
|
||||
|
||||
// Filter relationships to only include existing categories
|
||||
const validRelationships = categoryRelationships.filter(([catId]) =>
|
||||
existingCatIds.has(catId)
|
||||
);
|
||||
const validCategories = new Map(categories.map(c => [c.cat_id, c]));
|
||||
const validCategoryIds = new Set(categories.map(c => c.cat_id));
|
||||
|
||||
if (validRelationships.length > 0) {
|
||||
const catPlaceholders = validRelationships
|
||||
.map(() => "(?, ?)")
|
||||
.join(",");
|
||||
await localConnection.query(
|
||||
`INSERT IGNORE INTO product_categories (cat_id, pid)
|
||||
VALUES ${catPlaceholders}`,
|
||||
validRelationships.flat()
|
||||
);
|
||||
// Build category relationships ensuring proper hierarchy
|
||||
const categoryRelationships = [];
|
||||
batch
|
||||
.filter(p => p.category_ids)
|
||||
.forEach(product => {
|
||||
const productCategories = product.category_ids
|
||||
.split(',')
|
||||
.map(id => id.trim())
|
||||
.filter(id => id)
|
||||
.map(Number)
|
||||
.filter(id => !isNaN(id))
|
||||
.filter(id => validCategoryIds.has(id))
|
||||
.map(id => validCategories.get(id))
|
||||
.sort((a, b) => a.type - b.type); // Sort by type to ensure proper hierarchy
|
||||
|
||||
// Only add relationships that maintain proper hierarchy
|
||||
productCategories.forEach(category => {
|
||||
if (category.path.split(',').every(parentId =>
|
||||
validCategoryIds.has(Number(parentId))
|
||||
)) {
|
||||
categoryRelationships.push([category.cat_id, product.pid]);
|
||||
}
|
||||
});
|
||||
});
|
||||
|
||||
if (categoryRelationships.length > 0) {
|
||||
// First remove any existing relationships that will be replaced
|
||||
await localConnection.query(`
|
||||
DELETE FROM product_categories
|
||||
WHERE pid IN (?) AND cat_id IN (?)
|
||||
`, [
|
||||
[...new Set(categoryRelationships.map(([_, pid]) => pid))],
|
||||
[...new Set(categoryRelationships.map(([catId, _]) => catId))]
|
||||
]);
|
||||
|
||||
// Then insert the new relationships
|
||||
const placeholders = categoryRelationships
|
||||
.map(() => "(?, ?)")
|
||||
.join(",");
|
||||
|
||||
await localConnection.query(`
|
||||
INSERT INTO product_categories (cat_id, pid)
|
||||
VALUES ${placeholders}
|
||||
`, categoryRelationships.flat());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -554,6 +616,7 @@ async function importMissingProducts(prodConnection, localConnection, missingPid
|
||||
SELECT COLUMN_NAME
|
||||
FROM INFORMATION_SCHEMA.COLUMNS
|
||||
WHERE TABLE_NAME = 'products'
|
||||
AND COLUMN_NAME != 'updated' -- Exclude the updated column
|
||||
ORDER BY ORDINAL_POSITION
|
||||
`);
|
||||
const columnNames = columns.map((col) => col.COLUMN_NAME);
|
||||
|
||||
@@ -33,16 +33,15 @@ async function importPurchaseOrders(prodConnection, localConnection, incremental
|
||||
status: "running",
|
||||
});
|
||||
|
||||
// Get column names for the insert
|
||||
// Get column names first
|
||||
const [columns] = await localConnection.query(`
|
||||
SELECT COLUMN_NAME
|
||||
FROM INFORMATION_SCHEMA.COLUMNS
|
||||
WHERE TABLE_NAME = 'purchase_orders'
|
||||
AND COLUMN_NAME != 'updated' -- Exclude the updated column
|
||||
ORDER BY ORDINAL_POSITION
|
||||
`);
|
||||
const columnNames = columns
|
||||
.map((col) => col.COLUMN_NAME)
|
||||
.filter((name) => name !== "id");
|
||||
const columnNames = columns.map(col => col.COLUMN_NAME);
|
||||
|
||||
// Build incremental conditions
|
||||
const incrementalWhereClause = incrementalUpdate
|
||||
@@ -321,41 +320,47 @@ async function importPurchaseOrders(prodConnection, localConnection, incremental
|
||||
let lastFulfillmentReceiving = null;
|
||||
|
||||
for (const receiving of allReceivings) {
|
||||
const qtyToApply = Math.min(remainingToFulfill, receiving.qty_each);
|
||||
if (qtyToApply > 0) {
|
||||
// If this is the first receiving being applied, use its cost
|
||||
if (actualCost === null) {
|
||||
actualCost = receiving.cost_each;
|
||||
firstFulfillmentReceiving = receiving;
|
||||
// Convert quantities to base units using supplier data
|
||||
const baseQtyReceived = receiving.qty_each * (
|
||||
receiving.type === 'original' ? 1 :
|
||||
Math.max(1, product.supplier_qty_per_unit || 1)
|
||||
);
|
||||
const qtyToApply = Math.min(remainingToFulfill, baseQtyReceived);
|
||||
|
||||
if (qtyToApply > 0) {
|
||||
// If this is the first receiving being applied, use its cost
|
||||
if (actualCost === null && receiving.cost_each > 0) {
|
||||
actualCost = receiving.cost_each;
|
||||
firstFulfillmentReceiving = receiving;
|
||||
}
|
||||
lastFulfillmentReceiving = receiving;
|
||||
fulfillmentTracking.push({
|
||||
receiving_id: receiving.receiving_id,
|
||||
qty_applied: qtyToApply,
|
||||
qty_total: baseQtyReceived,
|
||||
cost: receiving.cost_each || actualCost || product.cost_each,
|
||||
date: receiving.received_date,
|
||||
received_by: receiving.received_by,
|
||||
received_by_name: receiving.received_by_name || 'Unknown',
|
||||
type: receiving.type,
|
||||
remaining_qty: baseQtyReceived - qtyToApply
|
||||
});
|
||||
remainingToFulfill -= qtyToApply;
|
||||
} else {
|
||||
// Track excess receivings
|
||||
fulfillmentTracking.push({
|
||||
receiving_id: receiving.receiving_id,
|
||||
qty_applied: 0,
|
||||
qty_total: baseQtyReceived,
|
||||
cost: receiving.cost_each || actualCost || product.cost_each,
|
||||
date: receiving.received_date,
|
||||
received_by: receiving.received_by,
|
||||
received_by_name: receiving.received_by_name || 'Unknown',
|
||||
type: receiving.type,
|
||||
is_excess: true
|
||||
});
|
||||
}
|
||||
lastFulfillmentReceiving = receiving;
|
||||
fulfillmentTracking.push({
|
||||
receiving_id: receiving.receiving_id,
|
||||
qty_applied: qtyToApply,
|
||||
qty_total: receiving.qty_each,
|
||||
cost: receiving.cost_each,
|
||||
date: receiving.received_date,
|
||||
received_by: receiving.received_by,
|
||||
received_by_name: receiving.received_by_name || 'Unknown',
|
||||
type: receiving.type,
|
||||
remaining_qty: receiving.qty_each - qtyToApply
|
||||
});
|
||||
remainingToFulfill -= qtyToApply;
|
||||
} else {
|
||||
// Track excess receivings
|
||||
fulfillmentTracking.push({
|
||||
receiving_id: receiving.receiving_id,
|
||||
qty_applied: 0,
|
||||
qty_total: receiving.qty_each,
|
||||
cost: receiving.cost_each,
|
||||
date: receiving.received_date,
|
||||
received_by: receiving.received_by,
|
||||
received_by_name: receiving.received_by_name || 'Unknown',
|
||||
type: receiving.type,
|
||||
is_excess: true
|
||||
});
|
||||
}
|
||||
totalReceived += receiving.qty_each;
|
||||
totalReceived += baseQtyReceived;
|
||||
}
|
||||
|
||||
const receiving_status = !totalReceived ? 1 : // created
|
||||
|
||||
@@ -1,82 +0,0 @@
|
||||
// Split into inserts and updates
|
||||
const insertsAndUpdates = batch.reduce((acc, po) => {
|
||||
const key = `${po.po_id}-${po.pid}`;
|
||||
if (existingPOMap.has(key)) {
|
||||
const existing = existingPOMap.get(key);
|
||||
// Check if any values are different
|
||||
const hasChanges = columnNames.some(col => {
|
||||
const newVal = po[col] ?? null;
|
||||
const oldVal = existing[col] ?? null;
|
||||
// Special handling for numbers to avoid type coercion issues
|
||||
if (typeof newVal === 'number' && typeof oldVal === 'number') {
|
||||
return Math.abs(newVal - oldVal) > 0.00001; // Allow for tiny floating point differences
|
||||
}
|
||||
// Special handling for receiving_history JSON
|
||||
if (col === 'receiving_history') {
|
||||
return JSON.stringify(newVal) !== JSON.stringify(oldVal);
|
||||
}
|
||||
return newVal !== oldVal;
|
||||
});
|
||||
|
||||
if (hasChanges) {
|
||||
console.log(`PO line changed: ${key}`, {
|
||||
po_id: po.po_id,
|
||||
pid: po.pid,
|
||||
changes: columnNames.filter(col => {
|
||||
const newVal = po[col] ?? null;
|
||||
const oldVal = existing[col] ?? null;
|
||||
if (typeof newVal === 'number' && typeof oldVal === 'number') {
|
||||
return Math.abs(newVal - oldVal) > 0.00001;
|
||||
}
|
||||
if (col === 'receiving_history') {
|
||||
return JSON.stringify(newVal) !== JSON.stringify(oldVal);
|
||||
}
|
||||
return newVal !== oldVal;
|
||||
})
|
||||
});
|
||||
acc.updates.push({
|
||||
po_id: po.po_id,
|
||||
pid: po.pid,
|
||||
values: columnNames.map(col => po[col] ?? null)
|
||||
});
|
||||
}
|
||||
} else {
|
||||
console.log(`New PO line: ${key}`);
|
||||
acc.inserts.push({
|
||||
po_id: po.po_id,
|
||||
pid: po.pid,
|
||||
values: columnNames.map(col => po[col] ?? null)
|
||||
});
|
||||
}
|
||||
return acc;
|
||||
}, { inserts: [], updates: [] });
|
||||
|
||||
// Handle inserts
|
||||
if (insertsAndUpdates.inserts.length > 0) {
|
||||
const insertPlaceholders = Array(insertsAndUpdates.inserts.length).fill(placeholderGroup).join(",");
|
||||
|
||||
const insertResult = await localConnection.query(`
|
||||
INSERT INTO purchase_orders (${columnNames.join(",")})
|
||||
VALUES ${insertPlaceholders}
|
||||
`, insertsAndUpdates.inserts.map(i => i.values).flat());
|
||||
|
||||
recordsAdded += insertResult[0].affectedRows;
|
||||
}
|
||||
|
||||
// Handle updates
|
||||
if (insertsAndUpdates.updates.length > 0) {
|
||||
const updatePlaceholders = Array(insertsAndUpdates.updates.length).fill(placeholderGroup).join(",");
|
||||
|
||||
const updateResult = await localConnection.query(`
|
||||
INSERT INTO purchase_orders (${columnNames.join(",")})
|
||||
VALUES ${updatePlaceholders}
|
||||
ON DUPLICATE KEY UPDATE
|
||||
${columnNames
|
||||
.filter(col => col !== "po_id" && col !== "pid")
|
||||
.map(col => `${col} = VALUES(${col})`)
|
||||
.join(",")};
|
||||
`, insertsAndUpdates.updates.map(u => u.values).flat());
|
||||
|
||||
// Each update affects 2 rows in affectedRows, so we divide by 2 to get actual count
|
||||
recordsUpdated += insertsAndUpdates.updates.length;
|
||||
}
|
||||
@@ -1,8 +1,11 @@
|
||||
const { outputProgress, formatElapsedTime, estimateRemaining, calculateRate, logError } = require('./utils/progress');
|
||||
const { getConnection } = require('./utils/db');
|
||||
|
||||
async function calculateBrandMetrics(startTime, totalProducts, processedCount, isCancelled = false) {
|
||||
async function calculateBrandMetrics(startTime, totalProducts, processedCount = 0, isCancelled = false) {
|
||||
const connection = await getConnection();
|
||||
let success = false;
|
||||
let processedOrders = 0;
|
||||
|
||||
try {
|
||||
if (isCancelled) {
|
||||
outputProgress({
|
||||
@@ -13,11 +16,29 @@ async function calculateBrandMetrics(startTime, totalProducts, processedCount, i
|
||||
elapsed: formatElapsedTime(startTime),
|
||||
remaining: null,
|
||||
rate: calculateRate(startTime, processedCount),
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
|
||||
timing: {
|
||||
start_time: new Date(startTime).toISOString(),
|
||||
end_time: new Date().toISOString(),
|
||||
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
|
||||
}
|
||||
});
|
||||
return processedCount;
|
||||
return {
|
||||
processedProducts: processedCount,
|
||||
processedOrders: 0,
|
||||
processedPurchaseOrders: 0,
|
||||
success
|
||||
};
|
||||
}
|
||||
|
||||
// Get order count that will be processed
|
||||
const [orderCount] = await connection.query(`
|
||||
SELECT COUNT(*) as count
|
||||
FROM orders o
|
||||
WHERE o.canceled = false
|
||||
`);
|
||||
processedOrders = orderCount[0].count;
|
||||
|
||||
outputProgress({
|
||||
status: 'running',
|
||||
operation: 'Starting brand metrics calculation',
|
||||
@@ -26,7 +47,12 @@ async function calculateBrandMetrics(startTime, totalProducts, processedCount, i
|
||||
elapsed: formatElapsedTime(startTime),
|
||||
remaining: estimateRemaining(startTime, processedCount, totalProducts),
|
||||
rate: calculateRate(startTime, processedCount),
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
|
||||
timing: {
|
||||
start_time: new Date(startTime).toISOString(),
|
||||
end_time: new Date().toISOString(),
|
||||
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
|
||||
}
|
||||
});
|
||||
|
||||
// Calculate brand metrics with optimized queries
|
||||
@@ -45,10 +71,21 @@ async function calculateBrandMetrics(startTime, totalProducts, processedCount, i
|
||||
WITH filtered_products AS (
|
||||
SELECT
|
||||
p.*,
|
||||
CASE WHEN p.stock_quantity <= 5000 THEN p.pid END as valid_pid,
|
||||
CASE WHEN p.visible = true AND p.stock_quantity <= 5000 THEN p.pid END as active_pid,
|
||||
CASE
|
||||
WHEN p.stock_quantity IS NULL OR p.stock_quantity < 0 OR p.stock_quantity > 5000 THEN 0
|
||||
WHEN p.stock_quantity <= 5000 AND p.stock_quantity >= 0
|
||||
THEN p.pid
|
||||
END as valid_pid,
|
||||
CASE
|
||||
WHEN p.visible = true
|
||||
AND p.stock_quantity <= 5000
|
||||
AND p.stock_quantity >= 0
|
||||
THEN p.pid
|
||||
END as active_pid,
|
||||
CASE
|
||||
WHEN p.stock_quantity IS NULL
|
||||
OR p.stock_quantity < 0
|
||||
OR p.stock_quantity > 5000
|
||||
THEN 0
|
||||
ELSE p.stock_quantity
|
||||
END as valid_stock
|
||||
FROM products p
|
||||
@@ -57,10 +94,13 @@ async function calculateBrandMetrics(startTime, totalProducts, processedCount, i
|
||||
sales_periods AS (
|
||||
SELECT
|
||||
p.brand,
|
||||
SUM(o.quantity * o.price) as period_revenue,
|
||||
SUM(o.quantity * (o.price - COALESCE(o.discount, 0))) as period_revenue,
|
||||
SUM(o.quantity * (o.price - COALESCE(o.discount, 0) - p.cost_price)) as period_margin,
|
||||
COUNT(DISTINCT DATE(o.date)) as period_days,
|
||||
CASE
|
||||
WHEN o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 3 MONTH) THEN 'current'
|
||||
WHEN o.date BETWEEN DATE_SUB(CURRENT_DATE, INTERVAL 15 MONTH) AND DATE_SUB(CURRENT_DATE, INTERVAL 12 MONTH) THEN 'previous'
|
||||
WHEN o.date BETWEEN DATE_SUB(CURRENT_DATE, INTERVAL 15 MONTH)
|
||||
AND DATE_SUB(CURRENT_DATE, INTERVAL 12 MONTH) THEN 'previous'
|
||||
END as period_type
|
||||
FROM filtered_products p
|
||||
JOIN orders o ON p.pid = o.pid
|
||||
@@ -76,10 +116,20 @@ async function calculateBrandMetrics(startTime, totalProducts, processedCount, i
|
||||
SUM(p.valid_stock) as total_stock_units,
|
||||
SUM(p.valid_stock * p.cost_price) as total_stock_cost,
|
||||
SUM(p.valid_stock * p.price) as total_stock_retail,
|
||||
COALESCE(SUM(o.quantity * o.price), 0) as total_revenue,
|
||||
COALESCE(SUM(o.quantity * (o.price - COALESCE(o.discount, 0))), 0) as total_revenue,
|
||||
CASE
|
||||
WHEN SUM(o.quantity * o.price) > 0 THEN
|
||||
(SUM((o.price - p.cost_price) * o.quantity) * 100.0) / SUM(o.price * o.quantity)
|
||||
WHEN SUM(o.quantity * o.price) > 0
|
||||
THEN GREATEST(
|
||||
-100.0,
|
||||
LEAST(
|
||||
100.0,
|
||||
(
|
||||
SUM(o.quantity * o.price) - -- Use gross revenue (before discounts)
|
||||
SUM(o.quantity * COALESCE(p.cost_price, 0)) -- Total costs
|
||||
) * 100.0 /
|
||||
NULLIF(SUM(o.quantity * o.price), 0) -- Divide by gross revenue
|
||||
)
|
||||
)
|
||||
ELSE 0
|
||||
END as avg_margin
|
||||
FROM filtered_products p
|
||||
@@ -97,16 +147,18 @@ async function calculateBrandMetrics(startTime, totalProducts, processedCount, i
|
||||
bd.avg_margin,
|
||||
CASE
|
||||
WHEN MAX(CASE WHEN sp.period_type = 'previous' THEN sp.period_revenue END) = 0
|
||||
AND MAX(CASE WHEN sp.period_type = 'current' THEN sp.period_revenue END) > 0 THEN 100.0
|
||||
WHEN MAX(CASE WHEN sp.period_type = 'previous' THEN sp.period_revenue END) = 0 THEN 0.0
|
||||
ELSE LEAST(
|
||||
GREATEST(
|
||||
AND MAX(CASE WHEN sp.period_type = 'current' THEN sp.period_revenue END) > 0
|
||||
THEN 100.0
|
||||
WHEN MAX(CASE WHEN sp.period_type = 'previous' THEN sp.period_revenue END) = 0
|
||||
THEN 0.0
|
||||
ELSE GREATEST(
|
||||
-100.0,
|
||||
LEAST(
|
||||
((MAX(CASE WHEN sp.period_type = 'current' THEN sp.period_revenue END) -
|
||||
MAX(CASE WHEN sp.period_type = 'previous' THEN sp.period_revenue END)) /
|
||||
NULLIF(MAX(CASE WHEN sp.period_type = 'previous' THEN sp.period_revenue END), 0)) * 100.0,
|
||||
-100.0
|
||||
),
|
||||
999.99
|
||||
NULLIF(ABS(MAX(CASE WHEN sp.period_type = 'previous' THEN sp.period_revenue END)), 0)) * 100.0,
|
||||
999.99
|
||||
)
|
||||
)
|
||||
END as growth_rate
|
||||
FROM brand_data bd
|
||||
@@ -134,10 +186,20 @@ async function calculateBrandMetrics(startTime, totalProducts, processedCount, i
|
||||
elapsed: formatElapsedTime(startTime),
|
||||
remaining: estimateRemaining(startTime, processedCount, totalProducts),
|
||||
rate: calculateRate(startTime, processedCount),
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
|
||||
timing: {
|
||||
start_time: new Date(startTime).toISOString(),
|
||||
end_time: new Date().toISOString(),
|
||||
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
|
||||
}
|
||||
});
|
||||
|
||||
if (isCancelled) return processedCount;
|
||||
if (isCancelled) return {
|
||||
processedProducts: processedCount,
|
||||
processedOrders,
|
||||
processedPurchaseOrders: 0,
|
||||
success
|
||||
};
|
||||
|
||||
// Calculate brand time-based metrics with optimized query
|
||||
await connection.query(`
|
||||
@@ -177,8 +239,18 @@ async function calculateBrandMetrics(startTime, totalProducts, processedCount, i
|
||||
SUM(p.valid_stock * p.price) as total_stock_retail,
|
||||
SUM(o.quantity * o.price) as total_revenue,
|
||||
CASE
|
||||
WHEN SUM(o.quantity * o.price) > 0 THEN
|
||||
(SUM((o.price - p.cost_price) * o.quantity) * 100.0) / SUM(o.price * o.quantity)
|
||||
WHEN SUM(o.quantity * o.price) > 0
|
||||
THEN GREATEST(
|
||||
-100.0,
|
||||
LEAST(
|
||||
100.0,
|
||||
(
|
||||
SUM(o.quantity * o.price) - -- Use gross revenue (before discounts)
|
||||
SUM(o.quantity * COALESCE(p.cost_price, 0)) -- Total costs
|
||||
) * 100.0 /
|
||||
NULLIF(SUM(o.quantity * o.price), 0) -- Divide by gross revenue
|
||||
)
|
||||
)
|
||||
ELSE 0
|
||||
END as avg_margin
|
||||
FROM filtered_products p
|
||||
@@ -207,11 +279,33 @@ async function calculateBrandMetrics(startTime, totalProducts, processedCount, i
|
||||
elapsed: formatElapsedTime(startTime),
|
||||
remaining: estimateRemaining(startTime, processedCount, totalProducts),
|
||||
rate: calculateRate(startTime, processedCount),
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
|
||||
timing: {
|
||||
start_time: new Date(startTime).toISOString(),
|
||||
end_time: new Date().toISOString(),
|
||||
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
|
||||
}
|
||||
});
|
||||
|
||||
return processedCount;
|
||||
// If we get here, everything completed successfully
|
||||
success = true;
|
||||
|
||||
// Update calculate_status
|
||||
await connection.query(`
|
||||
INSERT INTO calculate_status (module_name, last_calculation_timestamp)
|
||||
VALUES ('brand_metrics', NOW())
|
||||
ON DUPLICATE KEY UPDATE last_calculation_timestamp = NOW()
|
||||
`);
|
||||
|
||||
return {
|
||||
processedProducts: processedCount,
|
||||
processedOrders,
|
||||
processedPurchaseOrders: 0,
|
||||
success
|
||||
};
|
||||
|
||||
} catch (error) {
|
||||
success = false;
|
||||
logError(error, 'Error calculating brand metrics');
|
||||
throw error;
|
||||
} finally {
|
||||
|
||||
@@ -1,8 +1,11 @@
|
||||
const { outputProgress, formatElapsedTime, estimateRemaining, calculateRate, logError } = require('./utils/progress');
|
||||
const { getConnection } = require('./utils/db');
|
||||
|
||||
async function calculateCategoryMetrics(startTime, totalProducts, processedCount, isCancelled = false) {
|
||||
async function calculateCategoryMetrics(startTime, totalProducts, processedCount = 0, isCancelled = false) {
|
||||
const connection = await getConnection();
|
||||
let success = false;
|
||||
let processedOrders = 0;
|
||||
|
||||
try {
|
||||
if (isCancelled) {
|
||||
outputProgress({
|
||||
@@ -13,11 +16,29 @@ async function calculateCategoryMetrics(startTime, totalProducts, processedCount
|
||||
elapsed: formatElapsedTime(startTime),
|
||||
remaining: null,
|
||||
rate: calculateRate(startTime, processedCount),
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
|
||||
timing: {
|
||||
start_time: new Date(startTime).toISOString(),
|
||||
end_time: new Date().toISOString(),
|
||||
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
|
||||
}
|
||||
});
|
||||
return processedCount;
|
||||
return {
|
||||
processedProducts: processedCount,
|
||||
processedOrders: 0,
|
||||
processedPurchaseOrders: 0,
|
||||
success
|
||||
};
|
||||
}
|
||||
|
||||
// Get order count that will be processed
|
||||
const [orderCount] = await connection.query(`
|
||||
SELECT COUNT(*) as count
|
||||
FROM orders o
|
||||
WHERE o.canceled = false
|
||||
`);
|
||||
processedOrders = orderCount[0].count;
|
||||
|
||||
outputProgress({
|
||||
status: 'running',
|
||||
operation: 'Starting category metrics calculation',
|
||||
@@ -26,7 +47,12 @@ async function calculateCategoryMetrics(startTime, totalProducts, processedCount
|
||||
elapsed: formatElapsedTime(startTime),
|
||||
remaining: estimateRemaining(startTime, processedCount, totalProducts),
|
||||
rate: calculateRate(startTime, processedCount),
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
|
||||
timing: {
|
||||
start_time: new Date(startTime).toISOString(),
|
||||
end_time: new Date().toISOString(),
|
||||
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
|
||||
}
|
||||
});
|
||||
|
||||
// First, calculate base category metrics
|
||||
@@ -67,10 +93,20 @@ async function calculateCategoryMetrics(startTime, totalProducts, processedCount
|
||||
elapsed: formatElapsedTime(startTime),
|
||||
remaining: estimateRemaining(startTime, processedCount, totalProducts),
|
||||
rate: calculateRate(startTime, processedCount),
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
|
||||
timing: {
|
||||
start_time: new Date(startTime).toISOString(),
|
||||
end_time: new Date().toISOString(),
|
||||
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
|
||||
}
|
||||
});
|
||||
|
||||
if (isCancelled) return processedCount;
|
||||
if (isCancelled) return {
|
||||
processedProducts: processedCount,
|
||||
processedOrders,
|
||||
processedPurchaseOrders: 0,
|
||||
success
|
||||
};
|
||||
|
||||
// Then update with margin and turnover data
|
||||
await connection.query(`
|
||||
@@ -80,19 +116,35 @@ async function calculateCategoryMetrics(startTime, totalProducts, processedCount
|
||||
SUM(o.quantity * o.price) as total_sales,
|
||||
SUM(o.quantity * (o.price - p.cost_price)) as total_margin,
|
||||
SUM(o.quantity) as units_sold,
|
||||
AVG(GREATEST(p.stock_quantity, 0)) as avg_stock
|
||||
AVG(GREATEST(p.stock_quantity, 0)) as avg_stock,
|
||||
COUNT(DISTINCT DATE(o.date)) as active_days
|
||||
FROM product_categories pc
|
||||
JOIN products p ON pc.pid = p.pid
|
||||
JOIN orders o ON p.pid = o.pid
|
||||
LEFT JOIN turnover_config tc ON
|
||||
(tc.category_id = pc.cat_id AND tc.vendor = p.vendor) OR
|
||||
(tc.category_id = pc.cat_id AND tc.vendor IS NULL) OR
|
||||
(tc.category_id IS NULL AND tc.vendor = p.vendor) OR
|
||||
(tc.category_id IS NULL AND tc.vendor IS NULL)
|
||||
WHERE o.canceled = false
|
||||
AND o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 1 YEAR)
|
||||
AND o.date >= DATE_SUB(CURRENT_DATE, INTERVAL COALESCE(tc.calculation_period_days, 30) DAY)
|
||||
GROUP BY pc.cat_id
|
||||
)
|
||||
UPDATE category_metrics cm
|
||||
JOIN category_sales cs ON cm.category_id = cs.cat_id
|
||||
LEFT JOIN turnover_config tc ON
|
||||
(tc.category_id = cm.category_id AND tc.vendor IS NULL) OR
|
||||
(tc.category_id IS NULL AND tc.vendor IS NULL)
|
||||
SET
|
||||
cm.avg_margin = COALESCE(cs.total_margin * 100.0 / NULLIF(cs.total_sales, 0), 0),
|
||||
cm.turnover_rate = LEAST(COALESCE(cs.units_sold / NULLIF(cs.avg_stock, 0), 0), 999.99),
|
||||
cm.turnover_rate = CASE
|
||||
WHEN cs.avg_stock > 0 AND cs.active_days > 0
|
||||
THEN LEAST(
|
||||
(cs.units_sold / cs.avg_stock) * (365.0 / cs.active_days),
|
||||
999.99
|
||||
)
|
||||
ELSE 0
|
||||
END,
|
||||
cm.last_calculated_at = NOW()
|
||||
`);
|
||||
|
||||
@@ -105,20 +157,34 @@ async function calculateCategoryMetrics(startTime, totalProducts, processedCount
|
||||
elapsed: formatElapsedTime(startTime),
|
||||
remaining: estimateRemaining(startTime, processedCount, totalProducts),
|
||||
rate: calculateRate(startTime, processedCount),
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
|
||||
timing: {
|
||||
start_time: new Date(startTime).toISOString(),
|
||||
end_time: new Date().toISOString(),
|
||||
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
|
||||
}
|
||||
});
|
||||
|
||||
if (isCancelled) return processedCount;
|
||||
if (isCancelled) return {
|
||||
processedProducts: processedCount,
|
||||
processedOrders,
|
||||
processedPurchaseOrders: 0,
|
||||
success
|
||||
};
|
||||
|
||||
// Finally update growth rates
|
||||
await connection.query(`
|
||||
WITH current_period AS (
|
||||
SELECT
|
||||
pc.cat_id,
|
||||
SUM(o.quantity * o.price) as revenue
|
||||
SUM(o.quantity * (o.price - COALESCE(o.discount, 0)) /
|
||||
(1 + COALESCE(ss.seasonality_factor, 0))) as revenue,
|
||||
SUM(o.quantity * (o.price - COALESCE(o.discount, 0) - p.cost_price)) as gross_profit,
|
||||
COUNT(DISTINCT DATE(o.date)) as days
|
||||
FROM product_categories pc
|
||||
JOIN products p ON pc.pid = p.pid
|
||||
JOIN orders o ON p.pid = o.pid
|
||||
LEFT JOIN sales_seasonality ss ON MONTH(o.date) = ss.month
|
||||
WHERE o.canceled = false
|
||||
AND o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 3 MONTH)
|
||||
GROUP BY pc.cat_id
|
||||
@@ -126,30 +192,106 @@ async function calculateCategoryMetrics(startTime, totalProducts, processedCount
|
||||
previous_period AS (
|
||||
SELECT
|
||||
pc.cat_id,
|
||||
SUM(o.quantity * o.price) as revenue
|
||||
SUM(o.quantity * (o.price - COALESCE(o.discount, 0)) /
|
||||
(1 + COALESCE(ss.seasonality_factor, 0))) as revenue,
|
||||
COUNT(DISTINCT DATE(o.date)) as days
|
||||
FROM product_categories pc
|
||||
JOIN products p ON pc.pid = p.pid
|
||||
JOIN orders o ON p.pid = o.pid
|
||||
LEFT JOIN sales_seasonality ss ON MONTH(o.date) = ss.month
|
||||
WHERE o.canceled = false
|
||||
AND o.date BETWEEN DATE_SUB(CURRENT_DATE, INTERVAL 15 MONTH)
|
||||
AND DATE_SUB(CURRENT_DATE, INTERVAL 12 MONTH)
|
||||
GROUP BY pc.cat_id
|
||||
),
|
||||
trend_data AS (
|
||||
SELECT
|
||||
pc.cat_id,
|
||||
MONTH(o.date) as month,
|
||||
SUM(o.quantity * (o.price - COALESCE(o.discount, 0)) /
|
||||
(1 + COALESCE(ss.seasonality_factor, 0))) as revenue,
|
||||
COUNT(DISTINCT DATE(o.date)) as days_in_month
|
||||
FROM product_categories pc
|
||||
JOIN products p ON pc.pid = p.pid
|
||||
JOIN orders o ON p.pid = o.pid
|
||||
LEFT JOIN sales_seasonality ss ON MONTH(o.date) = ss.month
|
||||
WHERE o.canceled = false
|
||||
AND o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 15 MONTH)
|
||||
GROUP BY pc.cat_id, MONTH(o.date)
|
||||
),
|
||||
trend_stats AS (
|
||||
SELECT
|
||||
cat_id,
|
||||
COUNT(*) as n,
|
||||
AVG(month) as avg_x,
|
||||
AVG(revenue / NULLIF(days_in_month, 0)) as avg_y,
|
||||
SUM(month * (revenue / NULLIF(days_in_month, 0))) as sum_xy,
|
||||
SUM(month * month) as sum_xx
|
||||
FROM trend_data
|
||||
GROUP BY cat_id
|
||||
HAVING COUNT(*) >= 6
|
||||
),
|
||||
trend_analysis AS (
|
||||
SELECT
|
||||
cat_id,
|
||||
((n * sum_xy) - (avg_x * n * avg_y)) /
|
||||
NULLIF((n * sum_xx) - (n * avg_x * avg_x), 0) as trend_slope,
|
||||
avg_y as avg_daily_revenue
|
||||
FROM trend_stats
|
||||
),
|
||||
margin_calc AS (
|
||||
SELECT
|
||||
pc.cat_id,
|
||||
CASE
|
||||
WHEN SUM(o.quantity * o.price) > 0 THEN
|
||||
GREATEST(
|
||||
-100.0,
|
||||
LEAST(
|
||||
100.0,
|
||||
(
|
||||
SUM(o.quantity * o.price) - -- Use gross revenue (before discounts)
|
||||
SUM(o.quantity * COALESCE(p.cost_price, 0)) -- Total costs
|
||||
) * 100.0 /
|
||||
NULLIF(SUM(o.quantity * o.price), 0) -- Divide by gross revenue
|
||||
)
|
||||
)
|
||||
ELSE NULL
|
||||
END as avg_margin
|
||||
FROM product_categories pc
|
||||
JOIN products p ON pc.pid = p.pid
|
||||
JOIN orders o ON p.pid = o.pid
|
||||
WHERE o.canceled = false
|
||||
AND o.date BETWEEN DATE_SUB(CURRENT_DATE, INTERVAL 15 MONTH)
|
||||
AND DATE_SUB(CURRENT_DATE, INTERVAL 12 MONTH)
|
||||
AND o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 3 MONTH)
|
||||
GROUP BY pc.cat_id
|
||||
)
|
||||
UPDATE category_metrics cm
|
||||
LEFT JOIN current_period cp ON cm.category_id = cp.cat_id
|
||||
LEFT JOIN previous_period pp ON cm.category_id = pp.cat_id
|
||||
LEFT JOIN trend_analysis ta ON cm.category_id = ta.cat_id
|
||||
LEFT JOIN margin_calc mc ON cm.category_id = mc.cat_id
|
||||
SET
|
||||
cm.growth_rate = CASE
|
||||
WHEN pp.revenue = 0 AND COALESCE(cp.revenue, 0) > 0 THEN 100.0
|
||||
WHEN pp.revenue = 0 THEN 0.0
|
||||
ELSE LEAST(
|
||||
WHEN pp.revenue = 0 OR cp.revenue IS NULL THEN 0.0
|
||||
WHEN ta.trend_slope IS NOT NULL THEN
|
||||
GREATEST(
|
||||
((COALESCE(cp.revenue, 0) - pp.revenue) / pp.revenue) * 100.0,
|
||||
-100.0
|
||||
),
|
||||
999.99
|
||||
)
|
||||
-100.0,
|
||||
LEAST(
|
||||
(ta.trend_slope / NULLIF(ta.avg_daily_revenue, 0)) * 365 * 100,
|
||||
999.99
|
||||
)
|
||||
)
|
||||
ELSE
|
||||
GREATEST(
|
||||
-100.0,
|
||||
LEAST(
|
||||
((COALESCE(cp.revenue, 0) - pp.revenue) /
|
||||
NULLIF(ABS(pp.revenue), 0)) * 100.0,
|
||||
999.99
|
||||
)
|
||||
)
|
||||
END,
|
||||
cm.avg_margin = COALESCE(mc.avg_margin, cm.avg_margin),
|
||||
cm.last_calculated_at = NOW()
|
||||
WHERE cp.cat_id IS NOT NULL OR pp.cat_id IS NOT NULL
|
||||
`);
|
||||
@@ -163,10 +305,20 @@ async function calculateCategoryMetrics(startTime, totalProducts, processedCount
|
||||
elapsed: formatElapsedTime(startTime),
|
||||
remaining: estimateRemaining(startTime, processedCount, totalProducts),
|
||||
rate: calculateRate(startTime, processedCount),
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
|
||||
timing: {
|
||||
start_time: new Date(startTime).toISOString(),
|
||||
end_time: new Date().toISOString(),
|
||||
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
|
||||
}
|
||||
});
|
||||
|
||||
if (isCancelled) return processedCount;
|
||||
if (isCancelled) return {
|
||||
processedProducts: processedCount,
|
||||
processedOrders,
|
||||
processedPurchaseOrders: 0,
|
||||
success
|
||||
};
|
||||
|
||||
// Calculate time-based metrics
|
||||
await connection.query(`
|
||||
@@ -189,13 +341,23 @@ async function calculateCategoryMetrics(startTime, totalProducts, processedCount
|
||||
COUNT(DISTINCT CASE WHEN p.visible = true THEN p.pid END) as active_products,
|
||||
SUM(p.stock_quantity * p.cost_price) as total_value,
|
||||
SUM(o.quantity * o.price) as total_revenue,
|
||||
CASE
|
||||
WHEN SUM(o.quantity * o.price) > 0 THEN
|
||||
LEAST(
|
||||
GREATEST(
|
||||
SUM(o.quantity * (o.price - GREATEST(p.cost_price, 0))) * 100.0 /
|
||||
SUM(o.quantity * o.price),
|
||||
-100
|
||||
),
|
||||
100
|
||||
)
|
||||
ELSE 0
|
||||
END as avg_margin,
|
||||
COALESCE(
|
||||
SUM(o.quantity * (o.price - p.cost_price)) * 100.0 /
|
||||
NULLIF(SUM(o.quantity * o.price), 0),
|
||||
0
|
||||
) as avg_margin,
|
||||
COALESCE(
|
||||
SUM(o.quantity) / NULLIF(AVG(GREATEST(p.stock_quantity, 0)), 0),
|
||||
LEAST(
|
||||
SUM(o.quantity) / NULLIF(AVG(GREATEST(p.stock_quantity, 0)), 0),
|
||||
999.99
|
||||
),
|
||||
0
|
||||
) as turnover_rate
|
||||
FROM product_categories pc
|
||||
@@ -216,17 +378,138 @@ async function calculateCategoryMetrics(startTime, totalProducts, processedCount
|
||||
processedCount = Math.floor(totalProducts * 0.99);
|
||||
outputProgress({
|
||||
status: 'running',
|
||||
operation: 'Time-based metrics calculated',
|
||||
operation: 'Time-based metrics calculated, updating category-sales metrics',
|
||||
current: processedCount,
|
||||
total: totalProducts,
|
||||
elapsed: formatElapsedTime(startTime),
|
||||
remaining: estimateRemaining(startTime, processedCount, totalProducts),
|
||||
rate: calculateRate(startTime, processedCount),
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
|
||||
timing: {
|
||||
start_time: new Date(startTime).toISOString(),
|
||||
end_time: new Date().toISOString(),
|
||||
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
|
||||
}
|
||||
});
|
||||
|
||||
return processedCount;
|
||||
if (isCancelled) return {
|
||||
processedProducts: processedCount,
|
||||
processedOrders,
|
||||
processedPurchaseOrders: 0,
|
||||
success
|
||||
};
|
||||
|
||||
// Calculate category-sales metrics
|
||||
await connection.query(`
|
||||
INSERT INTO category_sales_metrics (
|
||||
category_id,
|
||||
brand,
|
||||
period_start,
|
||||
period_end,
|
||||
avg_daily_sales,
|
||||
total_sold,
|
||||
num_products,
|
||||
avg_price,
|
||||
last_calculated_at
|
||||
)
|
||||
WITH date_ranges AS (
|
||||
SELECT
|
||||
DATE_SUB(CURRENT_DATE, INTERVAL 30 DAY) as period_start,
|
||||
CURRENT_DATE as period_end
|
||||
UNION ALL
|
||||
SELECT
|
||||
DATE_SUB(CURRENT_DATE, INTERVAL 90 DAY),
|
||||
DATE_SUB(CURRENT_DATE, INTERVAL 31 DAY)
|
||||
UNION ALL
|
||||
SELECT
|
||||
DATE_SUB(CURRENT_DATE, INTERVAL 180 DAY),
|
||||
DATE_SUB(CURRENT_DATE, INTERVAL 91 DAY)
|
||||
UNION ALL
|
||||
SELECT
|
||||
DATE_SUB(CURRENT_DATE, INTERVAL 365 DAY),
|
||||
DATE_SUB(CURRENT_DATE, INTERVAL 181 DAY)
|
||||
),
|
||||
sales_data AS (
|
||||
SELECT
|
||||
pc.cat_id,
|
||||
COALESCE(p.brand, 'Unknown') as brand,
|
||||
dr.period_start,
|
||||
dr.period_end,
|
||||
COUNT(DISTINCT p.pid) as num_products,
|
||||
SUM(o.quantity) as total_sold,
|
||||
SUM(o.quantity * o.price) as total_revenue,
|
||||
COUNT(DISTINCT DATE(o.date)) as num_days
|
||||
FROM products p
|
||||
JOIN product_categories pc ON p.pid = pc.pid
|
||||
JOIN orders o ON p.pid = o.pid
|
||||
CROSS JOIN date_ranges dr
|
||||
WHERE o.canceled = false
|
||||
AND o.date BETWEEN dr.period_start AND dr.period_end
|
||||
GROUP BY pc.cat_id, p.brand, dr.period_start, dr.period_end
|
||||
)
|
||||
SELECT
|
||||
cat_id as category_id,
|
||||
brand,
|
||||
period_start,
|
||||
period_end,
|
||||
CASE
|
||||
WHEN num_days > 0
|
||||
THEN total_sold / num_days
|
||||
ELSE 0
|
||||
END as avg_daily_sales,
|
||||
total_sold,
|
||||
num_products,
|
||||
CASE
|
||||
WHEN total_sold > 0
|
||||
THEN total_revenue / total_sold
|
||||
ELSE 0
|
||||
END as avg_price,
|
||||
NOW() as last_calculated_at
|
||||
FROM sales_data
|
||||
ON DUPLICATE KEY UPDATE
|
||||
avg_daily_sales = VALUES(avg_daily_sales),
|
||||
total_sold = VALUES(total_sold),
|
||||
num_products = VALUES(num_products),
|
||||
avg_price = VALUES(avg_price),
|
||||
last_calculated_at = VALUES(last_calculated_at)
|
||||
`);
|
||||
|
||||
processedCount = Math.floor(totalProducts * 1.0);
|
||||
outputProgress({
|
||||
status: 'running',
|
||||
operation: 'Category-sales metrics calculated',
|
||||
current: processedCount,
|
||||
total: totalProducts,
|
||||
elapsed: formatElapsedTime(startTime),
|
||||
remaining: estimateRemaining(startTime, processedCount, totalProducts),
|
||||
rate: calculateRate(startTime, processedCount),
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
|
||||
timing: {
|
||||
start_time: new Date(startTime).toISOString(),
|
||||
end_time: new Date().toISOString(),
|
||||
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
|
||||
}
|
||||
});
|
||||
|
||||
// If we get here, everything completed successfully
|
||||
success = true;
|
||||
|
||||
// Update calculate_status
|
||||
await connection.query(`
|
||||
INSERT INTO calculate_status (module_name, last_calculation_timestamp)
|
||||
VALUES ('category_metrics', NOW())
|
||||
ON DUPLICATE KEY UPDATE last_calculation_timestamp = NOW()
|
||||
`);
|
||||
|
||||
return {
|
||||
processedProducts: processedCount,
|
||||
processedOrders,
|
||||
processedPurchaseOrders: 0,
|
||||
success
|
||||
};
|
||||
|
||||
} catch (error) {
|
||||
success = false;
|
||||
logError(error, 'Error calculating category metrics');
|
||||
throw error;
|
||||
} finally {
|
||||
|
||||
@@ -1,8 +1,11 @@
|
||||
const { outputProgress, formatElapsedTime, estimateRemaining, calculateRate, logError } = require('./utils/progress');
|
||||
const { getConnection } = require('./utils/db');
|
||||
|
||||
async function calculateFinancialMetrics(startTime, totalProducts, processedCount, isCancelled = false) {
|
||||
async function calculateFinancialMetrics(startTime, totalProducts, processedCount = 0, isCancelled = false) {
|
||||
const connection = await getConnection();
|
||||
let success = false;
|
||||
let processedOrders = 0;
|
||||
|
||||
try {
|
||||
if (isCancelled) {
|
||||
outputProgress({
|
||||
@@ -13,11 +16,30 @@ async function calculateFinancialMetrics(startTime, totalProducts, processedCoun
|
||||
elapsed: formatElapsedTime(startTime),
|
||||
remaining: null,
|
||||
rate: calculateRate(startTime, processedCount),
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
|
||||
timing: {
|
||||
start_time: new Date(startTime).toISOString(),
|
||||
end_time: new Date().toISOString(),
|
||||
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
|
||||
}
|
||||
});
|
||||
return processedCount;
|
||||
return {
|
||||
processedProducts: processedCount,
|
||||
processedOrders: 0,
|
||||
processedPurchaseOrders: 0,
|
||||
success
|
||||
};
|
||||
}
|
||||
|
||||
// Get order count that will be processed
|
||||
const [orderCount] = await connection.query(`
|
||||
SELECT COUNT(*) as count
|
||||
FROM orders o
|
||||
WHERE o.canceled = false
|
||||
AND DATE(o.date) >= DATE_SUB(CURDATE(), INTERVAL 12 MONTH)
|
||||
`);
|
||||
processedOrders = orderCount[0].count;
|
||||
|
||||
outputProgress({
|
||||
status: 'running',
|
||||
operation: 'Starting financial metrics calculation',
|
||||
@@ -26,7 +48,12 @@ async function calculateFinancialMetrics(startTime, totalProducts, processedCoun
|
||||
elapsed: formatElapsedTime(startTime),
|
||||
remaining: estimateRemaining(startTime, processedCount, totalProducts),
|
||||
rate: calculateRate(startTime, processedCount),
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
|
||||
timing: {
|
||||
start_time: new Date(startTime).toISOString(),
|
||||
end_time: new Date().toISOString(),
|
||||
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
|
||||
}
|
||||
});
|
||||
|
||||
// Calculate financial metrics with optimized query
|
||||
@@ -59,7 +86,8 @@ async function calculateFinancialMetrics(startTime, totalProducts, processedCoun
|
||||
WHEN COALESCE(pf.inventory_value, 0) > 0 AND pf.active_days > 0 THEN
|
||||
(COALESCE(pf.gross_profit, 0) * (365.0 / pf.active_days)) / COALESCE(pf.inventory_value, 0)
|
||||
ELSE 0
|
||||
END
|
||||
END,
|
||||
pm.last_calculated_at = CURRENT_TIMESTAMP
|
||||
`);
|
||||
|
||||
processedCount = Math.floor(totalProducts * 0.65);
|
||||
@@ -71,10 +99,20 @@ async function calculateFinancialMetrics(startTime, totalProducts, processedCoun
|
||||
elapsed: formatElapsedTime(startTime),
|
||||
remaining: estimateRemaining(startTime, processedCount, totalProducts),
|
||||
rate: calculateRate(startTime, processedCount),
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
|
||||
timing: {
|
||||
start_time: new Date(startTime).toISOString(),
|
||||
end_time: new Date().toISOString(),
|
||||
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
|
||||
}
|
||||
});
|
||||
|
||||
if (isCancelled) return processedCount;
|
||||
if (isCancelled) return {
|
||||
processedProducts: processedCount,
|
||||
processedOrders,
|
||||
processedPurchaseOrders: 0,
|
||||
success
|
||||
};
|
||||
|
||||
// Update time-based aggregates with optimized query
|
||||
await connection.query(`
|
||||
@@ -115,11 +153,33 @@ async function calculateFinancialMetrics(startTime, totalProducts, processedCoun
|
||||
elapsed: formatElapsedTime(startTime),
|
||||
remaining: estimateRemaining(startTime, processedCount, totalProducts),
|
||||
rate: calculateRate(startTime, processedCount),
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
|
||||
timing: {
|
||||
start_time: new Date(startTime).toISOString(),
|
||||
end_time: new Date().toISOString(),
|
||||
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
|
||||
}
|
||||
});
|
||||
|
||||
return processedCount;
|
||||
// If we get here, everything completed successfully
|
||||
success = true;
|
||||
|
||||
// Update calculate_status
|
||||
await connection.query(`
|
||||
INSERT INTO calculate_status (module_name, last_calculation_timestamp)
|
||||
VALUES ('financial_metrics', NOW())
|
||||
ON DUPLICATE KEY UPDATE last_calculation_timestamp = NOW()
|
||||
`);
|
||||
|
||||
return {
|
||||
processedProducts: processedCount,
|
||||
processedOrders,
|
||||
processedPurchaseOrders: 0,
|
||||
success
|
||||
};
|
||||
|
||||
} catch (error) {
|
||||
success = false;
|
||||
logError(error, 'Error calculating financial metrics');
|
||||
throw error;
|
||||
} finally {
|
||||
|
||||
@@ -11,11 +11,21 @@ function sanitizeValue(value) {
|
||||
|
||||
async function calculateProductMetrics(startTime, totalProducts, processedCount = 0, isCancelled = false) {
|
||||
const connection = await getConnection();
|
||||
let success = false;
|
||||
let processedOrders = 0;
|
||||
const BATCH_SIZE = 5000;
|
||||
|
||||
try {
|
||||
// Skip flags are inherited from the parent scope
|
||||
const SKIP_PRODUCT_BASE_METRICS = 0;
|
||||
const SKIP_PRODUCT_TIME_AGGREGATES = 0;
|
||||
|
||||
// Get total product count if not provided
|
||||
if (!totalProducts) {
|
||||
const [productCount] = await connection.query('SELECT COUNT(*) as count FROM products');
|
||||
totalProducts = productCount[0].count;
|
||||
}
|
||||
|
||||
if (isCancelled) {
|
||||
outputProgress({
|
||||
status: 'cancelled',
|
||||
@@ -25,11 +35,37 @@ async function calculateProductMetrics(startTime, totalProducts, processedCount
|
||||
elapsed: formatElapsedTime(startTime),
|
||||
remaining: null,
|
||||
rate: calculateRate(startTime, processedCount),
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
|
||||
timing: {
|
||||
start_time: new Date(startTime).toISOString(),
|
||||
end_time: new Date().toISOString(),
|
||||
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
|
||||
}
|
||||
});
|
||||
return processedCount;
|
||||
return {
|
||||
processedProducts: processedCount,
|
||||
processedOrders,
|
||||
processedPurchaseOrders: 0,
|
||||
success
|
||||
};
|
||||
}
|
||||
|
||||
// First ensure all products have a metrics record
|
||||
await connection.query(`
|
||||
INSERT IGNORE INTO product_metrics (pid, last_calculated_at)
|
||||
SELECT pid, NOW()
|
||||
FROM products
|
||||
`);
|
||||
|
||||
// Get threshold settings once
|
||||
const [thresholds] = await connection.query(`
|
||||
SELECT critical_days, reorder_days, overstock_days, low_stock_threshold
|
||||
FROM stock_thresholds
|
||||
WHERE category_id IS NULL AND vendor IS NULL
|
||||
LIMIT 1
|
||||
`);
|
||||
const defaultThresholds = thresholds[0];
|
||||
|
||||
// Calculate base product metrics
|
||||
if (!SKIP_PRODUCT_BASE_METRICS) {
|
||||
outputProgress({
|
||||
@@ -40,89 +76,222 @@ async function calculateProductMetrics(startTime, totalProducts, processedCount
|
||||
elapsed: formatElapsedTime(startTime),
|
||||
remaining: estimateRemaining(startTime, processedCount, totalProducts),
|
||||
rate: calculateRate(startTime, processedCount),
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
|
||||
timing: {
|
||||
start_time: new Date(startTime).toISOString(),
|
||||
end_time: new Date().toISOString(),
|
||||
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
|
||||
}
|
||||
});
|
||||
|
||||
// Calculate base metrics
|
||||
// Get order count that will be processed
|
||||
const [orderCount] = await connection.query(`
|
||||
SELECT COUNT(*) as count
|
||||
FROM orders o
|
||||
WHERE o.canceled = false
|
||||
`);
|
||||
processedOrders = orderCount[0].count;
|
||||
|
||||
// Clear temporary tables
|
||||
await connection.query('TRUNCATE TABLE temp_sales_metrics');
|
||||
await connection.query('TRUNCATE TABLE temp_purchase_metrics');
|
||||
|
||||
// Populate temp_sales_metrics with base stats and sales averages
|
||||
await connection.query(`
|
||||
UPDATE product_metrics pm
|
||||
JOIN (
|
||||
SELECT
|
||||
p.pid,
|
||||
p.cost_price * p.stock_quantity as inventory_value,
|
||||
SUM(o.quantity) as total_quantity,
|
||||
COUNT(DISTINCT o.order_number) as number_of_orders,
|
||||
SUM(o.quantity * o.price) as total_revenue,
|
||||
SUM(o.quantity * p.cost_price) as cost_of_goods_sold,
|
||||
AVG(o.price) as avg_price,
|
||||
STDDEV(o.price) as price_std,
|
||||
MIN(o.date) as first_sale_date,
|
||||
MAX(o.date) as last_sale_date,
|
||||
COUNT(DISTINCT DATE(o.date)) as active_days
|
||||
FROM products p
|
||||
LEFT JOIN orders o ON p.pid = o.pid AND o.canceled = false
|
||||
GROUP BY p.pid
|
||||
) stats ON pm.pid = stats.pid
|
||||
SET
|
||||
pm.inventory_value = COALESCE(stats.inventory_value, 0),
|
||||
pm.avg_quantity_per_order = COALESCE(stats.total_quantity / NULLIF(stats.number_of_orders, 0), 0),
|
||||
pm.number_of_orders = COALESCE(stats.number_of_orders, 0),
|
||||
pm.total_revenue = COALESCE(stats.total_revenue, 0),
|
||||
pm.cost_of_goods_sold = COALESCE(stats.cost_of_goods_sold, 0),
|
||||
pm.gross_profit = COALESCE(stats.total_revenue - stats.cost_of_goods_sold, 0),
|
||||
pm.avg_margin_percent = CASE
|
||||
WHEN COALESCE(stats.total_revenue, 0) > 0
|
||||
THEN ((stats.total_revenue - stats.cost_of_goods_sold) / stats.total_revenue) * 100
|
||||
INSERT INTO temp_sales_metrics
|
||||
SELECT
|
||||
p.pid,
|
||||
COALESCE(SUM(o.quantity) / NULLIF(COUNT(DISTINCT DATE(o.date)), 0), 0) as daily_sales_avg,
|
||||
COALESCE(SUM(o.quantity) / NULLIF(CEIL(COUNT(DISTINCT DATE(o.date)) / 7), 0), 0) as weekly_sales_avg,
|
||||
COALESCE(SUM(o.quantity) / NULLIF(CEIL(COUNT(DISTINCT DATE(o.date)) / 30), 0), 0) as monthly_sales_avg,
|
||||
COALESCE(SUM(o.quantity * o.price), 0) as total_revenue,
|
||||
CASE
|
||||
WHEN SUM(o.quantity * o.price) > 0
|
||||
THEN ((SUM(o.quantity * o.price) - SUM(o.quantity * p.cost_price)) / SUM(o.quantity * o.price)) * 100
|
||||
ELSE 0
|
||||
END,
|
||||
pm.first_sale_date = stats.first_sale_date,
|
||||
pm.last_sale_date = stats.last_sale_date,
|
||||
pm.gmroi = CASE
|
||||
WHEN COALESCE(stats.inventory_value, 0) > 0
|
||||
THEN (stats.total_revenue - stats.cost_of_goods_sold) / stats.inventory_value
|
||||
ELSE 0
|
||||
END,
|
||||
pm.last_calculated_at = NOW()
|
||||
END as avg_margin_percent,
|
||||
MIN(o.date) as first_sale_date,
|
||||
MAX(o.date) as last_sale_date
|
||||
FROM products p
|
||||
LEFT JOIN orders o ON p.pid = o.pid
|
||||
AND o.canceled = false
|
||||
AND o.date >= DATE_SUB(CURDATE(), INTERVAL 90 DAY)
|
||||
GROUP BY p.pid
|
||||
`);
|
||||
|
||||
processedCount = Math.floor(totalProducts * 0.4);
|
||||
outputProgress({
|
||||
status: 'running',
|
||||
operation: 'Base product metrics calculated',
|
||||
current: processedCount,
|
||||
total: totalProducts,
|
||||
elapsed: formatElapsedTime(startTime),
|
||||
remaining: estimateRemaining(startTime, processedCount, totalProducts),
|
||||
rate: calculateRate(startTime, processedCount),
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
|
||||
});
|
||||
} else {
|
||||
processedCount = Math.floor(totalProducts * 0.4);
|
||||
outputProgress({
|
||||
status: 'running',
|
||||
operation: 'Skipping base product metrics calculation',
|
||||
current: processedCount,
|
||||
total: totalProducts,
|
||||
elapsed: formatElapsedTime(startTime),
|
||||
remaining: estimateRemaining(startTime, processedCount, totalProducts),
|
||||
rate: calculateRate(startTime, processedCount),
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
|
||||
});
|
||||
}
|
||||
// Populate temp_purchase_metrics
|
||||
await connection.query(`
|
||||
INSERT INTO temp_purchase_metrics
|
||||
SELECT
|
||||
p.pid,
|
||||
AVG(DATEDIFF(po.received_date, po.date)) as avg_lead_time_days,
|
||||
MAX(po.date) as last_purchase_date,
|
||||
MIN(po.received_date) as first_received_date,
|
||||
MAX(po.received_date) as last_received_date
|
||||
FROM products p
|
||||
LEFT JOIN purchase_orders po ON p.pid = po.pid
|
||||
AND po.received_date IS NOT NULL
|
||||
AND po.date >= DATE_SUB(CURDATE(), INTERVAL 365 DAY)
|
||||
GROUP BY p.pid
|
||||
`);
|
||||
|
||||
if (isCancelled) return processedCount;
|
||||
// Process updates in batches
|
||||
let lastPid = 0;
|
||||
while (true) {
|
||||
if (isCancelled) break;
|
||||
|
||||
const [batch] = await connection.query(
|
||||
'SELECT pid FROM products WHERE pid > ? ORDER BY pid LIMIT ?',
|
||||
[lastPid, BATCH_SIZE]
|
||||
);
|
||||
|
||||
if (batch.length === 0) break;
|
||||
|
||||
await connection.query(`
|
||||
UPDATE product_metrics pm
|
||||
JOIN products p ON pm.pid = p.pid
|
||||
LEFT JOIN temp_sales_metrics sm ON pm.pid = sm.pid
|
||||
LEFT JOIN temp_purchase_metrics lm ON pm.pid = lm.pid
|
||||
SET
|
||||
pm.inventory_value = p.stock_quantity * p.cost_price,
|
||||
pm.daily_sales_avg = COALESCE(sm.daily_sales_avg, 0),
|
||||
pm.weekly_sales_avg = COALESCE(sm.weekly_sales_avg, 0),
|
||||
pm.monthly_sales_avg = COALESCE(sm.monthly_sales_avg, 0),
|
||||
pm.total_revenue = COALESCE(sm.total_revenue, 0),
|
||||
pm.avg_margin_percent = COALESCE(sm.avg_margin_percent, 0),
|
||||
pm.first_sale_date = sm.first_sale_date,
|
||||
pm.last_sale_date = sm.last_sale_date,
|
||||
pm.avg_lead_time_days = COALESCE(lm.avg_lead_time_days, 30),
|
||||
pm.days_of_inventory = CASE
|
||||
WHEN COALESCE(sm.daily_sales_avg, 0) > 0
|
||||
THEN FLOOR(p.stock_quantity / sm.daily_sales_avg)
|
||||
ELSE NULL
|
||||
END,
|
||||
pm.weeks_of_inventory = CASE
|
||||
WHEN COALESCE(sm.weekly_sales_avg, 0) > 0
|
||||
THEN FLOOR(p.stock_quantity / sm.weekly_sales_avg)
|
||||
ELSE NULL
|
||||
END,
|
||||
pm.stock_status = CASE
|
||||
WHEN p.stock_quantity <= 0 THEN 'Out of Stock'
|
||||
WHEN COALESCE(sm.daily_sales_avg, 0) = 0 AND p.stock_quantity <= ? THEN 'Low Stock'
|
||||
WHEN COALESCE(sm.daily_sales_avg, 0) = 0 THEN 'In Stock'
|
||||
WHEN p.stock_quantity / NULLIF(sm.daily_sales_avg, 0) <= ? THEN 'Critical'
|
||||
WHEN p.stock_quantity / NULLIF(sm.daily_sales_avg, 0) <= ? THEN 'Reorder'
|
||||
WHEN p.stock_quantity / NULLIF(sm.daily_sales_avg, 0) > ? THEN 'Overstocked'
|
||||
ELSE 'Healthy'
|
||||
END,
|
||||
pm.reorder_qty = CASE
|
||||
WHEN COALESCE(sm.daily_sales_avg, 0) > 0 THEN
|
||||
GREATEST(
|
||||
CEIL(sm.daily_sales_avg * COALESCE(lm.avg_lead_time_days, 30) * 1.96),
|
||||
?
|
||||
)
|
||||
ELSE ?
|
||||
END,
|
||||
pm.overstocked_amt = CASE
|
||||
WHEN p.stock_quantity / NULLIF(sm.daily_sales_avg, 0) > ?
|
||||
THEN GREATEST(0, p.stock_quantity - CEIL(sm.daily_sales_avg * ?))
|
||||
ELSE 0
|
||||
END,
|
||||
pm.last_calculated_at = NOW()
|
||||
WHERE p.pid IN (?)
|
||||
`, [
|
||||
defaultThresholds.low_stock_threshold,
|
||||
defaultThresholds.critical_days,
|
||||
defaultThresholds.reorder_days,
|
||||
defaultThresholds.overstock_days,
|
||||
defaultThresholds.low_stock_threshold,
|
||||
defaultThresholds.low_stock_threshold,
|
||||
defaultThresholds.overstock_days,
|
||||
defaultThresholds.overstock_days,
|
||||
batch.map(row => row.pid)
|
||||
]);
|
||||
|
||||
lastPid = batch[batch.length - 1].pid;
|
||||
processedCount += batch.length;
|
||||
|
||||
outputProgress({
|
||||
status: 'running',
|
||||
operation: 'Processing base metrics batch',
|
||||
current: processedCount,
|
||||
total: totalProducts,
|
||||
elapsed: formatElapsedTime(startTime),
|
||||
remaining: estimateRemaining(startTime, processedCount, totalProducts),
|
||||
rate: calculateRate(startTime, processedCount),
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
|
||||
timing: {
|
||||
start_time: new Date(startTime).toISOString(),
|
||||
end_time: new Date().toISOString(),
|
||||
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
// Calculate forecast accuracy and bias in batches
|
||||
lastPid = 0;
|
||||
while (true) {
|
||||
if (isCancelled) break;
|
||||
|
||||
const [batch] = await connection.query(
|
||||
'SELECT pid FROM products WHERE pid > ? ORDER BY pid LIMIT ?',
|
||||
[lastPid, BATCH_SIZE]
|
||||
);
|
||||
|
||||
if (batch.length === 0) break;
|
||||
|
||||
await connection.query(`
|
||||
UPDATE product_metrics pm
|
||||
JOIN (
|
||||
SELECT
|
||||
sf.pid,
|
||||
AVG(CASE
|
||||
WHEN o.quantity > 0
|
||||
THEN ABS(sf.forecast_units - o.quantity) / o.quantity * 100
|
||||
ELSE 100
|
||||
END) as avg_forecast_error,
|
||||
AVG(CASE
|
||||
WHEN o.quantity > 0
|
||||
THEN (sf.forecast_units - o.quantity) / o.quantity * 100
|
||||
ELSE 0
|
||||
END) as avg_forecast_bias,
|
||||
MAX(sf.forecast_date) as last_forecast_date
|
||||
FROM sales_forecasts sf
|
||||
JOIN orders o ON sf.pid = o.pid
|
||||
AND DATE(o.date) = sf.forecast_date
|
||||
WHERE o.canceled = false
|
||||
AND sf.forecast_date >= DATE_SUB(CURRENT_DATE, INTERVAL 90 DAY)
|
||||
AND sf.pid IN (?)
|
||||
GROUP BY sf.pid
|
||||
) fa ON pm.pid = fa.pid
|
||||
SET
|
||||
pm.forecast_accuracy = GREATEST(0, 100 - LEAST(fa.avg_forecast_error, 100)),
|
||||
pm.forecast_bias = GREATEST(-100, LEAST(fa.avg_forecast_bias, 100)),
|
||||
pm.last_forecast_date = fa.last_forecast_date,
|
||||
pm.last_calculated_at = NOW()
|
||||
WHERE pm.pid IN (?)
|
||||
`, [batch.map(row => row.pid), batch.map(row => row.pid)]);
|
||||
|
||||
lastPid = batch[batch.length - 1].pid;
|
||||
}
|
||||
}
|
||||
|
||||
// Calculate product time aggregates
|
||||
if (!SKIP_PRODUCT_TIME_AGGREGATES) {
|
||||
outputProgress({
|
||||
status: 'running',
|
||||
operation: 'Starting product time aggregates calculation',
|
||||
current: processedCount,
|
||||
total: totalProducts,
|
||||
current: processedCount || 0,
|
||||
total: totalProducts || 0,
|
||||
elapsed: formatElapsedTime(startTime),
|
||||
remaining: estimateRemaining(startTime, processedCount, totalProducts),
|
||||
rate: calculateRate(startTime, processedCount),
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
|
||||
remaining: estimateRemaining(startTime, processedCount || 0, totalProducts || 0),
|
||||
rate: calculateRate(startTime, processedCount || 0),
|
||||
percentage: (((processedCount || 0) / (totalProducts || 1)) * 100).toFixed(1),
|
||||
timing: {
|
||||
start_time: new Date(startTime).toISOString(),
|
||||
end_time: new Date().toISOString(),
|
||||
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
|
||||
}
|
||||
});
|
||||
|
||||
// Calculate time-based aggregates
|
||||
@@ -179,29 +348,206 @@ async function calculateProductMetrics(startTime, totalProducts, processedCount
|
||||
outputProgress({
|
||||
status: 'running',
|
||||
operation: 'Product time aggregates calculated',
|
||||
current: processedCount,
|
||||
total: totalProducts,
|
||||
current: processedCount || 0,
|
||||
total: totalProducts || 0,
|
||||
elapsed: formatElapsedTime(startTime),
|
||||
remaining: estimateRemaining(startTime, processedCount, totalProducts),
|
||||
rate: calculateRate(startTime, processedCount),
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
|
||||
remaining: estimateRemaining(startTime, processedCount || 0, totalProducts || 0),
|
||||
rate: calculateRate(startTime, processedCount || 0),
|
||||
percentage: (((processedCount || 0) / (totalProducts || 1)) * 100).toFixed(1),
|
||||
timing: {
|
||||
start_time: new Date(startTime).toISOString(),
|
||||
end_time: new Date().toISOString(),
|
||||
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
|
||||
}
|
||||
});
|
||||
} else {
|
||||
processedCount = Math.floor(totalProducts * 0.6);
|
||||
outputProgress({
|
||||
status: 'running',
|
||||
operation: 'Skipping product time aggregates calculation',
|
||||
current: processedCount,
|
||||
total: totalProducts,
|
||||
current: processedCount || 0,
|
||||
total: totalProducts || 0,
|
||||
elapsed: formatElapsedTime(startTime),
|
||||
remaining: estimateRemaining(startTime, processedCount, totalProducts),
|
||||
rate: calculateRate(startTime, processedCount),
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
|
||||
remaining: estimateRemaining(startTime, processedCount || 0, totalProducts || 0),
|
||||
rate: calculateRate(startTime, processedCount || 0),
|
||||
percentage: (((processedCount || 0) / (totalProducts || 1)) * 100).toFixed(1),
|
||||
timing: {
|
||||
start_time: new Date(startTime).toISOString(),
|
||||
end_time: new Date().toISOString(),
|
||||
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
return processedCount;
|
||||
// Calculate ABC classification
|
||||
outputProgress({
|
||||
status: 'running',
|
||||
operation: 'Starting ABC classification',
|
||||
current: processedCount,
|
||||
total: totalProducts,
|
||||
elapsed: formatElapsedTime(startTime),
|
||||
remaining: estimateRemaining(startTime, processedCount, totalProducts),
|
||||
rate: calculateRate(startTime, processedCount),
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
|
||||
timing: {
|
||||
start_time: new Date(startTime).toISOString(),
|
||||
end_time: new Date().toISOString(),
|
||||
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
|
||||
}
|
||||
});
|
||||
|
||||
if (isCancelled) return {
|
||||
processedProducts: processedCount,
|
||||
processedOrders,
|
||||
processedPurchaseOrders: 0, // This module doesn't process POs
|
||||
success
|
||||
};
|
||||
|
||||
const [abcConfig] = await connection.query('SELECT a_threshold, b_threshold FROM abc_classification_config WHERE id = 1');
|
||||
const abcThresholds = abcConfig[0] || { a_threshold: 20, b_threshold: 50 };
|
||||
|
||||
// First, create and populate the rankings table with an index
|
||||
await connection.query('DROP TEMPORARY TABLE IF EXISTS temp_revenue_ranks');
|
||||
await connection.query(`
|
||||
CREATE TEMPORARY TABLE temp_revenue_ranks (
|
||||
pid BIGINT NOT NULL,
|
||||
total_revenue DECIMAL(10,3),
|
||||
rank_num INT,
|
||||
dense_rank_num INT,
|
||||
percentile DECIMAL(5,2),
|
||||
total_count INT,
|
||||
PRIMARY KEY (pid),
|
||||
INDEX (rank_num),
|
||||
INDEX (dense_rank_num),
|
||||
INDEX (percentile)
|
||||
) ENGINE=MEMORY
|
||||
`);
|
||||
|
||||
// Calculate rankings with proper tie handling
|
||||
await connection.query(`
|
||||
INSERT INTO temp_revenue_ranks
|
||||
WITH revenue_data AS (
|
||||
SELECT
|
||||
pid,
|
||||
total_revenue,
|
||||
COUNT(*) OVER () as total_count,
|
||||
PERCENT_RANK() OVER (ORDER BY total_revenue DESC) * 100 as percentile,
|
||||
RANK() OVER (ORDER BY total_revenue DESC) as rank_num,
|
||||
DENSE_RANK() OVER (ORDER BY total_revenue DESC) as dense_rank_num
|
||||
FROM product_metrics
|
||||
WHERE total_revenue > 0
|
||||
)
|
||||
SELECT
|
||||
pid,
|
||||
total_revenue,
|
||||
rank_num,
|
||||
dense_rank_num,
|
||||
percentile,
|
||||
total_count
|
||||
FROM revenue_data
|
||||
`);
|
||||
|
||||
// Get total count for percentage calculation
|
||||
const [rankingCount] = await connection.query('SELECT MAX(rank_num) as total_count FROM temp_revenue_ranks');
|
||||
const totalCount = rankingCount[0].total_count || 1;
|
||||
const max_rank = totalCount;
|
||||
|
||||
// Process updates in batches
|
||||
let abcProcessedCount = 0;
|
||||
const batchSize = 5000;
|
||||
|
||||
while (true) {
|
||||
if (isCancelled) return {
|
||||
processedProducts: processedCount,
|
||||
processedOrders,
|
||||
processedPurchaseOrders: 0, // This module doesn't process POs
|
||||
success
|
||||
};
|
||||
|
||||
// Get a batch of PIDs that need updating
|
||||
const [pids] = await connection.query(`
|
||||
SELECT pm.pid
|
||||
FROM product_metrics pm
|
||||
LEFT JOIN temp_revenue_ranks tr ON pm.pid = tr.pid
|
||||
WHERE pm.abc_class IS NULL
|
||||
OR pm.abc_class !=
|
||||
CASE
|
||||
WHEN tr.pid IS NULL THEN 'C'
|
||||
WHEN tr.percentile <= ? THEN 'A'
|
||||
WHEN tr.percentile <= ? THEN 'B'
|
||||
ELSE 'C'
|
||||
END
|
||||
LIMIT ?
|
||||
`, [abcThresholds.a_threshold, abcThresholds.b_threshold, batchSize]);
|
||||
|
||||
if (pids.length === 0) break;
|
||||
|
||||
await connection.query(`
|
||||
UPDATE product_metrics pm
|
||||
LEFT JOIN temp_revenue_ranks tr ON pm.pid = tr.pid
|
||||
SET pm.abc_class =
|
||||
CASE
|
||||
WHEN tr.pid IS NULL THEN 'C'
|
||||
WHEN tr.percentile <= ? THEN 'A'
|
||||
WHEN tr.percentile <= ? THEN 'B'
|
||||
ELSE 'C'
|
||||
END,
|
||||
pm.last_calculated_at = NOW()
|
||||
WHERE pm.pid IN (?)
|
||||
`, [abcThresholds.a_threshold, abcThresholds.b_threshold, pids.map(row => row.pid)]);
|
||||
|
||||
// Now update turnover rate with proper handling of zero inventory periods
|
||||
await connection.query(`
|
||||
UPDATE product_metrics pm
|
||||
JOIN (
|
||||
SELECT
|
||||
o.pid,
|
||||
SUM(o.quantity) as total_sold,
|
||||
COUNT(DISTINCT DATE(o.date)) as active_days,
|
||||
AVG(CASE
|
||||
WHEN p.stock_quantity > 0 THEN p.stock_quantity
|
||||
ELSE NULL
|
||||
END) as avg_nonzero_stock
|
||||
FROM orders o
|
||||
JOIN products p ON o.pid = p.pid
|
||||
WHERE o.canceled = false
|
||||
AND o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 90 DAY)
|
||||
AND o.pid IN (?)
|
||||
GROUP BY o.pid
|
||||
) sales ON pm.pid = sales.pid
|
||||
SET
|
||||
pm.turnover_rate = CASE
|
||||
WHEN sales.avg_nonzero_stock > 0 AND sales.active_days > 0
|
||||
THEN LEAST(
|
||||
(sales.total_sold / sales.avg_nonzero_stock) * (365.0 / sales.active_days),
|
||||
999.99
|
||||
)
|
||||
ELSE 0
|
||||
END,
|
||||
pm.last_calculated_at = NOW()
|
||||
WHERE pm.pid IN (?)
|
||||
`, [pids.map(row => row.pid), pids.map(row => row.pid)]);
|
||||
}
|
||||
|
||||
// If we get here, everything completed successfully
|
||||
success = true;
|
||||
|
||||
// Update calculate_status
|
||||
await connection.query(`
|
||||
INSERT INTO calculate_status (module_name, last_calculation_timestamp)
|
||||
VALUES ('product_metrics', NOW())
|
||||
ON DUPLICATE KEY UPDATE last_calculation_timestamp = NOW()
|
||||
`);
|
||||
|
||||
return {
|
||||
processedProducts: processedCount || 0,
|
||||
processedOrders: processedOrders || 0,
|
||||
processedPurchaseOrders: 0, // This module doesn't process POs
|
||||
success
|
||||
};
|
||||
|
||||
} catch (error) {
|
||||
success = false;
|
||||
logError(error, 'Error calculating product metrics');
|
||||
throw error;
|
||||
} finally {
|
||||
|
||||
@@ -1,8 +1,11 @@
|
||||
const { outputProgress, formatElapsedTime, estimateRemaining, calculateRate, logError } = require('./utils/progress');
|
||||
const { getConnection } = require('./utils/db');
|
||||
|
||||
async function calculateSalesForecasts(startTime, totalProducts, processedCount, isCancelled = false) {
|
||||
async function calculateSalesForecasts(startTime, totalProducts, processedCount = 0, isCancelled = false) {
|
||||
const connection = await getConnection();
|
||||
let success = false;
|
||||
let processedOrders = 0;
|
||||
|
||||
try {
|
||||
if (isCancelled) {
|
||||
outputProgress({
|
||||
@@ -13,11 +16,30 @@ async function calculateSalesForecasts(startTime, totalProducts, processedCount,
|
||||
elapsed: formatElapsedTime(startTime),
|
||||
remaining: null,
|
||||
rate: calculateRate(startTime, processedCount),
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
|
||||
timing: {
|
||||
start_time: new Date(startTime).toISOString(),
|
||||
end_time: new Date().toISOString(),
|
||||
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
|
||||
}
|
||||
});
|
||||
return processedCount;
|
||||
return {
|
||||
processedProducts: processedCount,
|
||||
processedOrders: 0,
|
||||
processedPurchaseOrders: 0,
|
||||
success
|
||||
};
|
||||
}
|
||||
|
||||
// Get order count that will be processed
|
||||
const [orderCount] = await connection.query(`
|
||||
SELECT COUNT(*) as count
|
||||
FROM orders o
|
||||
WHERE o.canceled = false
|
||||
AND o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 90 DAY)
|
||||
`);
|
||||
processedOrders = orderCount[0].count;
|
||||
|
||||
outputProgress({
|
||||
status: 'running',
|
||||
operation: 'Starting sales forecasts calculation',
|
||||
@@ -26,7 +48,12 @@ async function calculateSalesForecasts(startTime, totalProducts, processedCount,
|
||||
elapsed: formatElapsedTime(startTime),
|
||||
remaining: estimateRemaining(startTime, processedCount, totalProducts),
|
||||
rate: calculateRate(startTime, processedCount),
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
|
||||
timing: {
|
||||
start_time: new Date(startTime).toISOString(),
|
||||
end_time: new Date().toISOString(),
|
||||
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
|
||||
}
|
||||
});
|
||||
|
||||
// First, create a temporary table for forecast dates
|
||||
@@ -65,10 +92,20 @@ async function calculateSalesForecasts(startTime, totalProducts, processedCount,
|
||||
elapsed: formatElapsedTime(startTime),
|
||||
remaining: estimateRemaining(startTime, processedCount, totalProducts),
|
||||
rate: calculateRate(startTime, processedCount),
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
|
||||
timing: {
|
||||
start_time: new Date(startTime).toISOString(),
|
||||
end_time: new Date().toISOString(),
|
||||
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
|
||||
}
|
||||
});
|
||||
|
||||
if (isCancelled) return processedCount;
|
||||
if (isCancelled) return {
|
||||
processedProducts: processedCount,
|
||||
processedOrders,
|
||||
processedPurchaseOrders: 0,
|
||||
success
|
||||
};
|
||||
|
||||
// Create temporary table for daily sales stats
|
||||
await connection.query(`
|
||||
@@ -94,10 +131,20 @@ async function calculateSalesForecasts(startTime, totalProducts, processedCount,
|
||||
elapsed: formatElapsedTime(startTime),
|
||||
remaining: estimateRemaining(startTime, processedCount, totalProducts),
|
||||
rate: calculateRate(startTime, processedCount),
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
|
||||
timing: {
|
||||
start_time: new Date(startTime).toISOString(),
|
||||
end_time: new Date().toISOString(),
|
||||
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
|
||||
}
|
||||
});
|
||||
|
||||
if (isCancelled) return processedCount;
|
||||
if (isCancelled) return {
|
||||
processedProducts: processedCount,
|
||||
processedOrders,
|
||||
processedPurchaseOrders: 0,
|
||||
success
|
||||
};
|
||||
|
||||
// Create temporary table for product stats
|
||||
await connection.query(`
|
||||
@@ -119,10 +166,20 @@ async function calculateSalesForecasts(startTime, totalProducts, processedCount,
|
||||
elapsed: formatElapsedTime(startTime),
|
||||
remaining: estimateRemaining(startTime, processedCount, totalProducts),
|
||||
rate: calculateRate(startTime, processedCount),
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
|
||||
timing: {
|
||||
start_time: new Date(startTime).toISOString(),
|
||||
end_time: new Date().toISOString(),
|
||||
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
|
||||
}
|
||||
});
|
||||
|
||||
if (isCancelled) return processedCount;
|
||||
if (isCancelled) return {
|
||||
processedProducts: processedCount,
|
||||
processedOrders,
|
||||
processedPurchaseOrders: 0,
|
||||
success
|
||||
};
|
||||
|
||||
// Calculate product-level forecasts
|
||||
await connection.query(`
|
||||
@@ -134,37 +191,76 @@ async function calculateSalesForecasts(startTime, totalProducts, processedCount,
|
||||
confidence_level,
|
||||
last_calculated_at
|
||||
)
|
||||
WITH daily_stats AS (
|
||||
SELECT
|
||||
ds.pid,
|
||||
AVG(ds.daily_quantity) as avg_daily_qty,
|
||||
STDDEV(ds.daily_quantity) as std_daily_qty,
|
||||
COUNT(DISTINCT ds.day_count) as data_points,
|
||||
SUM(ds.day_count) as total_days,
|
||||
AVG(ds.daily_revenue) as avg_daily_revenue,
|
||||
STDDEV(ds.daily_revenue) as std_daily_revenue,
|
||||
MIN(ds.daily_quantity) as min_daily_qty,
|
||||
MAX(ds.daily_quantity) as max_daily_qty,
|
||||
-- Calculate variance without using LAG
|
||||
COALESCE(
|
||||
STDDEV(ds.daily_quantity) / NULLIF(AVG(ds.daily_quantity), 0),
|
||||
0
|
||||
) as daily_variance_ratio
|
||||
FROM temp_daily_sales ds
|
||||
GROUP BY ds.pid
|
||||
HAVING AVG(ds.daily_quantity) > 0
|
||||
)
|
||||
SELECT
|
||||
ds.pid,
|
||||
fd.forecast_date,
|
||||
GREATEST(0,
|
||||
AVG(ds.daily_quantity) *
|
||||
(1 + COALESCE(sf.seasonality_factor, 0))
|
||||
ROUND(
|
||||
ds.avg_daily_qty *
|
||||
(1 + COALESCE(sf.seasonality_factor, 0)) *
|
||||
CASE
|
||||
WHEN ds.std_daily_qty / NULLIF(ds.avg_daily_qty, 0) > 1.5 THEN 0.85
|
||||
WHEN ds.std_daily_qty / NULLIF(ds.avg_daily_qty, 0) > 1.0 THEN 0.9
|
||||
WHEN ds.std_daily_qty / NULLIF(ds.avg_daily_qty, 0) > 0.5 THEN 0.95
|
||||
ELSE 1.0
|
||||
END,
|
||||
2
|
||||
)
|
||||
) as forecast_units,
|
||||
GREATEST(0,
|
||||
COALESCE(
|
||||
CASE
|
||||
WHEN SUM(ds.day_count) >= 4 THEN AVG(ds.daily_revenue)
|
||||
ELSE ps.overall_avg_revenue
|
||||
END *
|
||||
(1 + COALESCE(sf.seasonality_factor, 0)) *
|
||||
(0.95 + (RAND() * 0.1)),
|
||||
0
|
||||
ROUND(
|
||||
COALESCE(
|
||||
CASE
|
||||
WHEN ds.data_points >= 4 THEN ds.avg_daily_revenue
|
||||
ELSE ps.overall_avg_revenue
|
||||
END *
|
||||
(1 + COALESCE(sf.seasonality_factor, 0)) *
|
||||
CASE
|
||||
WHEN ds.std_daily_revenue / NULLIF(ds.avg_daily_revenue, 0) > 1.5 THEN 0.85
|
||||
WHEN ds.std_daily_revenue / NULLIF(ds.avg_daily_revenue, 0) > 1.0 THEN 0.9
|
||||
WHEN ds.std_daily_revenue / NULLIF(ds.avg_daily_revenue, 0) > 0.5 THEN 0.95
|
||||
ELSE 1.0
|
||||
END,
|
||||
0
|
||||
),
|
||||
2
|
||||
)
|
||||
) as forecast_revenue,
|
||||
CASE
|
||||
WHEN ps.total_days >= 60 THEN 90
|
||||
WHEN ps.total_days >= 30 THEN 80
|
||||
WHEN ps.total_days >= 14 THEN 70
|
||||
WHEN ds.total_days >= 60 AND ds.daily_variance_ratio < 0.5 THEN 90
|
||||
WHEN ds.total_days >= 60 THEN 85
|
||||
WHEN ds.total_days >= 30 AND ds.daily_variance_ratio < 0.5 THEN 80
|
||||
WHEN ds.total_days >= 30 THEN 75
|
||||
WHEN ds.total_days >= 14 AND ds.daily_variance_ratio < 0.5 THEN 70
|
||||
WHEN ds.total_days >= 14 THEN 65
|
||||
ELSE 60
|
||||
END as confidence_level,
|
||||
NOW() as last_calculated_at
|
||||
FROM temp_daily_sales ds
|
||||
FROM daily_stats ds
|
||||
JOIN temp_product_stats ps ON ds.pid = ps.pid
|
||||
CROSS JOIN temp_forecast_dates fd
|
||||
LEFT JOIN sales_seasonality sf ON fd.month = sf.month
|
||||
GROUP BY ds.pid, fd.forecast_date, ps.overall_avg_revenue, ps.total_days, sf.seasonality_factor
|
||||
HAVING AVG(ds.daily_quantity) > 0
|
||||
GROUP BY ds.pid, fd.forecast_date, ps.overall_avg_revenue, sf.seasonality_factor
|
||||
ON DUPLICATE KEY UPDATE
|
||||
forecast_units = VALUES(forecast_units),
|
||||
forecast_revenue = VALUES(forecast_revenue),
|
||||
@@ -181,10 +277,20 @@ async function calculateSalesForecasts(startTime, totalProducts, processedCount,
|
||||
elapsed: formatElapsedTime(startTime),
|
||||
remaining: estimateRemaining(startTime, processedCount, totalProducts),
|
||||
rate: calculateRate(startTime, processedCount),
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
|
||||
timing: {
|
||||
start_time: new Date(startTime).toISOString(),
|
||||
end_time: new Date().toISOString(),
|
||||
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
|
||||
}
|
||||
});
|
||||
|
||||
if (isCancelled) return processedCount;
|
||||
if (isCancelled) return {
|
||||
processedProducts: processedCount,
|
||||
processedOrders,
|
||||
processedPurchaseOrders: 0,
|
||||
success
|
||||
};
|
||||
|
||||
// Create temporary table for category stats
|
||||
await connection.query(`
|
||||
@@ -221,10 +327,20 @@ async function calculateSalesForecasts(startTime, totalProducts, processedCount,
|
||||
elapsed: formatElapsedTime(startTime),
|
||||
remaining: estimateRemaining(startTime, processedCount, totalProducts),
|
||||
rate: calculateRate(startTime, processedCount),
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
|
||||
timing: {
|
||||
start_time: new Date(startTime).toISOString(),
|
||||
end_time: new Date().toISOString(),
|
||||
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
|
||||
}
|
||||
});
|
||||
|
||||
if (isCancelled) return processedCount;
|
||||
if (isCancelled) return {
|
||||
processedProducts: processedCount,
|
||||
processedOrders,
|
||||
processedPurchaseOrders: 0,
|
||||
success
|
||||
};
|
||||
|
||||
// Calculate category-level forecasts
|
||||
await connection.query(`
|
||||
@@ -292,11 +408,33 @@ async function calculateSalesForecasts(startTime, totalProducts, processedCount,
|
||||
elapsed: formatElapsedTime(startTime),
|
||||
remaining: estimateRemaining(startTime, processedCount, totalProducts),
|
||||
rate: calculateRate(startTime, processedCount),
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
|
||||
timing: {
|
||||
start_time: new Date(startTime).toISOString(),
|
||||
end_time: new Date().toISOString(),
|
||||
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
|
||||
}
|
||||
});
|
||||
|
||||
return processedCount;
|
||||
// If we get here, everything completed successfully
|
||||
success = true;
|
||||
|
||||
// Update calculate_status
|
||||
await connection.query(`
|
||||
INSERT INTO calculate_status (module_name, last_calculation_timestamp)
|
||||
VALUES ('sales_forecasts', NOW())
|
||||
ON DUPLICATE KEY UPDATE last_calculation_timestamp = NOW()
|
||||
`);
|
||||
|
||||
return {
|
||||
processedProducts: processedCount,
|
||||
processedOrders,
|
||||
processedPurchaseOrders: 0,
|
||||
success
|
||||
};
|
||||
|
||||
} catch (error) {
|
||||
success = false;
|
||||
logError(error, 'Error calculating sales forecasts');
|
||||
throw error;
|
||||
} finally {
|
||||
|
||||
@@ -1,8 +1,11 @@
|
||||
const { outputProgress, formatElapsedTime, estimateRemaining, calculateRate, logError } = require('./utils/progress');
|
||||
const { getConnection } = require('./utils/db');
|
||||
|
||||
async function calculateTimeAggregates(startTime, totalProducts, processedCount, isCancelled = false) {
|
||||
async function calculateTimeAggregates(startTime, totalProducts, processedCount = 0, isCancelled = false) {
|
||||
const connection = await getConnection();
|
||||
let success = false;
|
||||
let processedOrders = 0;
|
||||
|
||||
try {
|
||||
if (isCancelled) {
|
||||
outputProgress({
|
||||
@@ -13,11 +16,29 @@ async function calculateTimeAggregates(startTime, totalProducts, processedCount,
|
||||
elapsed: formatElapsedTime(startTime),
|
||||
remaining: null,
|
||||
rate: calculateRate(startTime, processedCount),
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
|
||||
timing: {
|
||||
start_time: new Date(startTime).toISOString(),
|
||||
end_time: new Date().toISOString(),
|
||||
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
|
||||
}
|
||||
});
|
||||
return processedCount;
|
||||
return {
|
||||
processedProducts: processedCount,
|
||||
processedOrders: 0,
|
||||
processedPurchaseOrders: 0,
|
||||
success
|
||||
};
|
||||
}
|
||||
|
||||
// Get order count that will be processed
|
||||
const [orderCount] = await connection.query(`
|
||||
SELECT COUNT(*) as count
|
||||
FROM orders o
|
||||
WHERE o.canceled = false
|
||||
`);
|
||||
processedOrders = orderCount[0].count;
|
||||
|
||||
outputProgress({
|
||||
status: 'running',
|
||||
operation: 'Starting time aggregates calculation',
|
||||
@@ -26,7 +47,12 @@ async function calculateTimeAggregates(startTime, totalProducts, processedCount,
|
||||
elapsed: formatElapsedTime(startTime),
|
||||
remaining: estimateRemaining(startTime, processedCount, totalProducts),
|
||||
rate: calculateRate(startTime, processedCount),
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
|
||||
timing: {
|
||||
start_time: new Date(startTime).toISOString(),
|
||||
end_time: new Date().toISOString(),
|
||||
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
|
||||
}
|
||||
});
|
||||
|
||||
// Initial insert of time-based aggregates
|
||||
@@ -42,9 +68,11 @@ async function calculateTimeAggregates(startTime, totalProducts, processedCount,
|
||||
stock_received,
|
||||
stock_ordered,
|
||||
avg_price,
|
||||
profit_margin
|
||||
profit_margin,
|
||||
inventory_value,
|
||||
gmroi
|
||||
)
|
||||
WITH sales_data AS (
|
||||
WITH monthly_sales AS (
|
||||
SELECT
|
||||
o.pid,
|
||||
YEAR(o.date) as year,
|
||||
@@ -55,17 +83,19 @@ async function calculateTimeAggregates(startTime, totalProducts, processedCount,
|
||||
COUNT(DISTINCT o.order_number) as order_count,
|
||||
AVG(o.price - COALESCE(o.discount, 0)) as avg_price,
|
||||
CASE
|
||||
WHEN SUM((o.price - COALESCE(o.discount, 0)) * o.quantity) = 0 THEN 0
|
||||
ELSE ((SUM((o.price - COALESCE(o.discount, 0)) * o.quantity) -
|
||||
SUM(COALESCE(p.cost_price, 0) * o.quantity)) /
|
||||
SUM((o.price - COALESCE(o.discount, 0)) * o.quantity)) * 100
|
||||
END as profit_margin
|
||||
WHEN SUM((o.price - COALESCE(o.discount, 0)) * o.quantity) > 0
|
||||
THEN ((SUM((o.price - COALESCE(o.discount, 0)) * o.quantity) - SUM(COALESCE(p.cost_price, 0) * o.quantity))
|
||||
/ SUM((o.price - COALESCE(o.discount, 0)) * o.quantity)) * 100
|
||||
ELSE 0
|
||||
END as profit_margin,
|
||||
p.cost_price * p.stock_quantity as inventory_value,
|
||||
COUNT(DISTINCT DATE(o.date)) as active_days
|
||||
FROM orders o
|
||||
JOIN products p ON o.pid = p.pid
|
||||
WHERE o.canceled = 0
|
||||
WHERE o.canceled = false
|
||||
GROUP BY o.pid, YEAR(o.date), MONTH(o.date)
|
||||
),
|
||||
purchase_data AS (
|
||||
monthly_stock AS (
|
||||
SELECT
|
||||
pid,
|
||||
YEAR(date) as year,
|
||||
@@ -73,7 +103,6 @@ async function calculateTimeAggregates(startTime, totalProducts, processedCount,
|
||||
SUM(received) as stock_received,
|
||||
SUM(ordered) as stock_ordered
|
||||
FROM purchase_orders
|
||||
WHERE status = 50
|
||||
GROUP BY pid, YEAR(date), MONTH(date)
|
||||
)
|
||||
SELECT
|
||||
@@ -84,15 +113,21 @@ async function calculateTimeAggregates(startTime, totalProducts, processedCount,
|
||||
s.total_revenue,
|
||||
s.total_cost,
|
||||
s.order_count,
|
||||
COALESCE(p.stock_received, 0) as stock_received,
|
||||
COALESCE(p.stock_ordered, 0) as stock_ordered,
|
||||
COALESCE(ms.stock_received, 0) as stock_received,
|
||||
COALESCE(ms.stock_ordered, 0) as stock_ordered,
|
||||
s.avg_price,
|
||||
s.profit_margin
|
||||
FROM sales_data s
|
||||
LEFT JOIN purchase_data p
|
||||
ON s.pid = p.pid
|
||||
AND s.year = p.year
|
||||
AND s.month = p.month
|
||||
s.profit_margin,
|
||||
s.inventory_value,
|
||||
CASE
|
||||
WHEN s.inventory_value > 0 THEN
|
||||
(s.total_revenue - s.total_cost) / s.inventory_value
|
||||
ELSE 0
|
||||
END as gmroi
|
||||
FROM monthly_sales s
|
||||
LEFT JOIN monthly_stock ms
|
||||
ON s.pid = ms.pid
|
||||
AND s.year = ms.year
|
||||
AND s.month = ms.month
|
||||
UNION
|
||||
SELECT
|
||||
p.pid,
|
||||
@@ -105,9 +140,11 @@ async function calculateTimeAggregates(startTime, totalProducts, processedCount,
|
||||
p.stock_received,
|
||||
p.stock_ordered,
|
||||
0 as avg_price,
|
||||
0 as profit_margin
|
||||
FROM purchase_data p
|
||||
LEFT JOIN sales_data s
|
||||
0 as profit_margin,
|
||||
(SELECT cost_price * stock_quantity FROM products WHERE pid = p.pid) as inventory_value,
|
||||
0 as gmroi
|
||||
FROM monthly_stock p
|
||||
LEFT JOIN monthly_sales s
|
||||
ON p.pid = s.pid
|
||||
AND p.year = s.year
|
||||
AND p.month = s.month
|
||||
@@ -120,7 +157,9 @@ async function calculateTimeAggregates(startTime, totalProducts, processedCount,
|
||||
stock_received = VALUES(stock_received),
|
||||
stock_ordered = VALUES(stock_ordered),
|
||||
avg_price = VALUES(avg_price),
|
||||
profit_margin = VALUES(profit_margin)
|
||||
profit_margin = VALUES(profit_margin),
|
||||
inventory_value = VALUES(inventory_value),
|
||||
gmroi = VALUES(gmroi)
|
||||
`);
|
||||
|
||||
processedCount = Math.floor(totalProducts * 0.60);
|
||||
@@ -132,10 +171,20 @@ async function calculateTimeAggregates(startTime, totalProducts, processedCount,
|
||||
elapsed: formatElapsedTime(startTime),
|
||||
remaining: estimateRemaining(startTime, processedCount, totalProducts),
|
||||
rate: calculateRate(startTime, processedCount),
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
|
||||
timing: {
|
||||
start_time: new Date(startTime).toISOString(),
|
||||
end_time: new Date().toISOString(),
|
||||
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
|
||||
}
|
||||
});
|
||||
|
||||
if (isCancelled) return processedCount;
|
||||
if (isCancelled) return {
|
||||
processedProducts: processedCount,
|
||||
processedOrders,
|
||||
processedPurchaseOrders: 0,
|
||||
success
|
||||
};
|
||||
|
||||
// Update with financial metrics
|
||||
await connection.query(`
|
||||
@@ -173,11 +222,33 @@ async function calculateTimeAggregates(startTime, totalProducts, processedCount,
|
||||
elapsed: formatElapsedTime(startTime),
|
||||
remaining: estimateRemaining(startTime, processedCount, totalProducts),
|
||||
rate: calculateRate(startTime, processedCount),
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
|
||||
timing: {
|
||||
start_time: new Date(startTime).toISOString(),
|
||||
end_time: new Date().toISOString(),
|
||||
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
|
||||
}
|
||||
});
|
||||
|
||||
return processedCount;
|
||||
// If we get here, everything completed successfully
|
||||
success = true;
|
||||
|
||||
// Update calculate_status
|
||||
await connection.query(`
|
||||
INSERT INTO calculate_status (module_name, last_calculation_timestamp)
|
||||
VALUES ('time_aggregates', NOW())
|
||||
ON DUPLICATE KEY UPDATE last_calculation_timestamp = NOW()
|
||||
`);
|
||||
|
||||
return {
|
||||
processedProducts: processedCount,
|
||||
processedOrders,
|
||||
processedPurchaseOrders: 0,
|
||||
success
|
||||
};
|
||||
|
||||
} catch (error) {
|
||||
success = false;
|
||||
logError(error, 'Error calculating time aggregates');
|
||||
throw error;
|
||||
} finally {
|
||||
|
||||
@@ -1,8 +1,12 @@
|
||||
const { outputProgress, formatElapsedTime, estimateRemaining, calculateRate, logError } = require('./utils/progress');
|
||||
const { getConnection } = require('./utils/db');
|
||||
|
||||
async function calculateVendorMetrics(startTime, totalProducts, processedCount, isCancelled = false) {
|
||||
async function calculateVendorMetrics(startTime, totalProducts, processedCount = 0, isCancelled = false) {
|
||||
const connection = await getConnection();
|
||||
let success = false;
|
||||
let processedOrders = 0;
|
||||
let processedPurchaseOrders = 0;
|
||||
|
||||
try {
|
||||
if (isCancelled) {
|
||||
outputProgress({
|
||||
@@ -13,11 +17,37 @@ async function calculateVendorMetrics(startTime, totalProducts, processedCount,
|
||||
elapsed: formatElapsedTime(startTime),
|
||||
remaining: null,
|
||||
rate: calculateRate(startTime, processedCount),
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
|
||||
timing: {
|
||||
start_time: new Date(startTime).toISOString(),
|
||||
end_time: new Date().toISOString(),
|
||||
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
|
||||
}
|
||||
});
|
||||
return processedCount;
|
||||
return {
|
||||
processedProducts: processedCount,
|
||||
processedOrders,
|
||||
processedPurchaseOrders,
|
||||
success
|
||||
};
|
||||
}
|
||||
|
||||
// Get counts of records that will be processed
|
||||
const [[orderCount], [poCount]] = await Promise.all([
|
||||
connection.query(`
|
||||
SELECT COUNT(*) as count
|
||||
FROM orders o
|
||||
WHERE o.canceled = false
|
||||
`),
|
||||
connection.query(`
|
||||
SELECT COUNT(*) as count
|
||||
FROM purchase_orders po
|
||||
WHERE po.status != 0
|
||||
`)
|
||||
]);
|
||||
processedOrders = orderCount.count;
|
||||
processedPurchaseOrders = poCount.count;
|
||||
|
||||
outputProgress({
|
||||
status: 'running',
|
||||
operation: 'Starting vendor metrics calculation',
|
||||
@@ -26,7 +56,12 @@ async function calculateVendorMetrics(startTime, totalProducts, processedCount,
|
||||
elapsed: formatElapsedTime(startTime),
|
||||
remaining: estimateRemaining(startTime, processedCount, totalProducts),
|
||||
rate: calculateRate(startTime, processedCount),
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
|
||||
timing: {
|
||||
start_time: new Date(startTime).toISOString(),
|
||||
end_time: new Date().toISOString(),
|
||||
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
|
||||
}
|
||||
});
|
||||
|
||||
// First ensure all vendors exist in vendor_details
|
||||
@@ -50,10 +85,20 @@ async function calculateVendorMetrics(startTime, totalProducts, processedCount,
|
||||
elapsed: formatElapsedTime(startTime),
|
||||
remaining: estimateRemaining(startTime, processedCount, totalProducts),
|
||||
rate: calculateRate(startTime, processedCount),
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
|
||||
timing: {
|
||||
start_time: new Date(startTime).toISOString(),
|
||||
end_time: new Date().toISOString(),
|
||||
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
|
||||
}
|
||||
});
|
||||
|
||||
if (isCancelled) return processedCount;
|
||||
if (isCancelled) return {
|
||||
processedProducts: processedCount,
|
||||
processedOrders,
|
||||
processedPurchaseOrders,
|
||||
success
|
||||
};
|
||||
|
||||
// Now calculate vendor metrics
|
||||
await connection.query(`
|
||||
@@ -68,6 +113,8 @@ async function calculateVendorMetrics(startTime, totalProducts, processedCount,
|
||||
avg_order_value,
|
||||
active_products,
|
||||
total_products,
|
||||
total_purchase_value,
|
||||
avg_margin_percent,
|
||||
status,
|
||||
last_calculated_at
|
||||
)
|
||||
@@ -76,7 +123,8 @@ async function calculateVendorMetrics(startTime, totalProducts, processedCount,
|
||||
p.vendor,
|
||||
SUM(o.quantity * o.price) as total_revenue,
|
||||
COUNT(DISTINCT o.id) as total_orders,
|
||||
COUNT(DISTINCT p.pid) as active_products
|
||||
COUNT(DISTINCT p.pid) as active_products,
|
||||
SUM(o.quantity * (o.price - p.cost_price)) as total_margin
|
||||
FROM products p
|
||||
JOIN orders o ON p.pid = o.pid
|
||||
WHERE o.canceled = false
|
||||
@@ -91,7 +139,8 @@ async function calculateVendorMetrics(startTime, totalProducts, processedCount,
|
||||
AVG(CASE
|
||||
WHEN po.receiving_status = 40
|
||||
THEN DATEDIFF(po.received_date, po.date)
|
||||
END) as avg_lead_time_days
|
||||
END) as avg_lead_time_days,
|
||||
SUM(po.ordered * po.po_cost_price) as total_purchase_value
|
||||
FROM products p
|
||||
JOIN purchase_orders po ON p.pid = po.pid
|
||||
WHERE po.date >= DATE_SUB(CURRENT_DATE, INTERVAL 12 MONTH)
|
||||
@@ -127,6 +176,12 @@ async function calculateVendorMetrics(startTime, totalProducts, processedCount,
|
||||
END as avg_order_value,
|
||||
COALESCE(vs.active_products, 0) as active_products,
|
||||
COALESCE(vpr.total_products, 0) as total_products,
|
||||
COALESCE(vp.total_purchase_value, 0) as total_purchase_value,
|
||||
CASE
|
||||
WHEN vs.total_revenue > 0
|
||||
THEN (vs.total_margin / vs.total_revenue) * 100
|
||||
ELSE 0
|
||||
END as avg_margin_percent,
|
||||
'active' as status,
|
||||
NOW() as last_calculated_at
|
||||
FROM vendor_sales vs
|
||||
@@ -143,6 +198,8 @@ async function calculateVendorMetrics(startTime, totalProducts, processedCount,
|
||||
avg_order_value = VALUES(avg_order_value),
|
||||
active_products = VALUES(active_products),
|
||||
total_products = VALUES(total_products),
|
||||
total_purchase_value = VALUES(total_purchase_value),
|
||||
avg_margin_percent = VALUES(avg_margin_percent),
|
||||
status = VALUES(status),
|
||||
last_calculated_at = VALUES(last_calculated_at)
|
||||
`);
|
||||
@@ -150,17 +207,155 @@ async function calculateVendorMetrics(startTime, totalProducts, processedCount,
|
||||
processedCount = Math.floor(totalProducts * 0.9);
|
||||
outputProgress({
|
||||
status: 'running',
|
||||
operation: 'Vendor metrics calculated',
|
||||
operation: 'Vendor metrics calculated, updating time-based metrics',
|
||||
current: processedCount,
|
||||
total: totalProducts,
|
||||
elapsed: formatElapsedTime(startTime),
|
||||
remaining: estimateRemaining(startTime, processedCount, totalProducts),
|
||||
rate: calculateRate(startTime, processedCount),
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
|
||||
timing: {
|
||||
start_time: new Date(startTime).toISOString(),
|
||||
end_time: new Date().toISOString(),
|
||||
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
|
||||
}
|
||||
});
|
||||
|
||||
return processedCount;
|
||||
if (isCancelled) return {
|
||||
processedProducts: processedCount,
|
||||
processedOrders,
|
||||
processedPurchaseOrders,
|
||||
success
|
||||
};
|
||||
|
||||
// Calculate time-based metrics
|
||||
await connection.query(`
|
||||
INSERT INTO vendor_time_metrics (
|
||||
vendor,
|
||||
year,
|
||||
month,
|
||||
total_orders,
|
||||
late_orders,
|
||||
avg_lead_time_days,
|
||||
total_purchase_value,
|
||||
total_revenue,
|
||||
avg_margin_percent
|
||||
)
|
||||
WITH monthly_orders AS (
|
||||
SELECT
|
||||
p.vendor,
|
||||
YEAR(o.date) as year,
|
||||
MONTH(o.date) as month,
|
||||
COUNT(DISTINCT o.id) as total_orders,
|
||||
SUM(o.quantity * o.price) as total_revenue,
|
||||
SUM(o.quantity * (o.price - p.cost_price)) as total_margin
|
||||
FROM products p
|
||||
JOIN orders o ON p.pid = o.pid
|
||||
WHERE o.canceled = false
|
||||
AND o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 12 MONTH)
|
||||
AND p.vendor IS NOT NULL
|
||||
GROUP BY p.vendor, YEAR(o.date), MONTH(o.date)
|
||||
),
|
||||
monthly_po AS (
|
||||
SELECT
|
||||
p.vendor,
|
||||
YEAR(po.date) as year,
|
||||
MONTH(po.date) as month,
|
||||
COUNT(DISTINCT po.id) as total_po,
|
||||
COUNT(DISTINCT CASE
|
||||
WHEN po.receiving_status = 40 AND po.received_date > po.expected_date
|
||||
THEN po.id
|
||||
END) as late_orders,
|
||||
AVG(CASE
|
||||
WHEN po.receiving_status = 40
|
||||
THEN DATEDIFF(po.received_date, po.date)
|
||||
END) as avg_lead_time_days,
|
||||
SUM(po.ordered * po.po_cost_price) as total_purchase_value
|
||||
FROM products p
|
||||
JOIN purchase_orders po ON p.pid = po.pid
|
||||
WHERE po.date >= DATE_SUB(CURRENT_DATE, INTERVAL 12 MONTH)
|
||||
AND p.vendor IS NOT NULL
|
||||
GROUP BY p.vendor, YEAR(po.date), MONTH(po.date)
|
||||
)
|
||||
SELECT
|
||||
mo.vendor,
|
||||
mo.year,
|
||||
mo.month,
|
||||
COALESCE(mp.total_po, 0) as total_orders,
|
||||
COALESCE(mp.late_orders, 0) as late_orders,
|
||||
COALESCE(mp.avg_lead_time_days, 0) as avg_lead_time_days,
|
||||
COALESCE(mp.total_purchase_value, 0) as total_purchase_value,
|
||||
mo.total_revenue,
|
||||
CASE
|
||||
WHEN mo.total_revenue > 0
|
||||
THEN (mo.total_margin / mo.total_revenue) * 100
|
||||
ELSE 0
|
||||
END as avg_margin_percent
|
||||
FROM monthly_orders mo
|
||||
LEFT JOIN monthly_po mp ON mo.vendor = mp.vendor
|
||||
AND mo.year = mp.year
|
||||
AND mo.month = mp.month
|
||||
UNION
|
||||
SELECT
|
||||
mp.vendor,
|
||||
mp.year,
|
||||
mp.month,
|
||||
mp.total_po as total_orders,
|
||||
mp.late_orders,
|
||||
mp.avg_lead_time_days,
|
||||
mp.total_purchase_value,
|
||||
0 as total_revenue,
|
||||
0 as avg_margin_percent
|
||||
FROM monthly_po mp
|
||||
LEFT JOIN monthly_orders mo ON mp.vendor = mo.vendor
|
||||
AND mp.year = mo.year
|
||||
AND mp.month = mo.month
|
||||
WHERE mo.vendor IS NULL
|
||||
ON DUPLICATE KEY UPDATE
|
||||
total_orders = VALUES(total_orders),
|
||||
late_orders = VALUES(late_orders),
|
||||
avg_lead_time_days = VALUES(avg_lead_time_days),
|
||||
total_purchase_value = VALUES(total_purchase_value),
|
||||
total_revenue = VALUES(total_revenue),
|
||||
avg_margin_percent = VALUES(avg_margin_percent)
|
||||
`);
|
||||
|
||||
processedCount = Math.floor(totalProducts * 0.95);
|
||||
outputProgress({
|
||||
status: 'running',
|
||||
operation: 'Time-based vendor metrics calculated',
|
||||
current: processedCount,
|
||||
total: totalProducts,
|
||||
elapsed: formatElapsedTime(startTime),
|
||||
remaining: estimateRemaining(startTime, processedCount, totalProducts),
|
||||
rate: calculateRate(startTime, processedCount),
|
||||
percentage: ((processedCount / totalProducts) * 100).toFixed(1),
|
||||
timing: {
|
||||
start_time: new Date(startTime).toISOString(),
|
||||
end_time: new Date().toISOString(),
|
||||
elapsed_seconds: Math.round((Date.now() - startTime) / 1000)
|
||||
}
|
||||
});
|
||||
|
||||
// If we get here, everything completed successfully
|
||||
success = true;
|
||||
|
||||
// Update calculate_status
|
||||
await connection.query(`
|
||||
INSERT INTO calculate_status (module_name, last_calculation_timestamp)
|
||||
VALUES ('vendor_metrics', NOW())
|
||||
ON DUPLICATE KEY UPDATE last_calculation_timestamp = NOW()
|
||||
`);
|
||||
|
||||
return {
|
||||
processedProducts: processedCount,
|
||||
processedOrders,
|
||||
processedPurchaseOrders,
|
||||
success
|
||||
};
|
||||
|
||||
} catch (error) {
|
||||
success = false;
|
||||
logError(error, 'Error calculating vendor metrics');
|
||||
throw error;
|
||||
} finally {
|
||||
|
||||
@@ -156,7 +156,7 @@ async function resetDatabase() {
|
||||
SELECT GROUP_CONCAT(table_name) as tables
|
||||
FROM information_schema.tables
|
||||
WHERE table_schema = DATABASE()
|
||||
AND table_name NOT IN ('users', 'import_history')
|
||||
AND table_name NOT IN ('users', 'import_history', 'calculate_history')
|
||||
`);
|
||||
|
||||
if (!tables[0].tables) {
|
||||
@@ -175,7 +175,7 @@ async function resetDatabase() {
|
||||
DROP TABLE IF EXISTS
|
||||
${tables[0].tables
|
||||
.split(',')
|
||||
.filter(table => table !== 'users')
|
||||
.filter(table => !['users', 'calculate_history'].includes(table))
|
||||
.map(table => '`' + table + '`')
|
||||
.join(', ')}
|
||||
`;
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
#!/bin/zsh
|
||||
|
||||
#Clear previous mount in case it’s still there
|
||||
umount ~/Dev/inventory/inventory-server
|
||||
umount /Users/matt/Library/Mobile Documents/com~apple~CloudDocs/Dev/inventory/inventory-server
|
||||
|
||||
#Mount
|
||||
sshfs matt@dashboard.kent.pw:/var/www/html/inventory -p 22122 ~/Dev/inventory/inventory-server/
|
||||
sshfs matt@dashboard.kent.pw:/var/www/html/inventory -p 22122 /Users/matt/Library/Mobile Documents/com~apple~CloudDocs/Dev/inventory/inventory-server/
|
||||
Reference in New Issue
Block a user