Files
inventory/inventory-server/scripts/embedding-poc.js

284 lines
11 KiB
JavaScript

#!/usr/bin/env node
/**
* Embedding Proof-of-Concept Script
*
* Demonstrates how category embeddings work for product matching.
* Uses OpenAI text-embedding-3-small model.
*
* Usage: node scripts/embedding-poc.js
*/
const path = require('path');
require('dotenv').config({ path: path.join(__dirname, '../.env') });
const { getDbConnection, closeAllConnections } = require('../src/utils/dbConnection');
// ============================================================================
// Configuration
// ============================================================================
const OPENAI_API_KEY = process.env.OPENAI_API_KEY;
const EMBEDDING_MODEL = 'text-embedding-3-small';
const EMBEDDING_DIMENSIONS = 1536;
// Sample products to test (you can modify these)
const TEST_PRODUCTS = [
{
name: "Cosmos Infinity Chipboard - Stamperia",
description: "Laser-cut chipboard shapes featuring celestial designs for mixed media projects"
},
{
name: "Distress Oxide Ink Pad - Mermaid Lagoon",
description: "Water-reactive dye ink that creates an oxidized effect"
},
{
name: "Hedwig Puffy Stickers - Paper House Productions",
description: "3D puffy stickers featuring Harry Potter's owl Hedwig"
},
{
name: "Black Velvet Watercolor Brush Size 6",
description: "Round brush for watercolor painting with synthetic bristles"
},
{
name: "Floral Washi Tape Set",
description: "Decorative paper tape with flower patterns, pack of 6 rolls"
}
];
// ============================================================================
// OpenAI Embedding Functions
// ============================================================================
async function getEmbeddings(texts) {
const response = await fetch('https://api.openai.com/v1/embeddings', {
method: 'POST',
headers: {
'Content-Type': 'application/json',
'Authorization': `Bearer ${OPENAI_API_KEY}`
},
body: JSON.stringify({
input: texts.map(t => t.substring(0, 8000)), // Max 8k chars per text
model: EMBEDDING_MODEL,
dimensions: EMBEDDING_DIMENSIONS
})
});
if (!response.ok) {
const error = await response.json();
throw new Error(`OpenAI API error: ${error.error?.message || response.status}`);
}
const data = await response.json();
// Sort by index to ensure order matches input
const sorted = data.data.sort((a, b) => a.index - b.index);
return {
embeddings: sorted.map(item => item.embedding),
usage: data.usage,
model: data.model
};
}
// ============================================================================
// Vector Math
// ============================================================================
function cosineSimilarity(a, b) {
let dotProduct = 0;
let normA = 0;
let normB = 0;
for (let i = 0; i < a.length; i++) {
dotProduct += a[i] * b[i];
normA += a[i] * a[i];
normB += b[i] * b[i];
}
return dotProduct / (Math.sqrt(normA) * Math.sqrt(normB));
}
function findTopMatches(queryEmbedding, categoryEmbeddings, topK = 10) {
const scored = categoryEmbeddings.map(cat => ({
...cat,
similarity: cosineSimilarity(queryEmbedding, cat.embedding)
}));
scored.sort((a, b) => b.similarity - a.similarity);
return scored.slice(0, topK);
}
// ============================================================================
// Database Functions
// ============================================================================
async function fetchCategories(connection) {
console.log('\n📂 Fetching categories from database...');
// Fetch hierarchical categories (types 10-13)
const [rows] = await connection.query(`
SELECT
cat_id,
name,
master_cat_id,
type
FROM product_categories
WHERE type IN (10, 11, 12, 13)
ORDER BY type, name
`);
console.log(` Found ${rows.length} category records`);
// Build category paths
const byId = new Map(rows.map(r => [r.cat_id, r]));
const categories = [];
for (const row of rows) {
const path = [];
let current = row;
// Walk up the tree to build full path
while (current) {
path.unshift(current.name);
current = current.master_cat_id ? byId.get(current.master_cat_id) : null;
}
categories.push({
id: row.cat_id,
name: row.name,
type: row.type,
fullPath: path.join(' > '),
embeddingText: path.join(' ') // For embedding generation
});
}
// Count by level
const levels = {
10: categories.filter(c => c.type === 10).length,
11: categories.filter(c => c.type === 11).length,
12: categories.filter(c => c.type === 12).length,
13: categories.filter(c => c.type === 13).length,
};
console.log(` Level breakdown: ${levels[10]} top-level, ${levels[11]} L2, ${levels[12]} L3, ${levels[13]} L4`);
return categories;
}
// ============================================================================
// Main Script
// ============================================================================
async function main() {
console.log('═══════════════════════════════════════════════════════════════');
console.log(' EMBEDDING PROOF-OF-CONCEPT');
console.log(' Model: ' + EMBEDDING_MODEL);
console.log('═══════════════════════════════════════════════════════════════');
if (!OPENAI_API_KEY) {
console.error('❌ OPENAI_API_KEY not found in environment');
process.exit(1);
}
let connection;
try {
// Step 1: Connect to database
console.log('\n🔌 Connecting to database via SSH tunnel...');
const { connection: conn } = await getDbConnection();
connection = conn;
console.log(' ✅ Connected');
// Step 2: Fetch categories
const categories = await fetchCategories(connection);
// Step 3: Generate embeddings for categories
console.log('\n🧮 Generating embeddings for categories...');
console.log(' This will cost approximately $' + (categories.length * 0.00002).toFixed(4));
const startTime = Date.now();
// Process in batches of 100 (OpenAI limit is 2048)
const BATCH_SIZE = 100;
let totalTokens = 0;
for (let i = 0; i < categories.length; i += BATCH_SIZE) {
const batch = categories.slice(i, i + BATCH_SIZE);
const texts = batch.map(c => c.embeddingText);
const result = await getEmbeddings(texts);
// Attach embeddings to categories
for (let j = 0; j < batch.length; j++) {
batch[j].embedding = result.embeddings[j];
}
totalTokens += result.usage.total_tokens;
console.log(` Batch ${Math.floor(i / BATCH_SIZE) + 1}/${Math.ceil(categories.length / BATCH_SIZE)}: ${batch.length} categories embedded`);
}
const embeddingTime = Date.now() - startTime;
console.log(` ✅ Generated ${categories.length} embeddings in ${embeddingTime}ms`);
console.log(` 📊 Total tokens used: ${totalTokens} (~$${(totalTokens * 0.00002).toFixed(4)})`);
// Step 4: Test with sample products
console.log('\n═══════════════════════════════════════════════════════════════');
console.log(' TESTING WITH SAMPLE PRODUCTS');
console.log('═══════════════════════════════════════════════════════════════');
for (const product of TEST_PRODUCTS) {
console.log('\n┌─────────────────────────────────────────────────────────────');
console.log(`│ Product: "${product.name}"`);
console.log(`│ Description: "${product.description.substring(0, 60)}..."`);
console.log('├─────────────────────────────────────────────────────────────');
// Generate embedding for product
const productText = `${product.name} ${product.description}`;
const { embeddings: [productEmbedding] } = await getEmbeddings([productText]);
// Find top matches
const matches = findTopMatches(productEmbedding, categories, 10);
console.log('│ Top 10 Category Matches:');
matches.forEach((match, i) => {
const similarity = (match.similarity * 100).toFixed(1);
const bar = '█'.repeat(Math.round(match.similarity * 20));
const marker = i < 3 ? ' ✅' : '';
console.log(`${(i + 1).toString().padStart(2)}. [${similarity.padStart(5)}%] ${bar.padEnd(20)} ${match.fullPath}${marker}`);
});
console.log('└─────────────────────────────────────────────────────────────');
}
// Step 5: Summary
console.log('\n═══════════════════════════════════════════════════════════════');
console.log(' SUMMARY');
console.log('═══════════════════════════════════════════════════════════════');
console.log(` Categories embedded: ${categories.length}`);
console.log(` Embedding time: ${embeddingTime}ms (one-time cost)`);
console.log(` Per-product lookup: ~${(Date.now() - startTime) / TEST_PRODUCTS.length}ms`);
console.log(` Vector dimensions: ${EMBEDDING_DIMENSIONS}`);
console.log(` Memory usage: ~${(categories.length * EMBEDDING_DIMENSIONS * 4 / 1024 / 1024).toFixed(2)} MB (in-memory vectors)`);
console.log('');
console.log(' 💡 In production:');
console.log(' - Category embeddings are computed once and cached');
console.log(' - Only product embedding is computed per-request (~$0.00002)');
console.log(' - Vector search is instant (in-memory cosine similarity)');
console.log(' - Top 10 results go to AI for final selection (~$0.0001)');
console.log('═══════════════════════════════════════════════════════════════\n');
} catch (error) {
console.error('\n❌ Error:', error.message);
if (error.stack) {
console.error(error.stack);
}
process.exit(1);
} finally {
await closeAllConnections();
console.log('🔌 Database connections closed');
}
}
// Run the script
main();