Files
inventory/inventory-server/scripts/calculate-metrics.js

2154 lines
96 KiB
JavaScript

const mysql = require('mysql2/promise');
const path = require('path');
require('dotenv').config({ path: path.resolve(__dirname, '..', '.env') });
const fs = require('fs');
// Set to 1 to skip product metrics and only calculate the remaining metrics
const SKIP_PRODUCT_METRICS = 0;
// Helper function to format elapsed time
function formatElapsedTime(startTime) {
const elapsed = Date.now() - startTime;
const seconds = Math.floor(elapsed / 1000);
const minutes = Math.floor(seconds / 60);
const hours = Math.floor(minutes / 60);
if (hours > 0) {
return `${hours}h ${minutes % 60}m`;
} else if (minutes > 0) {
return `${minutes}m ${seconds % 60}s`;
} else {
return `${seconds}s`;
}
}
// Helper function to estimate remaining time
function estimateRemaining(startTime, current, total) {
if (current === 0) return null;
const elapsed = Date.now() - startTime;
const rate = current / elapsed;
const remaining = (total - current) / rate;
const minutes = Math.floor(remaining / 60000);
const seconds = Math.floor((remaining % 60000) / 1000);
if (minutes > 0) {
return `${minutes}m ${seconds}s`;
} else {
return `${seconds}s`;
}
}
// Helper function to calculate rate
function calculateRate(startTime, current) {
const elapsed = (Date.now() - startTime) / 1000; // Convert to seconds
return elapsed > 0 ? Math.round(current / elapsed) : 0;
}
// Helper function to output progress
function outputProgress(data) {
// Save progress to file for resumption
saveProgress(data);
// Format as SSE event
const event = {
progress: data
};
// Always send to stdout for frontend
process.stdout.write(JSON.stringify(event) + '\n');
// Log significant events to disk
const isSignificant =
// Operation starts
(data.operation && !data.current) ||
// Operation completions and errors
data.status === 'complete' ||
data.status === 'error' ||
// Major phase changes
data.operation?.includes('Starting ABC classification') ||
data.operation?.includes('Starting time-based aggregates') ||
data.operation?.includes('Starting vendor metrics');
if (isSignificant) {
logImport(`${data.operation || 'Operation'}${data.message ? ': ' + data.message : ''}${data.error ? ' Error: ' + data.error : ''}${data.status ? ' Status: ' + data.status : ''}`);
}
}
// Set up logging
const LOG_DIR = path.join(__dirname, '../logs');
const ERROR_LOG = path.join(LOG_DIR, 'import-errors.log');
const IMPORT_LOG = path.join(LOG_DIR, 'import.log');
// Ensure log directory exists
if (!fs.existsSync(LOG_DIR)) {
fs.mkdirSync(LOG_DIR, { recursive: true });
}
// Helper function to log errors
function logError(error, context = '') {
const timestamp = new Date().toISOString();
const errorMessage = `[${timestamp}] ${context}\nError: ${error.message}\nStack: ${error.stack}\n\n`;
// Log to error file
fs.appendFileSync(ERROR_LOG, errorMessage);
// Also log to console
console.error(`\n${context}\nError: ${error.message}`);
}
// Helper function to log import progress
function logImport(message, isSignificant = true) {
const timestamp = new Date().toISOString();
const logMessage = `[${timestamp}] ${message}\n`;
fs.appendFileSync(IMPORT_LOG, logMessage);
}
// Database configuration
const dbConfig = {
host: process.env.DB_HOST,
user: process.env.DB_USER,
password: process.env.DB_PASSWORD,
database: process.env.DB_NAME,
waitForConnections: true,
connectionLimit: 10,
queueLimit: 0,
// Add performance optimizations
namedPlaceholders: true,
maxPreparedStatements: 256,
enableKeepAlive: true,
keepAliveInitialDelay: 0,
// Add memory optimizations
flags: [
'FOUND_ROWS',
'LONG_PASSWORD',
'PROTOCOL_41',
'TRANSACTIONS',
'SECURE_CONNECTION',
'MULTI_RESULTS',
'PS_MULTI_RESULTS',
'PLUGIN_AUTH',
'CONNECT_ATTRS',
'PLUGIN_AUTH_LENENC_CLIENT_DATA',
'SESSION_TRACK',
'MULTI_STATEMENTS'
]
};
// Add cancel handler
let isCancelled = false;
// Add status file handling for progress resumption
const STATUS_FILE = path.join(__dirname, '..', 'logs', 'metrics-status.json');
function saveProgress(progress) {
try {
fs.writeFileSync(STATUS_FILE, JSON.stringify({
...progress,
timestamp: Date.now()
}));
} catch (err) {
console.error('Failed to save progress:', err);
}
}
function clearProgress() {
try {
if (fs.existsSync(STATUS_FILE)) {
fs.unlinkSync(STATUS_FILE);
}
} catch (err) {
console.error('Failed to clear progress:', err);
}
}
function getProgress() {
try {
if (fs.existsSync(STATUS_FILE)) {
const progress = JSON.parse(fs.readFileSync(STATUS_FILE, 'utf8'));
// Check if the progress is still valid (less than 1 hour old)
if (progress.timestamp && Date.now() - progress.timestamp < 3600000) {
return progress;
} else {
// Clear old progress
clearProgress();
}
}
} catch (err) {
console.error('Failed to read progress:', err);
clearProgress();
}
return null;
}
function cancelCalculation() {
isCancelled = true;
clearProgress();
// Format as SSE event
const event = {
progress: {
status: 'cancelled',
operation: 'Calculation cancelled',
current: 0,
total: 0,
elapsed: null,
remaining: null,
rate: 0,
timestamp: Date.now()
}
};
process.stdout.write(JSON.stringify(event) + '\n');
process.exit(0);
}
// Handle SIGTERM signal for cancellation
process.on('SIGTERM', cancelCalculation);
// Calculate GMROI and other financial metrics
async function calculateFinancialMetrics(connection, startTime, totalProducts) {
outputProgress({
status: 'running',
operation: 'Calculating financial metrics',
current: Math.floor(totalProducts * 0.6),
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, Math.floor(totalProducts * 0.6), totalProducts),
rate: calculateRate(startTime, Math.floor(totalProducts * 0.6)),
percentage: '60'
});
await connection.query(`
UPDATE product_metrics pm
JOIN (
SELECT
p.product_id,
p.cost_price * p.stock_quantity as inventory_value,
SUM(o.quantity * o.price) as total_revenue,
SUM(o.quantity * p.cost_price) as cost_of_goods_sold,
SUM(o.quantity * (o.price - p.cost_price)) as gross_profit,
MIN(o.date) as first_sale_date,
MAX(o.date) as last_sale_date,
DATEDIFF(MAX(o.date), MIN(o.date)) + 1 as calculation_period_days
FROM products p
LEFT JOIN orders o ON p.product_id = o.product_id
WHERE o.canceled = false
AND DATE(o.date) >= DATE_SUB(CURDATE(), INTERVAL 12 MONTH)
GROUP BY p.product_id
) fin ON pm.product_id = fin.product_id
SET
pm.inventory_value = COALESCE(fin.inventory_value, 0),
pm.total_revenue = COALESCE(fin.total_revenue, 0),
pm.cost_of_goods_sold = COALESCE(fin.cost_of_goods_sold, 0),
pm.gross_profit = COALESCE(fin.gross_profit, 0),
pm.gmroi = CASE
WHEN COALESCE(fin.inventory_value, 0) > 0 AND fin.calculation_period_days > 0 THEN
(COALESCE(fin.gross_profit, 0) * (365.0 / fin.calculation_period_days)) / COALESCE(fin.inventory_value, 0)
ELSE 0
END
`);
// Update time-based aggregates with financial metrics
await connection.query(`
UPDATE product_time_aggregates pta
JOIN (
SELECT
p.product_id,
YEAR(o.date) as year,
MONTH(o.date) as month,
p.cost_price * p.stock_quantity as inventory_value,
SUM(o.quantity * (o.price - p.cost_price)) as gross_profit,
COUNT(DISTINCT DATE(o.date)) as days_in_period
FROM products p
LEFT JOIN orders o ON p.product_id = o.product_id
WHERE o.canceled = false
GROUP BY p.product_id, YEAR(o.date), MONTH(o.date)
) fin ON pta.product_id = fin.product_id
AND pta.year = fin.year
AND pta.month = fin.month
SET
pta.inventory_value = COALESCE(fin.inventory_value, 0),
pta.gmroi = CASE
WHEN COALESCE(fin.inventory_value, 0) > 0 AND fin.days_in_period > 0 THEN
(COALESCE(fin.gross_profit, 0) * (365.0 / fin.days_in_period)) / COALESCE(fin.inventory_value, 0)
ELSE 0
END
`);
}
// Calculate vendor metrics
async function calculateVendorMetrics(connection, startTime, totalProducts) {
outputProgress({
status: 'running',
operation: 'Calculating vendor metrics',
current: Math.floor(totalProducts * 0.7),
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, Math.floor(totalProducts * 0.7), totalProducts),
rate: calculateRate(startTime, Math.floor(totalProducts * 0.7)),
percentage: '70'
});
// First, ensure all vendors exist in vendor_details
await connection.query(`
INSERT IGNORE INTO vendor_details (vendor, status)
SELECT DISTINCT vendor, 'active' as status
FROM products
WHERE vendor IS NOT NULL
AND vendor NOT IN (SELECT vendor FROM vendor_details)
`);
// Calculate vendor performance metrics
await connection.query(`
INSERT INTO vendor_metrics (
vendor,
avg_lead_time_days,
on_time_delivery_rate,
order_fill_rate,
total_orders,
total_late_orders,
total_purchase_value,
avg_order_value,
active_products,
total_products,
total_revenue,
avg_margin_percent,
status
)
WITH vendor_orders AS (
SELECT
po.vendor,
AVG(DATEDIFF(po.received_date, po.date)) as avg_lead_time_days,
COUNT(*) as total_orders,
COUNT(CASE WHEN po.received_date > po.expected_date THEN 1 END) as total_late_orders,
SUM(po.cost_price * po.ordered) as total_purchase_value,
AVG(po.cost_price * po.ordered) as avg_order_value,
CASE
WHEN COUNT(*) > 0 THEN
(COUNT(CASE WHEN po.received = po.ordered THEN 1 END) * 100.0) / COUNT(*)
ELSE 0
END as order_fill_rate
FROM purchase_orders po
WHERE po.status = 'closed'
GROUP BY po.vendor
),
vendor_products AS (
SELECT
p.vendor,
COUNT(DISTINCT p.product_id) as total_products,
COUNT(DISTINCT CASE WHEN p.visible = true THEN p.product_id END) as active_products,
SUM(o.price * o.quantity) as total_revenue,
CASE
WHEN SUM(o.price * o.quantity) > 0 THEN
(SUM((o.price - p.cost_price) * o.quantity) * 100.0) / SUM(o.price * o.quantity)
ELSE 0
END as avg_margin_percent
FROM products p
LEFT JOIN orders o ON p.product_id = o.product_id AND o.canceled = false
GROUP BY p.vendor
)
SELECT
vd.vendor,
COALESCE(vo.avg_lead_time_days, 0) as avg_lead_time_days,
CASE
WHEN COALESCE(vo.total_orders, 0) > 0 THEN
((COALESCE(vo.total_orders, 0) - COALESCE(vo.total_late_orders, 0)) * 100.0) / COALESCE(vo.total_orders, 1)
ELSE 0
END as on_time_delivery_rate,
COALESCE(vo.order_fill_rate, 0) as order_fill_rate,
COALESCE(vo.total_orders, 0) as total_orders,
COALESCE(vo.total_late_orders, 0) as total_late_orders,
COALESCE(vo.total_purchase_value, 0) as total_purchase_value,
COALESCE(vo.avg_order_value, 0) as avg_order_value,
COALESCE(vp.active_products, 0) as active_products,
COALESCE(vp.total_products, 0) as total_products,
COALESCE(vp.total_revenue, 0) as total_revenue,
COALESCE(vp.avg_margin_percent, 0) as avg_margin_percent,
vd.status
FROM vendor_details vd
LEFT JOIN vendor_orders vo ON vd.vendor = vo.vendor
LEFT JOIN vendor_products vp ON vd.vendor = vp.vendor
ON DUPLICATE KEY UPDATE
avg_lead_time_days = VALUES(avg_lead_time_days),
on_time_delivery_rate = VALUES(on_time_delivery_rate),
order_fill_rate = VALUES(order_fill_rate),
total_orders = VALUES(total_orders),
total_late_orders = VALUES(total_late_orders),
total_purchase_value = VALUES(total_purchase_value),
avg_order_value = VALUES(avg_order_value),
active_products = VALUES(active_products),
total_products = VALUES(total_products),
total_revenue = VALUES(total_revenue),
avg_margin_percent = VALUES(avg_margin_percent),
status = VALUES(status),
last_calculated_at = CURRENT_TIMESTAMP
`);
// Calculate vendor time-based metrics
await connection.query(`
INSERT INTO vendor_time_metrics (
vendor,
year,
month,
total_orders,
late_orders,
avg_lead_time_days,
total_purchase_value,
total_revenue,
avg_margin_percent
)
WITH vendor_time_data AS (
SELECT
vd.vendor,
YEAR(po.date) as year,
MONTH(po.date) as month,
COUNT(DISTINCT po.po_id) as total_orders,
COUNT(DISTINCT CASE WHEN po.received_date > po.expected_date THEN po.po_id END) as late_orders,
AVG(DATEDIFF(po.received_date, po.date)) as avg_lead_time_days,
SUM(po.cost_price * po.ordered) as total_purchase_value,
SUM(o.price * o.quantity) as total_revenue,
CASE
WHEN SUM(o.price * o.quantity) > 0 THEN
(SUM((o.price - p.cost_price) * o.quantity) * 100.0) / SUM(o.price * o.quantity)
ELSE 0
END as avg_margin_percent
FROM vendor_details vd
LEFT JOIN products p ON vd.vendor = p.vendor
LEFT JOIN purchase_orders po ON p.product_id = po.product_id
LEFT JOIN orders o ON p.product_id = o.product_id AND o.canceled = false
WHERE po.date >= DATE_SUB(CURRENT_DATE, INTERVAL 12 MONTH)
GROUP BY vd.vendor, YEAR(po.date), MONTH(po.date)
)
SELECT
vendor,
year,
month,
COALESCE(total_orders, 0) as total_orders,
COALESCE(late_orders, 0) as late_orders,
COALESCE(avg_lead_time_days, 0) as avg_lead_time_days,
COALESCE(total_purchase_value, 0) as total_purchase_value,
COALESCE(total_revenue, 0) as total_revenue,
COALESCE(avg_margin_percent, 0) as avg_margin_percent
FROM vendor_time_data
ON DUPLICATE KEY UPDATE
total_orders = VALUES(total_orders),
late_orders = VALUES(late_orders),
avg_lead_time_days = VALUES(avg_lead_time_days),
total_purchase_value = VALUES(total_purchase_value),
total_revenue = VALUES(total_revenue),
avg_margin_percent = VALUES(avg_margin_percent)
`);
}
async function calculateCategoryMetrics(connection, startTime, totalProducts) {
outputProgress({
status: 'running',
operation: 'Calculating category metrics',
current: Math.floor(totalProducts * 0.85),
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, Math.floor(totalProducts * 0.85), totalProducts),
rate: calculateRate(startTime, Math.floor(totalProducts * 0.85)),
percentage: '85'
});
// Calculate category performance metrics
await connection.query(`
INSERT INTO category_metrics (
category_id,
product_count,
active_products,
total_value,
avg_margin,
turnover_rate,
growth_rate,
status
)
WITH category_sales AS (
SELECT
c.id as category_id,
COUNT(DISTINCT p.product_id) as product_count,
COUNT(DISTINCT CASE WHEN p.visible = true THEN p.product_id END) as active_products,
SUM(p.stock_quantity * p.cost_price) as total_value,
CASE
WHEN SUM(o.price * o.quantity) > 0
THEN (SUM((o.price - p.cost_price) * o.quantity) * 100.0) / SUM(o.price * o.quantity)
ELSE 0
END as avg_margin,
CASE
WHEN AVG(GREATEST(p.stock_quantity, 0)) >= 0.01
THEN LEAST(
SUM(CASE
WHEN o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 1 YEAR)
THEN COALESCE(o.quantity, 0)
ELSE 0
END) /
GREATEST(
AVG(GREATEST(p.stock_quantity, 0)),
1.0
),
999.99
)
ELSE 0
END as turnover_rate,
-- Current period (last 3 months)
SUM(CASE
WHEN o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 3 MONTH)
THEN COALESCE(o.quantity * o.price, 0)
ELSE 0
END) as current_period_sales,
-- Previous year same period
SUM(CASE
WHEN o.date BETWEEN DATE_SUB(CURRENT_DATE, INTERVAL 15 MONTH) AND DATE_SUB(CURRENT_DATE, INTERVAL 12 MONTH)
THEN COALESCE(o.quantity * o.price, 0)
ELSE 0
END) as previous_year_period_sales,
c.status
FROM categories c
LEFT JOIN product_categories pc ON c.id = pc.category_id
LEFT JOIN products p ON pc.product_id = p.product_id
LEFT JOIN orders o ON p.product_id = o.product_id AND o.canceled = false
GROUP BY c.id, c.status
)
SELECT
category_id,
product_count,
active_products,
total_value,
COALESCE(avg_margin, 0) as avg_margin,
COALESCE(turnover_rate, 0) as turnover_rate,
-- Enhanced YoY growth rate calculation
CASE
WHEN previous_year_period_sales = 0 AND current_period_sales > 0 THEN 100.0
WHEN previous_year_period_sales = 0 THEN 0.0
ELSE LEAST(
GREATEST(
((current_period_sales - previous_year_period_sales) /
NULLIF(previous_year_period_sales, 0)) * 100.0,
-100.0
),
999.99
)
END as growth_rate,
status
FROM category_sales
ON DUPLICATE KEY UPDATE
product_count = VALUES(product_count),
active_products = VALUES(active_products),
total_value = VALUES(total_value),
avg_margin = VALUES(avg_margin),
turnover_rate = VALUES(turnover_rate),
growth_rate = VALUES(growth_rate),
status = VALUES(status),
last_calculated_at = CURRENT_TIMESTAMP
`);
// Calculate category time-based metrics
await connection.query(`
INSERT INTO category_time_metrics (
category_id,
year,
month,
product_count,
active_products,
total_value,
total_revenue,
avg_margin,
turnover_rate
)
SELECT
c.id as category_id,
YEAR(o.date) as year,
MONTH(o.date) as month,
COUNT(DISTINCT p.product_id) as product_count,
COUNT(DISTINCT CASE WHEN p.visible = true THEN p.product_id END) as active_products,
SUM(p.stock_quantity * p.cost_price) as total_value,
SUM(o.price * o.quantity) as total_revenue,
CASE
WHEN SUM(o.price * o.quantity) > 0
THEN (SUM((o.price - p.cost_price) * o.quantity) * 100.0) / SUM(o.price * o.quantity)
ELSE 0
END as avg_margin,
CASE
WHEN AVG(p.stock_quantity) > 0
THEN SUM(o.quantity) / AVG(p.stock_quantity)
ELSE 0
END as turnover_rate
FROM categories c
LEFT JOIN product_categories pc ON c.id = pc.category_id
LEFT JOIN products p ON pc.product_id = p.product_id
LEFT JOIN orders o ON p.product_id = o.product_id AND o.canceled = false
WHERE o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 12 MONTH)
GROUP BY c.id, YEAR(o.date), MONTH(o.date)
ON DUPLICATE KEY UPDATE
product_count = VALUES(product_count),
active_products = VALUES(active_products),
total_value = VALUES(total_value),
total_revenue = VALUES(total_revenue),
avg_margin = VALUES(avg_margin),
turnover_rate = VALUES(turnover_rate)
`);
}
// Calculate turnover rate metrics
async function calculateTurnoverMetrics(connection, startTime, totalProducts) {
outputProgress({
status: 'running',
operation: 'Calculating turnover metrics',
current: Math.floor(totalProducts * 0.75),
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, Math.floor(totalProducts * 0.75), totalProducts),
rate: calculateRate(startTime, Math.floor(totalProducts * 0.75)),
percentage: '75'
});
await connection.query(`
WITH product_turnover AS (
SELECT
p.product_id,
p.vendor,
pc.category_id,
COALESCE(
(SELECT calculation_period_days
FROM turnover_config tc
WHERE tc.category_id = pc.category_id
AND tc.vendor = p.vendor
LIMIT 1),
COALESCE(
(SELECT calculation_period_days
FROM turnover_config tc
WHERE tc.category_id = pc.category_id
AND tc.vendor IS NULL
LIMIT 1),
COALESCE(
(SELECT calculation_period_days
FROM turnover_config tc
WHERE tc.category_id IS NULL
AND tc.vendor = p.vendor
LIMIT 1),
(SELECT calculation_period_days
FROM turnover_config
WHERE category_id IS NULL
AND vendor IS NULL
LIMIT 1)
)
)
) as calculation_period_days,
-- Calculate average daily sales over the calculation period
SUM(o.quantity) / GREATEST(DATEDIFF(CURDATE(), DATE_SUB(CURDATE(), INTERVAL 30 DAY)), 1) as avg_daily_sales,
-- Calculate average stock level, excluding zero stock periods
AVG(CASE WHEN p.stock_quantity > 0 THEN p.stock_quantity ELSE NULL END) as avg_stock_level
FROM products p
LEFT JOIN product_categories pc ON p.product_id = pc.product_id
LEFT JOIN orders o ON p.product_id = o.product_id
WHERE o.date >= DATE_SUB(CURDATE(), INTERVAL 30 DAY)
AND o.canceled = 0
GROUP BY p.product_id, p.vendor, pc.category_id
)
UPDATE product_metrics pm
JOIN product_turnover pt ON pm.product_id = pt.product_id
SET
pm.turnover_rate = CASE
WHEN pt.avg_stock_level > 0 AND pt.avg_daily_sales > 0 THEN
-- Calculate annualized turnover rate
LEAST(
(pt.avg_daily_sales * 365) / GREATEST(pt.avg_stock_level, 1),
999999.999
)
ELSE 0
END,
pm.last_calculated_at = NOW()
`);
}
// Enhance lead time calculations
async function calculateLeadTimeMetrics(connection, startTime, totalProducts) {
outputProgress({
status: 'running',
operation: 'Calculating lead time metrics',
current: Math.floor(totalProducts * 0.8),
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, Math.floor(totalProducts * 0.8), totalProducts),
rate: calculateRate(startTime, Math.floor(totalProducts * 0.8)),
percentage: '80'
});
await connection.query(`
WITH lead_time_stats AS (
SELECT
p.product_id,
p.vendor,
pc.category_id,
AVG(DATEDIFF(po.received_date, po.date)) as current_lead_time,
(
SELECT target_days
FROM lead_time_thresholds lt
WHERE lt.category_id = pc.category_id
AND lt.vendor = p.vendor
LIMIT 1
) as target_lead_time_cat_vendor,
(
SELECT target_days
FROM lead_time_thresholds lt
WHERE lt.category_id = pc.category_id
AND lt.vendor IS NULL
LIMIT 1
) as target_lead_time_cat,
(
SELECT target_days
FROM lead_time_thresholds lt
WHERE lt.category_id IS NULL
AND lt.vendor = p.vendor
LIMIT 1
) as target_lead_time_vendor,
(
SELECT target_days
FROM lead_time_thresholds
WHERE category_id IS NULL
AND vendor IS NULL
LIMIT 1
) as target_lead_time_default,
(
SELECT warning_days
FROM lead_time_thresholds lt
WHERE lt.category_id = pc.category_id
AND lt.vendor = p.vendor
LIMIT 1
) as warning_lead_time_cat_vendor,
(
SELECT warning_days
FROM lead_time_thresholds lt
WHERE lt.category_id = pc.category_id
AND lt.vendor IS NULL
LIMIT 1
) as warning_lead_time_cat,
(
SELECT warning_days
FROM lead_time_thresholds lt
WHERE lt.category_id IS NULL
AND lt.vendor = p.vendor
LIMIT 1
) as warning_lead_time_vendor,
(
SELECT warning_days
FROM lead_time_thresholds
WHERE category_id IS NULL
AND vendor IS NULL
LIMIT 1
) as warning_lead_time_default
FROM products p
LEFT JOIN product_categories pc ON p.product_id = pc.product_id
LEFT JOIN purchase_orders po ON p.product_id = po.product_id
WHERE po.status = 'completed'
AND po.received_date IS NOT NULL
AND po.date >= DATE_SUB(CURDATE(), INTERVAL 90 DAY)
GROUP BY p.product_id, p.vendor, pc.category_id
),
lead_time_final AS (
SELECT
product_id,
current_lead_time,
COALESCE(
target_lead_time_cat_vendor,
target_lead_time_cat,
target_lead_time_vendor,
target_lead_time_default,
14
) as target_lead_time,
COALESCE(
warning_lead_time_cat_vendor,
warning_lead_time_cat,
warning_lead_time_vendor,
warning_lead_time_default,
21
) as warning_lead_time
FROM lead_time_stats
)
UPDATE product_metrics pm
JOIN lead_time_final lt ON pm.product_id = lt.product_id
SET
pm.current_lead_time = lt.current_lead_time,
pm.target_lead_time = lt.target_lead_time,
pm.lead_time_status = CASE
WHEN lt.current_lead_time <= lt.target_lead_time THEN 'On Target'
WHEN lt.current_lead_time <= lt.warning_lead_time THEN 'Warning'
ELSE 'Critical'
END,
pm.last_calculated_at = NOW()
`);
}
// Add new function for category sales metrics
async function calculateCategorySalesMetrics(connection, startTime, totalProducts) {
outputProgress({
status: 'running',
operation: 'Calculating category sales metrics',
current: Math.floor(totalProducts * 0.9),
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, Math.floor(totalProducts * 0.9), totalProducts),
rate: calculateRate(startTime, Math.floor(totalProducts * 0.9)),
percentage: '90'
});
await connection.query(`
INSERT INTO category_sales_metrics (
category_id,
brand,
period_start,
period_end,
avg_daily_sales,
total_sold,
num_products,
avg_price,
last_calculated_at
)
WITH date_ranges AS (
SELECT
DATE_SUB(CURDATE(), INTERVAL 30 DAY) as period_start,
CURDATE() as period_end
UNION ALL
SELECT
DATE_SUB(CURDATE(), INTERVAL 90 DAY),
CURDATE()
UNION ALL
SELECT
DATE_SUB(CURDATE(), INTERVAL 180 DAY),
CURDATE()
UNION ALL
SELECT
DATE_SUB(CURDATE(), INTERVAL 365 DAY),
CURDATE()
),
category_metrics AS (
SELECT
c.id as category_id,
p.brand,
dr.period_start,
dr.period_end,
COUNT(DISTINCT p.product_id) as num_products,
COALESCE(SUM(o.quantity), 0) / DATEDIFF(dr.period_end, dr.period_start) as avg_daily_sales,
COALESCE(SUM(o.quantity), 0) as total_sold,
COALESCE(AVG(o.price), 0) as avg_price
FROM categories c
JOIN product_categories pc ON c.id = pc.category_id
JOIN products p ON pc.product_id = p.product_id
CROSS JOIN date_ranges dr
LEFT JOIN orders o ON p.product_id = o.product_id
AND o.date BETWEEN dr.period_start AND dr.period_end
AND o.canceled = false
GROUP BY c.id, p.brand, dr.period_start, dr.period_end
)
SELECT
category_id,
brand,
period_start,
period_end,
avg_daily_sales,
total_sold,
num_products,
avg_price,
NOW() as last_calculated_at
FROM category_metrics
ON DUPLICATE KEY UPDATE
avg_daily_sales = VALUES(avg_daily_sales),
total_sold = VALUES(total_sold),
num_products = VALUES(num_products),
avg_price = VALUES(avg_price),
last_calculated_at = NOW()
`);
}
// Add new function for safety stock calculation
async function calculateSafetyStock(connection, startTime, totalProducts) {
outputProgress({
status: 'running',
operation: 'Calculating safety stock levels',
current: Math.floor(totalProducts * 0.7),
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, Math.floor(totalProducts * 0.7), totalProducts),
rate: calculateRate(startTime, Math.floor(totalProducts * 0.7)),
percentage: '70'
});
await connection.query(`
WITH daily_sales AS (
SELECT
o.product_id,
DATE(o.date) as sale_date,
SUM(o.quantity) as daily_quantity
FROM orders o
WHERE o.canceled = false
AND o.date >= DATE_SUB(CURDATE(), INTERVAL 90 DAY)
GROUP BY o.product_id, DATE(o.date)
),
sales_stats AS (
SELECT
ds.product_id,
AVG(ds.daily_quantity) as avg_daily_sales,
STDDEV_SAMP(ds.daily_quantity) as daily_sales_stddev,
COUNT(DISTINCT ds.sale_date) as days_with_sales
FROM daily_sales ds
GROUP BY ds.product_id
),
product_config AS (
SELECT
p.product_id,
p.vendor,
pc.category_id,
COALESCE(
(SELECT service_level
FROM safety_stock_config sc
WHERE sc.category_id = pc.category_id
AND sc.vendor = p.vendor
LIMIT 1),
COALESCE(
(SELECT service_level
FROM safety_stock_config sc
WHERE sc.category_id = pc.category_id
AND sc.vendor IS NULL
LIMIT 1),
COALESCE(
(SELECT service_level
FROM safety_stock_config sc
WHERE sc.category_id IS NULL
AND sc.vendor = p.vendor
LIMIT 1),
(SELECT service_level
FROM safety_stock_config
WHERE category_id IS NULL
AND vendor IS NULL
LIMIT 1)
)
)
) as service_level,
COALESCE(
(SELECT coverage_days
FROM safety_stock_config sc
WHERE sc.category_id = pc.category_id
AND sc.vendor = p.vendor
LIMIT 1),
COALESCE(
(SELECT coverage_days
FROM safety_stock_config sc
WHERE sc.category_id = pc.category_id
AND sc.vendor IS NULL
LIMIT 1),
COALESCE(
(SELECT coverage_days
FROM safety_stock_config sc
WHERE sc.category_id IS NULL
AND sc.vendor = p.vendor
LIMIT 1),
(SELECT coverage_days
FROM safety_stock_config
WHERE category_id IS NULL
AND vendor IS NULL
LIMIT 1)
)
)
) as coverage_days
FROM products p
LEFT JOIN product_categories pc ON p.product_id = pc.product_id
)
UPDATE product_metrics pm
JOIN sales_stats ss ON pm.product_id = ss.product_id
JOIN product_config pc ON pm.product_id = pc.product_id
SET pm.safety_stock = GREATEST(1,
CEIL(
ss.avg_daily_sales * pc.coverage_days *
(1 + (
COALESCE(ss.daily_sales_stddev, 0) *
CASE
WHEN pc.service_level >= 99.9 THEN 3.1
WHEN pc.service_level >= 99 THEN 2.33
WHEN pc.service_level >= 95 THEN 1.65
WHEN pc.service_level >= 90 THEN 1.29
ELSE 1
END
))
)
),
pm.last_calculated_at = NOW()
WHERE ss.days_with_sales > 0
`);
}
// Add new function for brand metrics calculation
async function calculateBrandMetrics(connection, startTime, totalProducts) {
outputProgress({
status: 'running',
operation: 'Calculating brand metrics',
current: Math.floor(totalProducts * 0.95),
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, Math.floor(totalProducts * 0.95), totalProducts),
rate: calculateRate(startTime, Math.floor(totalProducts * 0.95)),
percentage: '95'
});
// Calculate brand metrics
await connection.query(`
INSERT INTO brand_metrics (
brand,
product_count,
active_products,
total_stock_units,
total_stock_cost,
total_stock_retail,
total_revenue,
avg_margin,
growth_rate
)
WITH brand_data AS (
SELECT
p.brand,
COUNT(DISTINCT p.product_id) as product_count,
COUNT(DISTINCT CASE WHEN p.visible = true THEN p.product_id END) as active_products,
SUM(p.stock_quantity) as total_stock_units,
SUM(p.stock_quantity * p.cost_price) as total_stock_cost,
SUM(p.stock_quantity * p.price) as total_stock_retail,
SUM(o.price * o.quantity) as total_revenue,
CASE
WHEN SUM(o.price * o.quantity) > 0 THEN
(SUM((o.price - p.cost_price) * o.quantity) * 100.0) / SUM(o.price * o.quantity)
ELSE 0
END as avg_margin,
-- Current period (last 3 months)
SUM(CASE
WHEN o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 3 MONTH)
THEN COALESCE(o.quantity * o.price, 0)
ELSE 0
END) as current_period_sales,
-- Previous year same period
SUM(CASE
WHEN o.date BETWEEN DATE_SUB(CURRENT_DATE, INTERVAL 15 MONTH) AND DATE_SUB(CURRENT_DATE, INTERVAL 12 MONTH)
THEN COALESCE(o.quantity * o.price, 0)
ELSE 0
END) as previous_year_period_sales
FROM products p
LEFT JOIN orders o ON p.product_id = o.product_id AND o.canceled = false
WHERE p.brand IS NOT NULL
GROUP BY p.brand
)
SELECT
brand,
product_count,
active_products,
total_stock_units,
total_stock_cost,
total_stock_retail,
total_revenue,
avg_margin,
CASE
WHEN previous_year_period_sales = 0 AND current_period_sales > 0 THEN 100.0
WHEN previous_year_period_sales = 0 THEN 0.0
ELSE LEAST(
GREATEST(
((current_period_sales - previous_year_period_sales) /
NULLIF(previous_year_period_sales, 0)) * 100.0,
-100.0
),
999.99
)
END as growth_rate
FROM brand_data
ON DUPLICATE KEY UPDATE
product_count = VALUES(product_count),
active_products = VALUES(active_products),
total_stock_units = VALUES(total_stock_units),
total_stock_cost = VALUES(total_stock_cost),
total_stock_retail = VALUES(total_stock_retail),
total_revenue = VALUES(total_revenue),
avg_margin = VALUES(avg_margin),
growth_rate = VALUES(growth_rate),
last_calculated_at = CURRENT_TIMESTAMP
`);
// Calculate brand time-based metrics
await connection.query(`
INSERT INTO brand_time_metrics (
brand,
year,
month,
product_count,
active_products,
total_stock_units,
total_stock_cost,
total_stock_retail,
total_revenue,
avg_margin
)
SELECT
p.brand,
YEAR(o.date) as year,
MONTH(o.date) as month,
COUNT(DISTINCT p.product_id) as product_count,
COUNT(DISTINCT CASE WHEN p.visible = true THEN p.product_id END) as active_products,
SUM(p.stock_quantity) as total_stock_units,
SUM(p.stock_quantity * p.cost_price) as total_stock_cost,
SUM(p.stock_quantity * p.price) as total_stock_retail,
SUM(o.price * o.quantity) as total_revenue,
CASE
WHEN SUM(o.price * o.quantity) > 0 THEN
(SUM((o.price - p.cost_price) * o.quantity) * 100.0) / SUM(o.price * o.quantity)
ELSE 0
END as avg_margin
FROM products p
LEFT JOIN orders o ON p.product_id = o.product_id AND o.canceled = false
WHERE p.brand IS NOT NULL
AND o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 12 MONTH)
GROUP BY p.brand, YEAR(o.date), MONTH(o.date)
ON DUPLICATE KEY UPDATE
product_count = VALUES(product_count),
active_products = VALUES(active_products),
total_stock_units = VALUES(total_stock_units),
total_stock_cost = VALUES(total_stock_cost),
total_stock_retail = VALUES(total_stock_retail),
total_revenue = VALUES(total_revenue),
avg_margin = VALUES(avg_margin)
`);
}
// Add new function for sales forecast calculation
async function calculateSalesForecasts(connection, startTime, totalProducts) {
outputProgress({
status: 'running',
operation: 'Calculating sales forecasts',
current: Math.floor(totalProducts * 0.98),
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, Math.floor(totalProducts * 0.98), totalProducts),
rate: calculateRate(startTime, Math.floor(totalProducts * 0.98)),
percentage: '98'
});
// Calculate product-level forecasts
await connection.query(`
INSERT INTO sales_forecasts (
product_id,
forecast_date,
forecast_units,
forecast_revenue,
confidence_level,
last_calculated_at
)
WITH daily_sales AS (
SELECT
o.product_id,
DATE(o.date) as sale_date,
SUM(o.quantity) as daily_quantity,
SUM(o.price * o.quantity) as daily_revenue
FROM orders o
WHERE o.canceled = false
AND o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 90 DAY)
GROUP BY o.product_id, DATE(o.date)
),
forecast_dates AS (
SELECT
DATE_ADD(CURRENT_DATE, INTERVAL n DAY) as forecast_date
FROM (
SELECT 0 as n UNION SELECT 1 UNION SELECT 2 UNION SELECT 3 UNION SELECT 4 UNION
SELECT 5 UNION SELECT 6 UNION SELECT 7 UNION SELECT 8 UNION SELECT 9 UNION
SELECT 10 UNION SELECT 11 UNION SELECT 12 UNION SELECT 13 UNION SELECT 14 UNION
SELECT 15 UNION SELECT 16 UNION SELECT 17 UNION SELECT 18 UNION SELECT 19 UNION
SELECT 20 UNION SELECT 21 UNION SELECT 22 UNION SELECT 23 UNION SELECT 24 UNION
SELECT 25 UNION SELECT 26 UNION SELECT 27 UNION SELECT 28 UNION SELECT 29 UNION
SELECT 30
) numbers
),
product_stats AS (
SELECT
ds.product_id,
AVG(ds.daily_quantity) as avg_daily_quantity,
STDDEV_SAMP(ds.daily_quantity) as std_daily_quantity,
AVG(ds.daily_revenue) as avg_daily_revenue,
STDDEV_SAMP(ds.daily_revenue) as std_daily_revenue,
COUNT(*) as data_points,
-- Calculate day-of-week averages
AVG(CASE WHEN DAYOFWEEK(ds.sale_date) = 1 THEN ds.daily_revenue END) as sunday_avg,
AVG(CASE WHEN DAYOFWEEK(ds.sale_date) = 2 THEN ds.daily_revenue END) as monday_avg,
AVG(CASE WHEN DAYOFWEEK(ds.sale_date) = 3 THEN ds.daily_revenue END) as tuesday_avg,
AVG(CASE WHEN DAYOFWEEK(ds.sale_date) = 4 THEN ds.daily_revenue END) as wednesday_avg,
AVG(CASE WHEN DAYOFWEEK(ds.sale_date) = 5 THEN ds.daily_revenue END) as thursday_avg,
AVG(CASE WHEN DAYOFWEEK(ds.sale_date) = 6 THEN ds.daily_revenue END) as friday_avg,
AVG(CASE WHEN DAYOFWEEK(ds.sale_date) = 7 THEN ds.daily_revenue END) as saturday_avg
FROM daily_sales ds
GROUP BY ds.product_id
)
SELECT
ps.product_id,
fd.forecast_date,
GREATEST(0,
ps.avg_daily_quantity *
(1 + COALESCE(
(SELECT seasonality_factor
FROM sales_seasonality
WHERE MONTH(fd.forecast_date) = month
LIMIT 1),
0
))
) as forecast_units,
GREATEST(0,
CASE DAYOFWEEK(fd.forecast_date)
WHEN 1 THEN COALESCE(ps.sunday_avg, ps.avg_daily_revenue)
WHEN 2 THEN COALESCE(ps.monday_avg, ps.avg_daily_revenue)
WHEN 3 THEN COALESCE(ps.tuesday_avg, ps.avg_daily_revenue)
WHEN 4 THEN COALESCE(ps.wednesday_avg, ps.avg_daily_revenue)
WHEN 5 THEN COALESCE(ps.thursday_avg, ps.avg_daily_revenue)
WHEN 6 THEN COALESCE(ps.friday_avg, ps.avg_daily_revenue)
WHEN 7 THEN COALESCE(ps.saturday_avg, ps.avg_daily_revenue)
END *
(1 + COALESCE(
(SELECT seasonality_factor
FROM sales_seasonality
WHERE MONTH(fd.forecast_date) = month
LIMIT 1),
0
)) *
-- Add some randomness within a small range (±5%)
(0.95 + (RAND() * 0.1))
) as forecast_revenue,
CASE
WHEN ps.data_points >= 60 THEN 90
WHEN ps.data_points >= 30 THEN 80
WHEN ps.data_points >= 14 THEN 70
ELSE 60
END as confidence_level,
NOW() as last_calculated_at
FROM product_stats ps
CROSS JOIN forecast_dates fd
WHERE ps.avg_daily_quantity > 0
ON DUPLICATE KEY UPDATE
forecast_units = VALUES(forecast_units),
forecast_revenue = VALUES(forecast_revenue),
confidence_level = VALUES(confidence_level),
last_calculated_at = NOW()
`);
// Calculate category-level forecasts
await connection.query(`
INSERT INTO category_forecasts (
category_id,
forecast_date,
forecast_units,
forecast_revenue,
confidence_level,
last_calculated_at
)
WITH category_daily_sales AS (
SELECT
pc.category_id,
DATE(o.date) as sale_date,
SUM(o.quantity) as daily_quantity,
SUM(o.price * o.quantity) as daily_revenue
FROM orders o
JOIN product_categories pc ON o.product_id = pc.product_id
WHERE o.canceled = false
AND o.date >= DATE_SUB(CURRENT_DATE, INTERVAL 90 DAY)
GROUP BY pc.category_id, DATE(o.date)
),
forecast_dates AS (
SELECT
DATE_ADD(CURRENT_DATE, INTERVAL n DAY) as forecast_date
FROM (
SELECT 0 as n UNION SELECT 1 UNION SELECT 2 UNION SELECT 3 UNION SELECT 4 UNION
SELECT 5 UNION SELECT 6 UNION SELECT 7 UNION SELECT 8 UNION SELECT 9 UNION
SELECT 10 UNION SELECT 11 UNION SELECT 12 UNION SELECT 13 UNION SELECT 14 UNION
SELECT 15 UNION SELECT 16 UNION SELECT 17 UNION SELECT 18 UNION SELECT 19 UNION
SELECT 20 UNION SELECT 21 UNION SELECT 22 UNION SELECT 23 UNION SELECT 24 UNION
SELECT 25 UNION SELECT 26 UNION SELECT 27 UNION SELECT 28 UNION SELECT 29 UNION
SELECT 30
) numbers
),
category_stats AS (
SELECT
cds.category_id,
AVG(cds.daily_quantity) as avg_daily_quantity,
STDDEV_SAMP(cds.daily_quantity) as std_daily_quantity,
AVG(cds.daily_revenue) as avg_daily_revenue,
STDDEV_SAMP(cds.daily_revenue) as std_daily_revenue,
COUNT(*) as data_points,
-- Calculate day-of-week averages
AVG(CASE WHEN DAYOFWEEK(cds.sale_date) = 1 THEN cds.daily_revenue END) as sunday_avg,
AVG(CASE WHEN DAYOFWEEK(cds.sale_date) = 2 THEN cds.daily_revenue END) as monday_avg,
AVG(CASE WHEN DAYOFWEEK(cds.sale_date) = 3 THEN cds.daily_revenue END) as tuesday_avg,
AVG(CASE WHEN DAYOFWEEK(cds.sale_date) = 4 THEN cds.daily_revenue END) as wednesday_avg,
AVG(CASE WHEN DAYOFWEEK(cds.sale_date) = 5 THEN cds.daily_revenue END) as thursday_avg,
AVG(CASE WHEN DAYOFWEEK(cds.sale_date) = 6 THEN cds.daily_revenue END) as friday_avg,
AVG(CASE WHEN DAYOFWEEK(cds.sale_date) = 7 THEN cds.daily_revenue END) as saturday_avg
FROM category_daily_sales cds
GROUP BY cds.category_id
)
SELECT
cs.category_id,
fd.forecast_date,
GREATEST(0,
cs.avg_daily_quantity *
(1 + COALESCE(
(SELECT seasonality_factor
FROM sales_seasonality
WHERE MONTH(fd.forecast_date) = month
LIMIT 1),
0
))
) as forecast_units,
GREATEST(0,
CASE DAYOFWEEK(fd.forecast_date)
WHEN 1 THEN COALESCE(cs.sunday_avg, cs.avg_daily_revenue)
WHEN 2 THEN COALESCE(cs.monday_avg, cs.avg_daily_revenue)
WHEN 3 THEN COALESCE(cs.tuesday_avg, cs.avg_daily_revenue)
WHEN 4 THEN COALESCE(cs.wednesday_avg, cs.avg_daily_revenue)
WHEN 5 THEN COALESCE(cs.thursday_avg, cs.avg_daily_revenue)
WHEN 6 THEN COALESCE(cs.friday_avg, cs.avg_daily_revenue)
WHEN 7 THEN COALESCE(cs.saturday_avg, cs.avg_daily_revenue)
END *
(1 + COALESCE(
(SELECT seasonality_factor
FROM sales_seasonality
WHERE MONTH(fd.forecast_date) = month
LIMIT 1),
0
)) *
-- Add some randomness within a small range (±5%)
(0.95 + (RAND() * 0.1))
) as forecast_revenue,
CASE
WHEN cs.data_points >= 60 THEN 90
WHEN cs.data_points >= 30 THEN 80
WHEN cs.data_points >= 14 THEN 70
ELSE 60
END as confidence_level,
NOW() as last_calculated_at
FROM category_stats cs
CROSS JOIN forecast_dates fd
WHERE cs.avg_daily_quantity > 0
ON DUPLICATE KEY UPDATE
forecast_units = VALUES(forecast_units),
forecast_revenue = VALUES(forecast_revenue),
confidence_level = VALUES(confidence_level),
last_calculated_at = NOW()
`);
}
// Update the main calculation function to include the new metrics
async function calculateMetrics() {
let pool;
const startTime = Date.now();
let processedCount = 0;
let totalProducts = 0;
try {
isCancelled = false;
pool = mysql.createPool(dbConfig);
const connection = await pool.getConnection();
try {
outputProgress({
status: 'running',
operation: 'Starting metrics calculation',
current: 0,
total: 100,
elapsed: '0s',
remaining: 'Calculating...',
rate: 0,
percentage: '0'
});
// Get total number of products
const [countResult] = await connection.query('SELECT COUNT(*) as total FROM products')
.catch(err => {
logError(err, 'Failed to count products');
throw err;
});
totalProducts = countResult[0].total;
if (!SKIP_PRODUCT_METRICS) {
// Initial progress with percentage
outputProgress({
status: 'running',
operation: 'Processing sales and stock metrics',
current: processedCount,
total: totalProducts,
elapsed: '0s',
remaining: 'Calculating...',
rate: 0,
percentage: '0'
});
// Process in batches of 250
const batchSize = 250;
for (let offset = 0; offset < totalProducts; offset += batchSize) {
if (isCancelled) {
throw new Error('Operation cancelled');
}
const [products] = await connection.query('SELECT product_id, vendor FROM products LIMIT ? OFFSET ?', [batchSize, offset])
.catch(err => {
logError(err, `Failed to fetch products batch at offset ${offset}`);
throw err;
});
processedCount += products.length;
// Update progress after each batch
outputProgress({
status: 'running',
operation: 'Processing products',
current: processedCount,
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / totalProducts) * 100).toFixed(1)
});
// Process the batch
const metricsUpdates = [];
for (const product of products) {
try {
// Get configuration values for this product
const [configs] = await connection.query(`
WITH product_info AS (
SELECT
p.product_id,
p.vendor,
pc.category_id
FROM products p
LEFT JOIN product_categories pc ON p.product_id = pc.product_id
WHERE p.product_id = ?
),
threshold_options AS (
SELECT
st.*,
CASE
WHEN st.category_id = pi.category_id AND st.vendor = pi.vendor THEN 1 -- Category + vendor match
WHEN st.category_id = pi.category_id AND st.vendor IS NULL THEN 2 -- Category match
WHEN st.category_id IS NULL AND st.vendor = pi.vendor THEN 3 -- Vendor match
WHEN st.category_id IS NULL AND st.vendor IS NULL THEN 4 -- Default
ELSE 5
END as priority
FROM product_info pi
CROSS JOIN stock_thresholds st
WHERE (st.category_id = pi.category_id OR st.category_id IS NULL)
AND (st.vendor = pi.vendor OR st.vendor IS NULL)
),
velocity_options AS (
SELECT
sv.*,
CASE
WHEN sv.category_id = pi.category_id AND sv.vendor = pi.vendor THEN 1
WHEN sv.category_id = pi.category_id AND sv.vendor IS NULL THEN 2
WHEN sv.category_id IS NULL AND sv.vendor = pi.vendor THEN 3
WHEN sv.category_id IS NULL AND sv.vendor IS NULL THEN 4
ELSE 5
END as priority
FROM product_info pi
CROSS JOIN sales_velocity_config sv
WHERE (sv.category_id = pi.category_id OR sv.category_id IS NULL)
AND (sv.vendor = pi.vendor OR sv.vendor IS NULL)
),
safety_options AS (
SELECT
ss.*,
CASE
WHEN ss.category_id = pi.category_id AND ss.vendor = pi.vendor THEN 1
WHEN ss.category_id = pi.category_id AND ss.vendor IS NULL THEN 2
WHEN ss.category_id IS NULL AND ss.vendor = pi.vendor THEN 3
WHEN ss.category_id IS NULL AND ss.vendor IS NULL THEN 4
ELSE 5
END as priority
FROM product_info pi
CROSS JOIN safety_stock_config ss
WHERE (ss.category_id = pi.category_id OR ss.category_id IS NULL)
AND (ss.vendor = pi.vendor OR ss.vendor IS NULL)
)
SELECT
-- Stock thresholds
COALESCE(
(SELECT critical_days
FROM threshold_options
ORDER BY priority LIMIT 1),
7
) as critical_days,
COALESCE(
(SELECT reorder_days
FROM threshold_options
ORDER BY priority LIMIT 1),
14
) as reorder_days,
COALESCE(
(SELECT overstock_days
FROM threshold_options
ORDER BY priority LIMIT 1),
90
) as overstock_days,
COALESCE(
(SELECT low_stock_threshold
FROM threshold_options
ORDER BY priority LIMIT 1),
5
) as low_stock_threshold,
-- Sales velocity windows
COALESCE(
(SELECT daily_window_days
FROM velocity_options
ORDER BY priority LIMIT 1),
30
) as daily_window_days,
COALESCE(
(SELECT weekly_window_days
FROM velocity_options
ORDER BY priority LIMIT 1),
7
) as weekly_window_days,
COALESCE(
(SELECT monthly_window_days
FROM velocity_options
ORDER BY priority LIMIT 1),
90
) as monthly_window_days,
-- Safety stock config
COALESCE(
(SELECT coverage_days
FROM safety_options
ORDER BY priority LIMIT 1),
14
) as safety_stock_days,
COALESCE(
(SELECT service_level
FROM safety_options
ORDER BY priority LIMIT 1),
95.0
) as service_level,
-- ABC Classification
(SELECT a_threshold FROM abc_classification_config WHERE id = 1) as abc_a_threshold,
(SELECT b_threshold FROM abc_classification_config WHERE id = 1) as abc_b_threshold,
(SELECT classification_period_days FROM abc_classification_config WHERE id = 1) as abc_period_days
`, [product.product_id]);
const config = configs[0] || {
critical_days: 7,
reorder_days: 14,
overstock_days: 90,
low_stock_threshold: 5,
daily_window_days: 30,
weekly_window_days: 7,
monthly_window_days: 90,
safety_stock_days: 14,
service_level: 95.0,
abc_a_threshold: 20.0,
abc_b_threshold: 50.0,
abc_period_days: 90
};
// Calculate sales metrics with trends using configured windows
const [salesMetrics] = await connection.query(`
WITH sales_summary AS (
SELECT
SUM(o.quantity) as total_quantity_sold,
SUM((o.price - COALESCE(o.discount, 0)) * o.quantity) as total_revenue,
SUM(COALESCE(p.cost_price, 0) * o.quantity) as total_cost,
MAX(o.date) as last_sale_date,
MIN(o.date) as first_sale_date,
COUNT(DISTINCT o.order_number) as number_of_orders,
AVG(o.quantity) as avg_quantity_per_order,
-- Calculate rolling averages using configured windows
SUM(CASE WHEN o.date >= DATE_SUB(CURDATE(), INTERVAL ? DAY) THEN o.quantity ELSE 0 END) as last_30_days_qty,
CASE
WHEN SUM(CASE WHEN o.date >= DATE_SUB(CURDATE(), INTERVAL ? DAY) THEN o.quantity ELSE 0 END) IS NULL THEN 0
ELSE SUM(CASE WHEN o.date >= DATE_SUB(CURDATE(), INTERVAL ? DAY) THEN o.quantity ELSE 0 END)
END as rolling_weekly_avg,
SUM(CASE WHEN o.date >= DATE_SUB(CURDATE(), INTERVAL ? DAY) THEN o.quantity ELSE 0 END) as last_month_qty
FROM orders o
JOIN products p ON o.product_id = p.product_id
WHERE o.canceled = 0 AND o.product_id = ?
GROUP BY o.product_id
)
SELECT
total_quantity_sold,
total_revenue,
total_cost,
last_sale_date,
first_sale_date,
number_of_orders,
avg_quantity_per_order,
last_30_days_qty / ? as rolling_daily_avg,
rolling_weekly_avg / ? as rolling_weekly_avg,
last_month_qty / ? as rolling_monthly_avg,
total_quantity_sold as total_sales_to_date
FROM sales_summary
`, [
config.daily_window_days,
config.weekly_window_days,
config.weekly_window_days,
config.monthly_window_days,
product.product_id,
config.daily_window_days,
config.weekly_window_days,
config.monthly_window_days
]).catch(err => {
logError(err, `Failed to calculate sales metrics for product ${product.product_id}`);
throw err;
});
// Calculate purchase metrics with proper handling of negative quantities
const [purchaseMetrics] = await connection.query(`
WITH recent_orders AS (
SELECT
date,
received_date,
received,
cost_price,
DATEDIFF(received_date, date) as lead_time_days,
ROW_NUMBER() OVER (ORDER BY date DESC) as order_rank
FROM purchase_orders
WHERE status = 'closed'
AND product_id = ?
AND received > 0
AND received_date IS NOT NULL
),
lead_time_orders AS (
SELECT *
FROM recent_orders
WHERE order_rank <= 5 -- Last 5 orders
OR date >= DATE_SUB(CURDATE(), INTERVAL 90 DAY) -- Or orders from last 90 days
)
SELECT
SUM(CASE WHEN received >= 0 THEN received ELSE 0 END) as total_quantity_purchased,
SUM(CASE WHEN received >= 0 THEN cost_price * received ELSE 0 END) as total_cost,
MAX(date) as last_purchase_date,
MIN(received_date) as first_received_date,
MAX(received_date) as last_received_date,
AVG(lead_time_days) as avg_lead_time_days,
COUNT(*) as orders_analyzed
FROM lead_time_orders
`, [product.product_id]).catch(err => {
logError(err, `Failed to calculate purchase metrics for product ${product.product_id}`);
throw err;
});
// Get current stock and stock age
const [stockInfo] = await connection.query(`
SELECT
p.stock_quantity,
p.cost_price,
p.created_at,
p.replenishable,
p.moq,
DATEDIFF(CURDATE(), MIN(po.received_date)) as days_since_first_stock,
DATEDIFF(CURDATE(), COALESCE(
(SELECT MAX(o2.date)
FROM orders o2
WHERE o2.product_id = p.product_id
AND o2.canceled = false),
CURDATE() -- If no sales, use current date
)) as days_since_last_sale,
(SELECT SUM(quantity)
FROM orders o3
WHERE o3.product_id = p.product_id
AND o3.canceled = false) as total_quantity_sold,
CASE
WHEN EXISTS (
SELECT 1 FROM orders o
WHERE o.product_id = p.product_id
AND o.date >= DATE_SUB(CURDATE(), INTERVAL 30 DAY)
AND o.canceled = false
AND (SELECT SUM(quantity) FROM orders o2
WHERE o2.product_id = p.product_id
AND o2.date >= o.date
AND o2.canceled = false) = 0
) THEN true
ELSE false
END as had_recent_stockout
FROM products p
LEFT JOIN purchase_orders po ON p.product_id = po.product_id
AND po.status = 'closed'
AND po.received > 0
WHERE p.product_id = ?
GROUP BY p.product_id
`, [product.product_id]).catch(err => {
logError(err, `Failed to get stock info for product ${product.product_id}`);
throw err;
});
// Calculate metrics
const metrics = salesMetrics[0] || {};
const purchases = purchaseMetrics[0] || {};
const stock = stockInfo[0] || {};
const daily_sales_avg = metrics.rolling_daily_avg || 0;
const weekly_sales_avg = metrics.rolling_weekly_avg || 0;
const monthly_sales_avg = metrics.total_quantity_sold ? metrics.total_quantity_sold / 30 : 0;
// Calculate days of inventory with safety factor and lead times
const days_of_inventory = daily_sales_avg > 0 ?
Math.ceil(
(stock.stock_quantity / daily_sales_avg) +
(purchases.avg_lead_time_days || config.reorder_days) *
(1 + (config.service_level / 100))
) : null;
const weeks_of_inventory = days_of_inventory ? Math.ceil(days_of_inventory / 7) : null;
// Calculate margin percent with proper handling of zero revenue
const margin_percent = metrics.total_revenue > 0 ?
((metrics.total_revenue - metrics.total_cost) / metrics.total_revenue) * 100 :
null;
// Calculate current inventory value
const inventory_value = (stock.stock_quantity || 0) * (stock.cost_price || 0);
// Calculate stock status with improved handling
const stock_status = (() => {
const days_since_first_stock = stockInfo[0]?.days_since_first_stock || 0;
const days_since_last_sale = stockInfo[0]?.days_since_last_sale || 9999;
const total_quantity_sold = stockInfo[0]?.total_quantity_sold || 0;
const had_recent_stockout = stockInfo[0]?.had_recent_stockout || false;
const dq = stock.stock_quantity || 0;
const ds = daily_sales_avg || 0;
const ws = weekly_sales_avg || 0;
const ms = monthly_sales_avg || 0;
// If no stock, return immediately
if (dq === 0) {
return had_recent_stockout ? 'Critical' : 'Out of Stock';
}
// 1. Check if truly "New" (≤30 days and no sales)
if (days_since_first_stock <= 30 && total_quantity_sold === 0) {
return 'New';
}
// 2. Handle zero or very low sales velocity cases
if (ds === 0 || (ds < 0.1 && ws < 0.5)) { // Less than 1 sale per 10 days and less than 0.5 per week
if (days_since_first_stock > config.overstock_days) {
return 'Overstocked';
}
if (days_since_first_stock > 30) {
return 'At Risk';
}
}
// 3. Calculate days of supply and check velocity trends
const days_of_supply = ds > 0 ? dq / ds : 999;
const velocity_trend = ds > 0 ? (ds / (ms || ds) - 1) * 100 : 0; // Percent change from monthly to daily avg
// Critical stock level
if (days_of_supply <= config.critical_days) {
return 'Critical';
}
// Reorder cases
if (days_of_supply <= config.reorder_days ||
(had_recent_stockout && days_of_supply <= config.reorder_days * 1.5)) {
return 'Reorder';
}
// At Risk cases (multiple scenarios)
if (
// Approaching overstock threshold
(days_of_supply >= config.overstock_days * 0.8) ||
// Significant sales decline
(velocity_trend <= -50 && days_of_supply > config.reorder_days * 2) ||
// No recent sales
(days_since_last_sale > 45 && dq > 0) ||
// Very low velocity with significant stock
(ds > 0 && ds < 0.2 && dq > ds * config.overstock_days * 0.5)
) {
return 'At Risk';
}
// Overstock cases
if (days_of_supply >= config.overstock_days) {
return 'Overstocked';
}
// If none of the above conditions are met
return 'Healthy';
})();
// Calculate reorder quantity and overstocked amount
let reorder_qty = 0;
let overstocked_amt = 0;
// Only calculate reorder quantity for replenishable products
if (stock.replenishable && (stock_status === 'Critical' || stock_status === 'Reorder')) {
const ds = daily_sales_avg || 0;
const lt = purchases.avg_lead_time_days || 14; // Default to 14 days if no lead time data
const sc = config.safety_stock_days || 14;
const ss = config.safety_stock_days || 14;
const dq = stock.stock_quantity || 0;
const moq = stock.moq || 1;
// Calculate desired stock level based on daily sales, lead time, coverage days, and safety stock
const desired_stock = (ds * (lt + sc)) + ss;
// Calculate raw reorder amount
const raw_reorder = Math.max(0, desired_stock - dq);
// Round up to nearest MOQ
reorder_qty = Math.ceil(raw_reorder / moq) * moq;
}
// Calculate overstocked amount for overstocked products
if (stock_status === 'Overstocked') {
const ds = daily_sales_avg || 0;
const dq = stock.stock_quantity || 0;
const lt = purchases.avg_lead_time_days || 14;
const sc = config.safety_stock_days || 14;
const ss = config.safety_stock_days || 14;
// Calculate maximum desired stock based on overstock days configuration
const max_desired_stock = (ds * config.overstock_days) + ss;
// Calculate excess inventory
overstocked_amt = Math.max(0, dq - max_desired_stock);
}
// Add to batch update (remove safety_stock from the array since it's calculated separately)
metricsUpdates.push([
product.product_id,
daily_sales_avg || null,
weekly_sales_avg || null,
monthly_sales_avg || null,
metrics.avg_quantity_per_order || null,
metrics.number_of_orders || 0,
metrics.first_sale_date || null,
metrics.last_sale_date || null,
days_of_inventory,
weeks_of_inventory,
daily_sales_avg > 0 ? Math.max(1, Math.ceil(daily_sales_avg * config.reorder_days)) : null,
margin_percent,
metrics.total_revenue || 0,
inventory_value || 0,
purchases.avg_lead_time_days || null,
purchases.last_purchase_date || null,
purchases.first_received_date || null,
purchases.last_received_date || null,
stock_status,
reorder_qty,
overstocked_amt
]);
} catch (err) {
logError(err, `Failed processing product ${product.product_id}`);
// Continue with next product instead of failing entire batch
continue;
}
}
// Batch update metrics
if (metricsUpdates.length > 0) {
await connection.query(`
INSERT INTO product_metrics (
product_id,
daily_sales_avg,
weekly_sales_avg,
monthly_sales_avg,
avg_quantity_per_order,
number_of_orders,
first_sale_date,
last_sale_date,
days_of_inventory,
weeks_of_inventory,
reorder_point,
avg_margin_percent,
total_revenue,
inventory_value,
avg_lead_time_days,
last_purchase_date,
first_received_date,
last_received_date,
stock_status,
reorder_qty,
overstocked_amt
) VALUES ?
ON DUPLICATE KEY UPDATE
last_calculated_at = NOW(),
daily_sales_avg = VALUES(daily_sales_avg),
weekly_sales_avg = VALUES(weekly_sales_avg),
monthly_sales_avg = VALUES(monthly_sales_avg),
avg_quantity_per_order = VALUES(avg_quantity_per_order),
number_of_orders = VALUES(number_of_orders),
first_sale_date = VALUES(first_sale_date),
last_sale_date = VALUES(last_sale_date),
days_of_inventory = VALUES(days_of_inventory),
weeks_of_inventory = VALUES(weeks_of_inventory),
reorder_point = VALUES(reorder_point),
avg_margin_percent = VALUES(avg_margin_percent),
total_revenue = VALUES(total_revenue),
inventory_value = VALUES(inventory_value),
avg_lead_time_days = VALUES(avg_lead_time_days),
last_purchase_date = VALUES(last_purchase_date),
first_received_date = VALUES(first_received_date),
last_received_date = VALUES(last_received_date),
stock_status = VALUES(stock_status),
reorder_qty = VALUES(reorder_qty),
overstocked_amt = VALUES(overstocked_amt)
`, [metricsUpdates]).catch(err => {
logError(err, `Failed to batch update metrics for ${metricsUpdates.length} products`);
throw err;
});
}
}
} else {
console.log('Skipping product metrics calculation...');
outputProgress({
status: 'running',
operation: 'Skipping product metrics calculation',
current: Math.floor(totalProducts * 0.6),
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, Math.floor(totalProducts * 0.6), totalProducts),
rate: calculateRate(startTime, Math.floor(totalProducts * 0.6)),
percentage: '60'
});
}
outputProgress({
status: 'running',
operation: 'Starting financial metrics calculation',
current: Math.floor(totalProducts * 0.6),
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, Math.floor(totalProducts * 0.6), totalProducts),
rate: calculateRate(startTime, Math.floor(totalProducts * 0.6)),
percentage: '60'
});
await calculateFinancialMetrics(connection, startTime, totalProducts);
outputProgress({
status: 'running',
operation: 'Starting vendor metrics calculation',
current: Math.floor(totalProducts * 0.7),
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, Math.floor(totalProducts * 0.7), totalProducts),
rate: calculateRate(startTime, Math.floor(totalProducts * 0.7)),
percentage: '70'
});
await calculateVendorMetrics(connection, startTime, totalProducts);
outputProgress({
status: 'running',
operation: 'Starting turnover metrics calculation',
current: Math.floor(totalProducts * 0.75),
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, Math.floor(totalProducts * 0.75), totalProducts),
rate: calculateRate(startTime, Math.floor(totalProducts * 0.75)),
percentage: '75'
});
await calculateTurnoverMetrics(connection, startTime, totalProducts);
outputProgress({
status: 'running',
operation: 'Starting lead time metrics calculation',
current: Math.floor(totalProducts * 0.8),
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, Math.floor(totalProducts * 0.8), totalProducts),
rate: calculateRate(startTime, Math.floor(totalProducts * 0.8)),
percentage: '80'
});
await calculateLeadTimeMetrics(connection, startTime, totalProducts);
// Calculate category metrics
await calculateCategoryMetrics(connection, startTime, totalProducts);
// Calculate category sales metrics
await calculateCategorySalesMetrics(connection, startTime, totalProducts);
// Calculate ABC classification
const [abcConfig] = await connection.query('SELECT a_threshold, b_threshold FROM abc_classification_config WHERE id = 1');
const abcThresholds = abcConfig[0] || { a_threshold: 20, b_threshold: 50 };
await connection.query(`
WITH revenue_rankings AS (
SELECT
product_id,
total_revenue,
PERCENT_RANK() OVER (ORDER BY COALESCE(total_revenue, 0) DESC) * 100 as revenue_percentile
FROM product_metrics
),
classification_update AS (
SELECT
product_id,
CASE
WHEN revenue_percentile <= ? THEN 'A'
WHEN revenue_percentile <= ? THEN 'B'
ELSE 'C'
END as abc_class
FROM revenue_rankings
)
UPDATE product_metrics pm
JOIN classification_update cu ON pm.product_id = cu.product_id
SET pm.abc_class = cu.abc_class,
pm.last_calculated_at = NOW()
`, [abcThresholds.a_threshold, abcThresholds.b_threshold]);
// Calculate time-based aggregates
outputProgress({
status: 'running',
operation: 'Starting time-based aggregates calculation',
current: Math.floor(totalProducts * 0.85),
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, Math.floor(totalProducts * 0.85), totalProducts),
rate: calculateRate(startTime, Math.floor(totalProducts * 0.85)),
percentage: '85'
});
await connection.query('TRUNCATE TABLE product_time_aggregates;');
await connection.query(`
INSERT INTO product_time_aggregates (
product_id,
year,
month,
total_quantity_sold,
total_revenue,
total_cost,
order_count,
stock_received,
stock_ordered,
avg_price,
profit_margin
)
WITH sales_data AS (
SELECT
o.product_id,
YEAR(o.date) as year,
MONTH(o.date) as month,
SUM(o.quantity) as total_quantity_sold,
SUM((o.price - COALESCE(o.discount, 0)) * o.quantity) as total_revenue,
SUM(COALESCE(p.cost_price, 0) * o.quantity) as total_cost,
COUNT(DISTINCT o.order_number) as order_count,
AVG(o.price - COALESCE(o.discount, 0)) as avg_price,
CASE
WHEN SUM((o.price - COALESCE(o.discount, 0)) * o.quantity) = 0 THEN 0
ELSE ((SUM((o.price - COALESCE(o.discount, 0)) * o.quantity) -
SUM(COALESCE(p.cost_price, 0) * o.quantity)) /
SUM((o.price - COALESCE(o.discount, 0)) * o.quantity)) * 100
END as profit_margin
FROM orders o
JOIN products p ON o.product_id = p.product_id
WHERE o.canceled = 0
GROUP BY o.product_id, YEAR(o.date), MONTH(o.date)
),
purchase_data AS (
SELECT
product_id,
YEAR(date) as year,
MONTH(date) as month,
SUM(received) as stock_received,
SUM(ordered) as stock_ordered
FROM purchase_orders
WHERE status = 'closed'
GROUP BY product_id, YEAR(date), MONTH(date)
)
SELECT
s.product_id,
s.year,
s.month,
s.total_quantity_sold,
s.total_revenue,
s.total_cost,
s.order_count,
COALESCE(p.stock_received, 0) as stock_received,
COALESCE(p.stock_ordered, 0) as stock_ordered,
0 as avg_price,
0 as profit_margin
FROM sales_data s
LEFT JOIN purchase_data p
ON s.product_id = p.product_id
AND s.year = p.year
AND s.month = p.month
UNION
SELECT
p.product_id,
p.year,
p.month,
0 as total_quantity_sold,
0 as total_revenue,
0 as total_cost,
0 as order_count,
p.stock_received,
p.stock_ordered,
0 as avg_price,
0 as profit_margin
FROM purchase_data p
LEFT JOIN sales_data s
ON p.product_id = s.product_id
AND p.year = s.year
AND p.month = s.month
WHERE s.product_id IS NULL
`);
// Add new metric calculations before final success message
await calculateBrandMetrics(connection, startTime, totalProducts);
await calculateSalesForecasts(connection, startTime, totalProducts);
// Final success message
outputProgress({
status: 'complete',
operation: 'Metrics calculation complete',
current: totalProducts,
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: '0s',
rate: calculateRate(startTime, totalProducts),
percentage: '100'
});
// Clear progress file on successful completion
clearProgress();
} catch (error) {
if (isCancelled) {
outputProgress({
status: 'cancelled',
operation: 'Calculation cancelled',
current: processedCount,
total: totalProducts || 0,
elapsed: formatElapsedTime(startTime),
remaining: null,
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / (totalProducts || 1)) * 100).toFixed(1)
});
} else {
outputProgress({
status: 'error',
operation: 'Error: ' + error.message,
current: processedCount,
total: totalProducts || 0,
elapsed: formatElapsedTime(startTime),
remaining: null,
rate: calculateRate(startTime, processedCount),
percentage: ((processedCount / (totalProducts || 1)) * 100).toFixed(1)
});
}
throw error;
} finally {
connection.release();
}
} finally {
if (pool) {
await pool.end();
}
}
}
// Export both functions and progress checker
module.exports = calculateMetrics;
module.exports.cancelCalculation = cancelCalculation;
module.exports.getProgress = getProgress;
// Run directly if called from command line
if (require.main === module) {
calculateMetrics().catch(error => {
if (!error.message.includes('Operation cancelled')) {
console.error('Error:', error);
}
process.exit(1);
});
}