Files
inventory/inventory-server/scripts/calculate-metrics.js

479 lines
19 KiB
JavaScript

const mysql = require('mysql2/promise');
const path = require('path');
require('dotenv').config({ path: path.resolve(__dirname, '..', '.env') });
// Helper function to format elapsed time
function formatElapsedTime(startTime) {
const elapsed = Date.now() - startTime;
const seconds = Math.floor(elapsed / 1000);
const minutes = Math.floor(seconds / 60);
const hours = Math.floor(minutes / 60);
if (hours > 0) {
return `${hours}h ${minutes % 60}m`;
} else if (minutes > 0) {
return `${minutes}m ${seconds % 60}s`;
} else {
return `${seconds}s`;
}
}
// Helper function to estimate remaining time
function estimateRemaining(startTime, current, total) {
if (current === 0) return null;
const elapsed = Date.now() - startTime;
const rate = current / elapsed;
const remaining = (total - current) / rate;
const minutes = Math.floor(remaining / 60000);
const seconds = Math.floor((remaining % 60000) / 1000);
if (minutes > 0) {
return `${minutes}m ${seconds}s`;
} else {
return `${seconds}s`;
}
}
// Helper function to calculate rate
function calculateRate(startTime, current) {
const elapsed = (Date.now() - startTime) / 1000; // Convert to seconds
return elapsed > 0 ? Math.round(current / elapsed) : 0;
}
// Helper function to output progress
function outputProgress(data) {
process.stdout.write(JSON.stringify(data) + '\n');
}
// Helper function to log errors
function logError(error, context) {
console.error(JSON.stringify({
status: 'error',
error: error.message || error,
context
}));
}
// Database configuration
const dbConfig = {
host: process.env.DB_HOST,
user: process.env.DB_USER,
password: process.env.DB_PASSWORD,
database: process.env.DB_NAME,
waitForConnections: true,
connectionLimit: 10,
queueLimit: 0
};
// Add cancel handler
let isCancelled = false;
function cancelCalculation() {
isCancelled = true;
process.stdout.write(JSON.stringify({
status: 'cancelled',
operation: 'Calculation cancelled',
current: 0,
total: 0,
elapsed: null,
remaining: null,
rate: 0
}) + '\n');
process.exit(0);
}
async function calculateMetrics() {
let pool;
const startTime = Date.now();
let processedCount = 0;
let totalProducts = 0; // Initialize at the top
try {
isCancelled = false;
pool = mysql.createPool(dbConfig);
const connection = await pool.getConnection();
try {
// Get total number of products
const [countResult] = await connection.query('SELECT COUNT(*) as total FROM products');
totalProducts = countResult[0].total;
// Initial progress
outputProgress({
status: 'running',
operation: 'Processing products',
current: processedCount,
total: totalProducts,
elapsed: '0s',
remaining: 'Calculating...',
rate: 0
});
// Process in batches of 100
const batchSize = 100;
for (let offset = 0; offset < totalProducts; offset += batchSize) {
if (isCancelled) {
throw new Error('Operation cancelled');
}
const [products] = await connection.query('SELECT product_id FROM products LIMIT ? OFFSET ?', [batchSize, offset]);
processedCount += products.length;
// Update progress after each batch
outputProgress({
status: 'running',
operation: 'Processing products',
current: processedCount,
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, processedCount, totalProducts),
rate: calculateRate(startTime, processedCount)
});
// Process the batch
for (const product of products) {
// Calculate sales metrics
const [salesMetrics] = await connection.query(`
SELECT
SUM(o.quantity) as total_quantity_sold,
SUM((o.price - COALESCE(o.discount, 0)) * o.quantity) as total_revenue,
SUM(COALESCE(p.cost_price, 0) * o.quantity) as total_cost,
MAX(o.date) as last_sale_date
FROM orders o
JOIN products p ON o.product_id = p.product_id
WHERE o.canceled = 0 AND o.product_id = ?
GROUP BY o.product_id
`, [product.product_id]);
// Calculate purchase metrics
const [purchaseMetrics] = await connection.query(`
SELECT
SUM(received) as total_quantity_purchased,
SUM(cost_price * received) as total_cost,
MAX(date) as last_purchase_date,
MAX(received_date) as last_received_date,
AVG(DATEDIFF(received_date, date)) as avg_lead_time_days
FROM purchase_orders
WHERE status = 'closed' AND received > 0 AND product_id = ?
GROUP BY product_id
`, [product.product_id]);
// Get current stock
const [stockInfo] = await connection.query(`
SELECT stock_quantity, cost_price
FROM products
WHERE product_id = ?
`, [product.product_id]);
// Calculate metrics
const metrics = salesMetrics[0] || {};
const purchases = purchaseMetrics[0] || {};
const stock = stockInfo[0] || {};
const daily_sales_avg = metrics.total_quantity_sold ? metrics.total_quantity_sold / 30 : 0;
const weekly_sales_avg = metrics.total_quantity_sold ? metrics.total_quantity_sold / 4 : 0;
const monthly_sales_avg = metrics.total_quantity_sold || 0;
// Update product metrics
await connection.query(`
INSERT INTO product_metrics (
product_id,
last_calculated_at,
daily_sales_avg,
weekly_sales_avg,
monthly_sales_avg,
days_of_inventory,
weeks_of_inventory,
reorder_point,
safety_stock,
avg_margin_percent,
total_revenue,
avg_lead_time_days,
last_purchase_date,
last_received_date,
abc_class,
stock_status
) VALUES (
?,
NOW(),
?,
?,
?,
?,
?,
?,
?,
?,
?,
?,
?,
?,
NULL,
?
)
ON DUPLICATE KEY UPDATE
last_calculated_at = VALUES(last_calculated_at),
daily_sales_avg = VALUES(daily_sales_avg),
weekly_sales_avg = VALUES(weekly_sales_avg),
monthly_sales_avg = VALUES(monthly_sales_avg),
days_of_inventory = VALUES(days_of_inventory),
weeks_of_inventory = VALUES(weeks_of_inventory),
reorder_point = VALUES(reorder_point),
safety_stock = VALUES(safety_stock),
avg_margin_percent = VALUES(avg_margin_percent),
total_revenue = VALUES(total_revenue),
avg_lead_time_days = VALUES(avg_lead_time_days),
last_purchase_date = VALUES(last_purchase_date),
last_received_date = VALUES(last_received_date),
stock_status = VALUES(stock_status)
`, [
product.product_id,
daily_sales_avg,
weekly_sales_avg,
monthly_sales_avg,
daily_sales_avg ? stock.stock_quantity / daily_sales_avg : null,
weekly_sales_avg ? stock.stock_quantity / weekly_sales_avg : null,
Math.ceil(daily_sales_avg * 14), // 14 days reorder point
Math.ceil(daily_sales_avg * 7), // 7 days safety stock
metrics.total_revenue ? ((metrics.total_revenue - metrics.total_cost) / metrics.total_revenue) * 100 : 0,
metrics.total_revenue || 0,
purchases.avg_lead_time_days || 0,
purchases.last_purchase_date,
purchases.last_received_date,
daily_sales_avg === 0 ? 'New' :
stock.stock_quantity <= Math.ceil(daily_sales_avg * 7) ? 'Critical' :
stock.stock_quantity <= Math.ceil(daily_sales_avg * 14) ? 'Reorder' :
stock.stock_quantity > (daily_sales_avg * 90) ? 'Overstocked' : 'Healthy'
]);
}
}
// Update progress for ABC classification
outputProgress({
status: 'running',
operation: 'Calculating ABC classification',
current: totalProducts,
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, totalProducts, totalProducts),
rate: calculateRate(startTime, totalProducts)
});
// Calculate ABC classification
await connection.query(`
WITH revenue_percentiles AS (
SELECT
product_id,
total_revenue,
PERCENT_RANK() OVER (ORDER BY total_revenue DESC) as revenue_percentile
FROM product_metrics
WHERE total_revenue > 0
)
UPDATE product_metrics pm
JOIN revenue_percentiles rp ON pm.product_id = rp.product_id
SET pm.abc_class =
CASE
WHEN rp.revenue_percentile < 0.2 THEN 'A'
WHEN rp.revenue_percentile < 0.5 THEN 'B'
ELSE 'C'
END;
`);
// Update progress for time-based aggregates
outputProgress({
status: 'running',
operation: 'Calculating time-based aggregates',
current: totalProducts,
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, totalProducts, totalProducts),
rate: calculateRate(startTime, totalProducts)
});
// Calculate time-based aggregates
await connection.query('TRUNCATE TABLE product_time_aggregates;');
await connection.query(`
INSERT INTO product_time_aggregates (
product_id,
year,
month,
total_quantity_sold,
total_revenue,
total_cost,
order_count,
stock_received,
stock_ordered,
avg_price,
profit_margin
)
WITH sales_data AS (
SELECT
o.product_id,
YEAR(o.date) as year,
MONTH(o.date) as month,
SUM(o.quantity) as total_quantity_sold,
SUM((o.price - COALESCE(o.discount, 0)) * o.quantity) as total_revenue,
SUM(COALESCE(p.cost_price, 0) * o.quantity) as total_cost,
COUNT(DISTINCT o.order_number) as order_count,
AVG(o.price - COALESCE(o.discount, 0)) as avg_price,
CASE
WHEN SUM((o.price - COALESCE(o.discount, 0)) * o.quantity) = 0 THEN 0
ELSE ((SUM((o.price - COALESCE(o.discount, 0)) * o.quantity) -
SUM(COALESCE(p.cost_price, 0) * o.quantity)) /
SUM((o.price - COALESCE(o.discount, 0)) * o.quantity)) * 100
END as profit_margin
FROM orders o
JOIN products p ON o.product_id = p.product_id
WHERE o.canceled = 0
GROUP BY o.product_id, YEAR(o.date), MONTH(o.date)
),
purchase_data AS (
SELECT
product_id,
YEAR(date) as year,
MONTH(date) as month,
SUM(received) as stock_received,
SUM(ordered) as stock_ordered
FROM purchase_orders
WHERE status = 'closed'
GROUP BY product_id, YEAR(date), MONTH(date)
)
SELECT
s.product_id,
s.year,
s.month,
s.total_quantity_sold,
s.total_revenue,
s.total_cost,
s.order_count,
COALESCE(p.stock_received, 0) as stock_received,
COALESCE(p.stock_ordered, 0) as stock_ordered,
s.avg_price,
s.profit_margin
FROM sales_data s
LEFT JOIN purchase_data p
ON s.product_id = p.product_id
AND s.year = p.year
AND s.month = p.month
UNION
SELECT
p.product_id,
p.year,
p.month,
0 as total_quantity_sold,
0 as total_revenue,
0 as total_cost,
0 as order_count,
p.stock_received,
p.stock_ordered,
0 as avg_price,
0 as profit_margin
FROM purchase_data p
LEFT JOIN sales_data s
ON p.product_id = s.product_id
AND p.year = s.year
AND p.month = s.month
WHERE s.product_id IS NULL
`);
// Update progress for vendor metrics
outputProgress({
status: 'running',
operation: 'Calculating vendor metrics',
current: totalProducts,
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: estimateRemaining(startTime, totalProducts, totalProducts),
rate: calculateRate(startTime, totalProducts)
});
// Calculate vendor metrics
await connection.query(`
INSERT INTO vendor_metrics (
vendor,
last_calculated_at,
avg_lead_time_days,
on_time_delivery_rate,
order_fill_rate,
total_orders,
total_late_orders
)
SELECT
vendor,
NOW() as last_calculated_at,
COALESCE(AVG(DATEDIFF(received_date, date)), 0) as avg_lead_time_days,
COALESCE((COUNT(CASE WHEN DATEDIFF(received_date, date) <= 14 THEN 1 END) * 100.0 / NULLIF(COUNT(*), 0)), 0) as on_time_delivery_rate,
COALESCE((SUM(received) * 100.0 / NULLIF(SUM(ordered), 0)), 0) as order_fill_rate,
COUNT(DISTINCT po_id) as total_orders,
COUNT(CASE WHEN DATEDIFF(received_date, date) > 14 THEN 1 END) as total_late_orders
FROM purchase_orders
WHERE status = 'closed'
GROUP BY vendor
ON DUPLICATE KEY UPDATE
last_calculated_at = VALUES(last_calculated_at),
avg_lead_time_days = VALUES(avg_lead_time_days),
on_time_delivery_rate = VALUES(on_time_delivery_rate),
order_fill_rate = VALUES(order_fill_rate),
total_orders = VALUES(total_orders),
total_late_orders = VALUES(total_late_orders)
`);
// Final success message
outputProgress({
status: 'complete',
operation: 'Metrics calculation complete',
current: totalProducts,
total: totalProducts,
elapsed: formatElapsedTime(startTime),
remaining: '0s',
rate: calculateRate(startTime, totalProducts)
});
} catch (error) {
if (isCancelled) {
outputProgress({
status: 'cancelled',
operation: 'Calculation cancelled',
current: processedCount,
total: totalProducts || 0, // Use 0 if not yet defined
elapsed: formatElapsedTime(startTime),
remaining: null,
rate: calculateRate(startTime, processedCount)
});
} else {
outputProgress({
status: 'error',
operation: 'Error: ' + error.message,
current: processedCount,
total: totalProducts || 0, // Use 0 if not yet defined
elapsed: formatElapsedTime(startTime),
remaining: null,
rate: calculateRate(startTime, processedCount)
});
}
throw error;
} finally {
connection.release();
}
} finally {
if (pool) {
await pool.end();
}
}
}
// Export both functions
module.exports = calculateMetrics;
module.exports.cancelCalculation = cancelCalculation;
// Run directly if called from command line
if (require.main === module) {
calculateMetrics().catch(error => {
if (!error.message.includes('Operation cancelled')) {
console.error('Error:', error);
}
process.exit(1);
});
}